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Abstract 

In this paper. we give a theoretical foundation of EFS (elementary formal 
system) as a logic programming Language. We show that the set of ail the unifiers 
of two atoms is finite and computable by restricting the form of axioms and goals 
without losing generality. The restriction makes the negation as failure rule 
complete. Ifre give ttvo conditions of EFS9s such that the negation as failure rule 
is identical to the closed world assumption. We also give a subclass of EFS's 
where a procedure of CiVA is given as bounding the length sf derivations IVe 
compare these classes with the Chomsky hierarchy. 

1, Introduction 

In this paper we give a theoretical foundation of EFS (elementary formal system) as a logic 
programming language. 

EFS was first introduced by Smullyan [13] to develop his recursive function theory. Both 
EFS and logic programming use definite clauses as axioms: but the structures of their terms 
are different. Logc p rograming  uses the first order terms. but the terms of EFS are patterns 
in (C U X ) +  as terms. Arikaiva El] showed EFS is suitable to generate languages, 

Vie formalize a derivation procedure for EFS, and give the same semantics to EFS as 
that of logic programming. Our motivation for this is to give a unifying framework of 
inductive inference of languages by combining MIS [I21 with EFS. The framework is given 
as RITEFS 121. Thus we need a complete refutation procedure to  accept languages defined 
by EFS's, nearly in the same way as that of logic programming. 

Our theory is based on that of logic programming schema given by Jaffar et al, [a ] .  In 
order to show the completeness of reftitation for EFS, we give the declarative semantics of 
EFS's by introducing the associative law as an equational theory to represent the unification 
of patterns. It would seem that our theory is an instance of the schema such that the 
Herbrand universe is CS. However, there still remains a big problem in the operational 
semantics, that is, there are infinitely many maximally general unifiers of two atoms. No 
method for avoiding this problem rt7as given in the schema; and so the NF(negation as faiitsre 
rule) is incomplete in general. 



We give a solution of the problem by simply assuming that EFS's are variable-bounded 
and goals are ground. The assumption does not lose generality, because it is known that every 
recursively enumerable language is definable by a variable-borznded EFS [2]. 1% show that 
the set of all unifiers of two atoms is finite and computable when we use variable-bounded 
EFS's and ground goals. Thus XF is complete under the assumption. 

Moreok~er, we give two procedures of the CMTA (closed world assumption) for variable- 
bounded EFS's. One is to make use of NF  by giving some restrictions to the axioms, We 
show that NF  is identical to CWA for hierarchical EFS's and seducing EFS's. The other is 
to bound the length of derivations with the size of atoms in the goal. We show that this 
procedure realizes GlVA for weakly reducing EFS's. Since EFS combines logic programming 
and formal language theory, we can compare t i m e  classes with Chornskp hierarci~y. IVe show 
that every context-free language is definable by a reducing EFS. It is shown in 123 that every 
context-sensitive language is definable by a weakly reducing EFS. 

The paper is organized as follows, In Section 2 we give the fundamental definitions of EFS 
and introduce the variable-bounded EFS. In Section 3, we give the deri-i-atisn procedure for 
EFS and show that all unifiers can be eEectively computed for variable-bounded EFS's and 
mound goals. In Section 4 we give the same semantics to EFS as that of logic programming. a- 

In Section 5 we prove the compieteness of NF for variable-bounded EFS. In Section 6 we 
discuss CtVA mainly for weakly seducing EFS, 

2 .  Elementary Formal System 

tI7e start with recalling the definitions of EFS. 
Let E, X ,  and Il be mutually disjoint sets. We assrrxle that C and KI are finite, We refer 

to C as the alphabet, to  each element of it as a symbol, which will be denoted by a ,  b, c, . . ., 
to each element of X as a van,able, denoted by rc, y, z ,  XI, xz,. . ., and to each element of IB 
as a predicate symbol, denoted by p, q,  . . ., where each of them has an ar i ty.  

Definition. A word over a set -4 is a finite sequence of elements of A. AS denotes the set 
of all non-empty words over the set A, and A" = AS U ( A )  where X is the empty word. 

Definition. term of S is an element of ( C U X ) ~ .  Each term is denoted by, T, T, TI, rz,.. . , 
TI, r2?. . .. A ground term of S is an element of C+. Terms are also called patterns. 

Definition. An atomic form,ula (or atom for short) of S is an expression of the form 
P(T~, . . . , T ~ T , ) ,  where p is a predicate symbol In T;E with arity n and TI, . . . , T, are terms of 
S, The atom is ground if 7 1 , .  . . , T, are all ground. 

Notat ion.  

(1) For a term 7i, / T I  denotes tile length of T, that is, the number of all occurrences 
of symbols and variables in T. For an atom p(rl, . . . , T,), lei, 

42) For a term T and variable x, o(z, n) is the n u d e r  of all occurrences of z in T, 
For an atom p( r l ,  . . . , T,), let 

o(z,p(r1, " . .  , T,)) = ojs, Ti) + + o(s, T,). 



( 3 )  v(a) denotes the set of all variables in a term or an atom a. 

Example 1, Let A = p ( a z :  bycz). Then /A/ = 6, o(z, A) = 2, and v(A) = (z, y) .  

A well-formed formula is defined in the same way as in first-order predicate logic. 

Definition, A e fause  is a well-formed formula of the form 

where Al, . . . , A,, Ell,. . . , B, are atoms of S and n, m 2 0. The formula with tz = rn = O is 
assumed to  denote Ci, and called the  e m p t y  clause. We denote the above clause by 

The clause is ground if the atoms Adr r . .  . ,An?  B1,. . , , B, are all ground. 

Definition. A definite clause is a clause of the form 

Definition (Smullyan [I311 . An elementary  formal s y s t em  (EFS for short) S is a triplet 
(C, iT, I?), where P' is a finite set of definite clauses. The definite ciauses in I? are called axioms 
of S. 

Kow we explain the provability of atoms in the theory of EFS. Arilia~va [I] gave his theory 
of formal languages using this proiiability. 

Definition, A su6stituiiern 8 is a (semi-group) homomorphism Gom (S dX)+ to itself such 
that a0 = a for every a E I: and the set (z E XlzB # rc), denoted by D(B), is finite. The 
substitution is gwuazcl if z8 is ground for every z f D(0). 

Let 8 be a substitution. If ha(@) = (;cl,. . . ? z,) and 5;E) = ~ i ,  then 8 is denoted by 

We also define 
p ( q , .  . . : T,)8 = p ( ~ ~ 8 ~ .  . . , 7,d) 

and 
( A  +- Bl,.. .,&)# = At3 t BIB,. . . ,H3,8 .  

for a substitution 8, an aton1 p ( ~ ~ ,  . . . 7,) and a clause A +-- B1,. . . ; B,. 

Definition, Let S = (C, II, T) be an EFS, We define the relation F F C for a clause @ of S 
inductively as follows: 

(2.1) If I' 3 C: then I' t- 6. 

(2.2) If P' k C, then I? t- C8 for a,ny substitution 8 

(2 .3 )  If r t- A t B1, .. . ,B, and I? t- B, t, then T t- A +- Bl , .  . . ,B,-1. 

C is proziabde from r if F k C 



Definition. For an EFS S  = (22, II, F) and p E IT with arity n,  we define 

In case n = 1, L ( S , p )  is a language over C. A Language L, C C+ is definable b p  an EFS or 
an EFS language if such S and p exist. 

F3v7e introduce an important subclass of EFS9s. 

Definition. A definite clause A +- B1;.  . . , B, is variable-bounded if v ( A j  > v(B;) ( i  = 
1, ... , n). An EFS is zjariable-bounded if its axioms are all variable-bounded. 

Example 2. An EFS S = ((a? b, c ) ;  ( p ,  q ) ,  T) with 

is variable-bounded and defines a language 

3.  Derivation Procedure 

First we give a derivation procedure for an EFS with unification defined as follows: 

Definition. Let a and @ be a pair of terms or atoms. Then a substitution t3 is a unifier of 
a and p, or 8 wnifies a and f l  if a0 = PO. a and /3 are unijabbe if there exists a unifier of a 
and /3, U ( a ,  p) denotes the set of ail unifiers B of a and B sucl~ that D(8)  c v ( n )  U ~ ( 3 ) .  

It is often the case that there are infinitely many maximally general unifiers. 

Example 3 (Plotkin[iO]). Let S = ( ( a , b ) , ( p ) , T ) .  Then {z := a" for every i is the 
unifier of p(a2$ and p(rca). All the unifiers are maximally7 general. 

tfie overcome the problem with the following proposition. 

Lenlnla 1, Let a and p be a pair of terms or atoms. If one of them is ground, then every 
unifier of a and ,3 is ground and U ( a ,  p) is ;finite and computable, 

Proof. First we show that the result holds in case cr and B are terms. Assume that a is 
ground, v(P) = (xl,. . . , z,) and 8 = {zl := T I , .  . . , z k  := xk) unifies a and where k 5 n. 
Then k = n and .n17 . . . , xr, are all ground; that is, 8 is ground by the definitions of ground 
terms and substitutions. By comparing la/ with 1/3/31, it holds that IT, / < la/, Since the 
number of ground terms z- with jrj < la[ is finite, and the set 

T(a,,B) = (crl D(aj = u(P) and Ixal < la/ for every z E D(rr)) 

is finite and computable, we can compute U(a, /I) by testing every element a of T ( a ,  p) to 
see whether a = Pa or not. 

Now let a be a ground atom and /3 he an atom. If the predicate syn~bois of cu and /3 are 
different, it is clear that a and /3 are not unifiable. Thus we assume a = p ( ~ l ,  . . . ,rn) and 
P = ~ ( 4 ; ~ ,  . . . , T,). A unifier of a and P is also a unier of T, and 7, for i = I , .  . . , n. Then 

U ( a ,  p) can be computed by testing every tuple of (01 , . . . ,on) where a; E U ( r , ,  x,) ( i  = 
I , .  . . , a z )  to see whether a = Po1 + - - G", or not, 



Kext, ave formalize the derivation for an EFS evith no requirement that every unifier 
should be  most general. 

Definition. A goal clause (or goal for short) of S is a clause of the form 

+- B1, ..., B, in > 0). 

Definition. Let C and D be tx7o clauses. Then G is a variant of D if C = D8 and C8' = D 
for some substitutions 8 and 8" Similarly we define variants of a clause. 

Definition. A computation rule is a rule which selects an atom from every goal clause, 

Definition. Let S be an EFS, G be a goal of S, and R be a computation rule. X derivation 
from G is a (finite or infinite) sequence of triplets (G;, 9;; C;) ji = 0,1.. . .3 which satisfies the 
following conditions: 

(3.1) G; is a goal, 8; is a substitution, 6; is a variant of an axiom of S, and Go = G. 

(3.2) u(Ci) 0 ti(CJ) = d (i f j), and v(C,) i7 v(G) = q for every a'. 

(3.3) If 6; =+- ifl, . . , ; Ak and A, is the atom selected hy R; then @, = il 
B1,. . . , Bq, 8; is a unifier of A and A,, and 

6,S1 = (+ Al,  .. . ,A,-,,Bl, .. . ,Bq,-4,+l, . . . 
A, is a selected atom of G,: and 6 , + 1  is a resolvent of G, and C, by 8,. 

Definition. For a finite derivation (G,, Qz, 6;) ( i  = 8,. . . n) ,  we define its length as 9 2 .  

Definition. A refutation is a finite derivation ending with the empty god  Ci. 

Example 4. Let EFS S = ( ( a ,  b ) ?  {p), T) with 

Then a refutation from t pjbcrbaa) is illustrated in Figure 1, where tile computation rule 
selects the leftmost atom from every goal. 

The aim of our formalization of derivation is to give a procedure accepting Languages 
definable by EFS's, Thus we assume every derivation starts from a ground goal. Then vie 
get the following lemma by L e m a  1 and the definition of variable-bounded clauses. 

Lemma 2. Let S be a variable-bounded E m  and G be a grourzd goal. Then every resolrent 
of&: is ground, and the set of all the reso%ve~zts of G is finite and coneputable. 

The power of variable-bounded EFS's is shown by using the derivation procedure in 121. 

Theorem 1 (123). Let C be an alphabet with at Eeast two symbols. Then a langvage L c CS 
is definable by a uariable-bounded EFS if and only i f L  is recursiveiy enumerable, 

Thus the variable-bounded EFS's are powerful enough, and we make the following as- 
sumption. 

Assumption. Every EFS is variable-bounded and every derivation starts from a ground 
goal. 

Moreover, by Lemma 2, we can implement the derivation in nearly the same way as for 
the traditional logic programming languages under the assumption. If we don't have the 
assumption, we need another formalization, such as given by Yamamoto[l4], in order to 
control the nonde te r~n is t i c  algorith~n of unification. 



+- pjbabaa) p(bzovo) +- P ( ~ o ) ,  d y o )  

cco := a,yo := baa) 

Figure 1: A refutation 

4. Completeness sf  Refutation 

6% describe the semantics of EFS's according to JaEar, et al.[7j. They have given a general 
framework of various logic programming languages by representing their unification algo- 
rithm as an equality theory. To represent unification in derivations for EFS9s we use the 
equality theory 

24: = {cons(cons(z ,  y) ,  z>  = cons(z ,  cons(y, zj)), 

where eons is to be interpreted as the catenation of terms. 
The first semantics for an EFS S = (C, PI, I') is its model. To interpret well-formed 

formulas of S we can restrict the domains to the models of E. Then a model of S is an 
interpretation which makes every axiom in l? true. We use C+ as the Herbrand unicerse and 
the set 

B ( S )  = ( p ( ~ ~ , . .  . .T,) 1 p E I! and TI ,.... T, E CS ) 

as the Herbrand base. A subset 1 of B ( S )  is called an Herbrand interpretation in the sense 
that A E I means A is true and A $ 1  means A is false for A E B(S) .  Then 

M ( S )  = n{Mjil21 is an Herbrand model of S ) 

is an Herbrand model of 5': and every ground ahom in MjS) is true in any model of S. 
The second semantics is the least fixpoint l f p ( T s )  of the function Ts : 2'('3 - 2B(S) 

defined by 

there is a ground instance 
A + B1, ..., B, 

of an axiom in f such that Bk E I for k = I , .  . . ,n. 



Ts is shown to be continuous in 171. Nie use the following sets defined by Ts: 

T s T o  = d ,  
Ts 1' a = G ( T s  1 (a  - 1)): if cr is a successor ordinal, 
Ts T a = U{Ts 7 P /3 < a ) ,  if a is a limit ordinal, 

Ts J O = BIS),  
Ts J a = Ts(Ts (a  - I)), if a is a successor ordinal, 
Ts J, a = o(Ts J. ,a 1 @ < a ) ,  if a is a limit ordinal. 

dfp(Ts) is characterized by  the fact that 

The third semantics; using refutation, is defined by 

SS(S) = {A E B ( S )  1 there exists a refutation from t ;4). 

These three semantics were shown to be identical: 

Theorem 2 (JaEar et al.[ql$. f i r  any EFS S, 

Now tve give ano~her  semantics of EFS using the provahility as the set 

Theorem 3. For any EFS S ,  
PS(S) = SS(S). 

This theorem is important frona the viewpoint of Language theory because the refutation 
is complete as accepting EFS languages. The proof of the theorem is clear from the definition. 

5 ,  Negation as Failure Rule 

Now we discuss the inference of negation, 

Definition. A derivation is finitely failed ~uith l'ength n if its Length is n and there is no 
axiom which satisfies the condition 43.3) for the selected atom of the last goal. 

Example 5. Let S be the EFS in Example 4. Then the derivation illustrated in Figure 2 
4s finitely failed with length 2. 

Definition. A derivation (G;, O;, Ci) ( i  = 0: 1, . . .) is fair if it is finitely failed or, for each 
atom A in G;, there is a L 2 i such that -48, . - .  Bk-l is the selected atom of Gk. A computation 
rule is fair if it makes all derivations fair. 



+- p(baaa) P ( ~ X Y  b +- 3 

:= a, y := aa) 

+- pba) - - - - - -  
failed 

Figure 2: A derivation finitely failed with length 2 

The negation as failure rule (NF  for short) is the rule that infers ?if ivhen a ground atom 
A Is in the set 

/ for any fair computation rule, there is an T-L such that 
/ ail derivations from c A are finitely failed withi11 length n 

F F ( S )  is characterized by the fact that 

Note that F'F(S) is not always identical to the set 

for any fair computation rule, all derivations 
from +- A are finitely failed 

The following example n7as pointed out in [7j. 

Example 6. Let an EFS S = ( (a ,  b) ,  { p ,  q? r ) ,  I?) with 

Then p j a )  E G F ( S )  but p(a) ff F F ( S )  because there are infinitely many unifiers of az and 
za, as was shown in Example 3. 

TNe put ecj;j(B) = (zl = TI A.. . A z, = T,) for a substitution 8 = {x, := .rl:. . . z, := r,), 
and ecj(8) = true h r  an empty 8. From the discussions in Jaffar, et al. [7]: NF for EFS is 
complete if the fo!?owing two conditions are satisfied: 

(5.1) There is a theory E* that logically implies 

for every two terms 7i and T, where 4,. . . , Qk are all the unifiers of 76 and T .  

(5 .2)  F F ( S )  = GFIS). 



In general, N F  for EFS is not complete, by Example 6, and there is no 23" of (5.1) for an 
EFS, because there are infinitely many maximal unifiers. 

Now we prove that N F  for variable-bounded EFSSs is complete. We prove that FF(S) is 
also identical to the set 

for any fair computation rule; all derivations 
from c A such that all goals in them 
are ground are finitely failed 

The inference rule that infers 7 A  for a ground atom A if A is in GGF(S)  is called the 
Herbrand rule [S]. 

Theorem 4. For any variable-bounded EFS S, 

Proof, Since S is variable-bounded, GFQS) = GGF(S)  by Le,.nma 2. It is also shorn that 
FF(S) = G F ( S )  by Lemma 2 and Miinig's Lemma. 

By Lemma 2 we use the follotvlng equational theory for a variable-bounded EFS instead 
of (5-1): 

T is a term, 7i Is a ground term, 
T = x -+ ~f=,ec, . jd ; )  

and O1,. . . , @k are all the unifiers of T and T 

This E" exists by Lemma 1. Thus NF is complete and identical to the Herbrand rule for 
variable- bounded EFS 's. 

6 ,  Closed World Assumption 

In this section we discuss the closed world assumpt ion  (CWA for short) for EFS. For an EFS 
S = (C. ll, I?) and A E B(S), CkJTA infers ?A if A is not a logical consequence s f  T[ l l ] .  
When we use the refutation procedure to show that A is a logical consequence of I?, @"\ii7A 
infers ?A if A 4 S S ( S ) ,  When we treat the refutation as a procedure to accept languages. 
Ck'1'-4 is very natural because w 4 L(S,p) if p(w) $! SSIS). 

However, since the complement of a recursively enumerable set is not aixvays rect~rsively 
enumerable, there is no general procedure of CMTA by Theorem 1. Moreover, u) g' L(S ,p)  
does not always imply pjw) f FF(S) even if L(S,p)  is recursive, as slzon-n in the foi?owing 
example. 

Example 7. Let S = ( ( a ,  b ) ,  (p3, I?) with 

Then SS(S) = (p(a j 1, L(S, p) = (a) and b # L(S,  P ) ,  but F F ( S )  = GGF(S) = 4. 

In the following, we give two procedures of CW-4 and intsroduce some subclasses of EFS's. 



6.1. Termination property sf EFS 

First we give some conditions for variable-bounded EFS's so that CIfTA is equivalent to NF7 
that is, SS(S) = B ( S )  - F F ( S ) .  B y  Theorem 4 and the definition of G F ( S )  it suffices to 
show that there are no infinite derivations from c A for every A E B(S) .  Noting that every 
derivation from c A is ground, tve treat only ground goals. From now on we identify every 
ground goal c A1,. . . Ak with a sequence of ground atoms A1,. . . Ak. Then we consider the 
partial order t of B(S)'. 

DePinition, Let. D be a set with a partial order t ~ .  Then to is well-founded if there is no 
infinite sequence dl, d2,  d 3 .  . . in D such that 

Proposition 1, Let S = (C, W, I') be a variable bounded &FS, Then there is n o  infinite 
derivation from c A for every A E B ( S )  if there is a well-Sounded partiak order F o f B ( S ) "  
which satisfies the follo wing two conditions: 

(6.3) For every two sequences ill,. . . , Ak and BI, . . . , B, such that y 2 0, k > 0 ,  

(6.2) For every ground instanceA c B1, . . . , 8, of an axiom in ??, 

Proof. Let GI and G2 be two goals. Suppose G2 is a resolvent of GI and the selected atom 
is A,. Then there is a ground instance A, i- B1,. . . , B, of an axiom. By the condition 
(6.21, A, > B1:. . . B4 and thus GI F G2 by the condition (6 .1) .  

Now we show two examples of the order t. In the first exa,mpie we use the rneti~cad 
introduced into traditional logic programmillg by Lloyd [8]. We write pred(p( r l  ? . . . T,)) = p 
for every atom ~(7;~; . . , K,), 

Definition. An EFS S = (C, I!, I') Is hierarchical if there is a mapping q from W to a set of 
natural numbers such that y ( p r e d ( A ) )  > p ( p r e d ( 3 , ) )  for every axiom A +- B1,. . . , B, and 
i = 1 ,  . . . ,  n. 

Proposition 2. If a variable-bsu?~detl EFS S is hierarchical, then 

Proof. By Proposition I ?  it is sufffclenlt to show that there is a well-founded partial order 
t of B(S)*. Let p be a mapping given in the definition of hierarchical EFS. Then we define 
t as follows: 

Al, . . - ,  A% t Bl,. .*,Bk 
($ 

there is an atom A, and a sequence C1,. . . , C, of atoms such that 



and 
v(pred(Arn))  > v (pred (C; ) )  

. -  
for every z = 1 s e . , Q *  

It is easily shown that this order satisfies the conditions (6.1 j and (6.2). Moreover the 
order is well-founded because it is subsumed by the multiset-ordering, which was shown to 
be well-founded by Dershov~itz and Manna [4]. 

Example 8, An EFS S = ( ( a ,  b ) :  { p ,  q ) ,  r) with 

is hierarchical and it defines a language L(S,  p )  = {(ab)",  / n 2 1). 

We define an important class of EFS to give the second example of + making use of the 
length of atoms, 

Definition. A clause A t B1> . . . , B, is redi._lcing if 

for any substitution 8 and i = 1 , .  . . , n. An EFS S = (C, Il, I') is reducing if axioms in are 
all reducing. 

The following lemma, which is a modification of a lemma in [2], is useful to characterize 
the concepts we are introducing. 

Lemma 3. Let A, B1,. . . ? Bn be atoms. Then 

f i r  any  substitution 8 i f  and only if 

and 

o (x ,  A) 2 o(x;  B1) + . . - + o(z: B,) 
for any zqariabie z 

For example the concept of reducing is characterized as follows: 

Proposition 3. A clause A c B1,. . . , B, is reducing if and only if 

for any variable z and i = 1,. . . , n. 



The EFS in Example 4 is reducing. 

Theorem 5. For every reducing EII'S S, 

Proof. The order t- defined in the same way as Proposition 2 satisfies the conditions (6.1) 
and (6.2). 

Theorem 6. Every  contest-free language L C C+ i s  dejfinable b y  a reducing EFS. 

Prosf. Let G be a context-free grammar in Chomsky's normal form representing L. Then 
we can construct 2 reducing EFS S by using every non-terminal symbol of G as a predicate 
symbol of S, and by transforrming the rule in G sf  the form A 4 B, C into a clause 

and the rule sf  the form A --+ a into 
A(a) t . 

The following example shorvs that the eoni7erse of Theorem 6 does not hold. 

Exan~ple 9. An EFS S = ( ( a ,  b, c ) ,  {p, q ) ;  I?) with 

is reducing and defines a language L(S? q )  = j anb"e" j n 2 I), which is not context-free. 

6 , 2 .  Bounding the length of derivations 

We give a class of EFS's where we give another procedure of CX7A. Roughly speaking, 
the procedure we are introducing is to bound the length of derivations even if S S ( S )  # 
B(Sj - F F ( S ) ,  

Definition. A clause A c B1, . . . , B, is weakly reducing if 

for any substitution 6 and i = 1;. . . , n. An EFS S = (C? II, l') Is weakly reducing if axioms 
in r are all weakly reducing. 

The concept. of weakly reducing is also characterized by Lemma 3. 

Proposition 4. A clause A c Ba, . . . , B,, is weakly reducing if and only if 

for a n y  variable z and i = I , ,  . . ,n. 



For every subset U of B(S), we put Ui, = (A A U /A /  5 n) .  Note that C'/, is a finite 
set for every U. 

The following is the main theorem to get the procedure. 

Theorem 7. Let S = (C, II, I?) be a weakly red.ueing EFS, Then  

Proof. It suffices to  prove the + part. First we show 

The CI: part is prored directly from the definition. Thus we prove the > part. Let 1% A (2's t 
k +- l)ln. Then there is a ground instance B c B1,, . . , B, of an axiom. Since 5' is weakly 
reducing, 

(B1: = .  * 3 B,) C (Ts 7 b@)In, 

and thus 
B E Ts((9s T K:)ln)jn. 

By (6.3) and the monotonicity of Ts? 

Moreover, if (Ts I' K ) / ,  = (Ts 7 4- I)/, for some then 

Since (Ts f k)l, c B(S)j, and B(S)In is finite, 

From (6.4) and (6.5) we get 

(6.6) (Ts f k)In c (Ts f f(B(S)In))]n ( k  > 0) 

Now let A f TS 7 w.  Then A E '9;. kfos some k. By (6.6) we get 

"VVe define dob(A t B1,. . . , B,) = rn for a definite clause A t B1,. . . , B,. lob means 
the length of the body, The following lemma gives the upper-bound of the length of the 
shortest refutation from +- A such that A f Ts 1 72. 

Lemma 4, Let S = (C,E,I') be an EFSj and m = maxcEr(lob(6)), If A A Es f n then 
there is a yefietation with length less than  02. equal to  f (m)  lohere 

n-1 f(? 4 = mi otherwise. 



Proof, The result is clear in case mn = 0. In case m > 0 ,  we prove the result bj7 induction 
on n . 

First suppose n = 1. Then there exists an axiom of the form A' + in I?. Thus the results 
holds because there is a refutation from c A with length 1. 

Now we suppose the result holds for n and A E Ts (n  + 1). Then there is a ground 
instance A c- B1,. . . , Bk ( E  5 m)  of the axiom where {B1,. . . , Bk) c Ts f ;.I. By induction 

n-l , 

hypothesis there is a refutation from each B, with iength less than or equal to m'. Then 
2 = 0  

a refutation can be constructed by combining these refutations, and its length is less than 
n- l  n 

or equal to  1 + rn C m" Ernie 

By combining Theorem 7 and 4 we get, the foliowing theorem. 

Theorem 8, Let S = (C, n, F) be a meak fy  reducing EFP;, alid nz = m a s ( l o b ( C ) ) .  If A E 
CEY 

SS(S), then there is a rebtation from t A with length less than or equal to  f(971, k(B(S)jiAl)). 

Now we get a procedure of CarA. For a weakly reducing EFS S, we can conclude A $ 
SS(S) if there is no refutation from c A with length less than or equal to f (m,  h(B(S)[iAI)). 
Arimura [3j pointed out the same procedure for traditional logic programming by observing 
derivation trees, 

Example 10. Let S be the EFS in Example 7. There is no refutztion from c p(b) with 
l 

iength less than or equal to f (1,2) = 1" 1 + 1 = 2. Thus iie can decide p ( h )  @ SS(S) .  
i=O 

Now we compare the class of weakly reducing EFS's and Churnsky hierarchy, tVe lase the 
following class of EFS's. 

Definition. A variable-bounded EFS S = (C, KI; I?) is length-bounded if 

for every axiom A c- Bl, . . . , Bn jn 2 1) in r. 

Clearly any length-bounded EFS is weakly reducing. The concept of length-Soundness 
is also characterized by Lemma 3 [2]. 

Every EFS S in Examples 2% 4, and 7 Is length-bounded. The relation between EFS and 
CSG is shown as foiloivs in [2 ] .  

Theorem 9 (121). 

( 1 )  Any length-bsun ded EFS language is con text-sensitive. 

( 2 )  For every contezd-sensitive Eangunge L 5 C+, there exist a supersei Co of E, a length- 
bounded EFS S = (&, H, I') and p E Ii such that L = L(S:p)  Ti C+. 



7 .  ~snclilading Remarks 

The main problem of derivation procedure for EFS is unification. N7e have got an algorithm 
of unification because our aim is to get a procedure to accept languages and apply it to 
MIEFS, The computational complexity of the algorithm is described in [2], 

These are other formalizations of derivations for EFS. X famous one is CLP(X) [6]. 
CLP(Ci)  could be got if we could give an algorithm to test the unifiabillty of two patterns. 
Makanin [9] sho-cved the existence of the algorithm, 

Fitting [5]  also formalized EFS as a logic programn-ding language. in  the formalization, 
Germs are elements of CS Li X, not (C U X I S ,  and the procedural semantics is out of consid- 
erat ion. 

The original theory of EFS given by Smallyan [13] uses the elements of (C U X)"  as terms, 
The derivation procedure and semantics as logic programming for the original EFS can be 
given in the same u-ay as that of this paper by gutting 

Botvever, the results about CkITA do not always hold because the empty word may be sub- 
stituted for variables, and thus Lemma 3 does not hold. 

The discussions on GTW can be applied to traditional logic programming (which is 
based on first order terms), if me introduce a proper size function of first order terms so that 
Lemma 3 holds [3], 
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