A Fast Matching Algorithm for Patterns with Pictures

Takeda, Masayuki
Interdisciplinary Graduate School of Engineering Sciences Kyushu University

http://hdl.handle.net/2324/3117
A Fast Matching Algorithm for Patterns with Pictures

Masayuki Takeda
March 3, 1989

Research Institute of Fundamental Information Science
Kyushu University 33
Fukuoka 812, Japan
E-mail: take@rif1.sci.kyushu-u.junet Phone: 092(641)1101 Ext.4484
A Fast Matching Algorithm for Patterns with Pictures

Masayuki TAKEDA
Interdisciplinary Graduate School of Engineering Science
Kyushu University 39, Kasuga 816, Japan

March 3, 1989

Abstract

The pattern matching problem is to find all occurrences of patterns in a text string. In this paper, we consider patterns with pictures. For example, let A be a picture for $a, b, \ldots, z,$ and N for $0, 1, \ldots, 9$. Then we consider patterns such as $abNN$, $a7NNNA$, \ldots, etc. For multiple string patterns, the Aho-Corasick algorithm, which uses a finite state pattern matching machine, is widely known to be quite efficient. As a natural extension of this algorithm, we present an efficient matching algorithm for multiple patterns with pictures. A pattern matching machine can be built easily and quickly, and then it runs in linear time proportional to the text length as the Aho-Corasick achieves. Moreover, we give a validity proof of our algorithm.

1. Introduction

The pattern matching problem is to find all occurrences of character strings, called patterns, in another string, called a text. In this paper, we consider a matching problem for patterns with pictures. For example, let A be a picture for $a, b, \ldots, z,$ and N for $0, 1, \ldots, 9$. Then we deal with patterns like $abNN$, $a7NNNA$, \ldots, etc. Let us call such patterns picture-patterns.

For string patterns, three matching algorithms are widely known: the Knuth-Morris-Pratt [4], the Boyer-Moore [3], and the Aho-Corasick [1]. While the first two are for a single pattern, the third can simultaneously deal with multiple patterns. In this method, from a collection of patterns a finite state machine is built which recognizes all occurrences of the patterns in a single pass through the text. Such a machine is called a pattern matching machine, pmm for short. It runs in linear time
Fig. 1: The pmm for \{ac, ba, bb, baa, bcd\} proportional to the text length. Moreover, the construction of the pmm takes only linear time proportional to the sum of the lengths of the patterns.

Fig. 1 shows the pmm for patterns ac, ba, bb, baa, bcd. The solid arrows represent the goto function, and the broken arrows represent the failure function, where broken arrows to the state 0 from all but the states 0, 5 and 6 are omitted. The underlined strings below the states mean the output function.

Consider how to construct a pmm for multiple picture-patterns. It is easy when the patterns consist only of pictures. We can construct a pmm easily if we take each picture as a character. However, it is difficult for patterns with both characters and pictures.

In this paper, we present an algorithm to construct an efficient pmm for multiple picture-patterns. A machine can be built easily and quickly, where the number of states is reasonably decreased without the state minimization technique. Moreover, we can easily transform it into a deterministic finite automaton in the same manner as the Aho-Corasick [1].

2. Observations

We begin by defining the picture-pattern matching problem.

Definition 1. Let Σ be an alphabet and let $\Delta = \{A_1, A_2, \ldots, A_p\}$, where $\emptyset \neq A_i \subseteq \Sigma$ and $A_i \cap A_j = \emptyset$ ($i \neq j$). Each A_i is called a picture. A pattern is an element in the set $(\Sigma \cup \Delta)^+$. We then extend the ordinary pattern matching problem as follows:

Given a pattern $X_1X_2\ldots X_m$ ($X_i \in \Sigma \cup \Delta$) and a text $a_1a_2\ldots a_n$ ($a_i \in \Sigma$), to find all indices j with $a_ja_{j+1}\ldots a_{j+m-1} \in X_1X_2\ldots X_m$.

2
We consider this problem for multiple patterns.

Now, let us consider to solve this problem by using the Aho-Corasick type pmm. From here on, we assume that

\[A = \{a, b, \ldots, z\}, \quad N = \{0, 1, \ldots, 9\}, \quad \Sigma = A \cup N, \quad \Delta = \{A, N\}. \]

Method 1. The naive solution is to construct the pmm for all strings in patterns. That is, if the given pattern is \(aA\), then we construct the pmm for strings \(aa, ab, \ldots, az\) as below.

![Diagram](image)

However, for a pattern \(A^m\) the number of states of the pmm is

\[1 + 26 + 26^2 + \ldots + 26^m = \frac{26^m - 1}{25}. \]

This method thus increases the number of states exponentially.

Method 2. Another solution is as follows: We determine the family of disjoint sub-pictures from \(\Delta\) and the characters which occur in the patterns, then we construct a pmm by taking each of these sub-pictures as a characters. For the pattern \(aA\), we divide \(A\) into \(\{a\}\) and \(A - \{a\}\) to obtain:

![Diagram](image)

However, for the pattern \(Aab\), since \(A\) is divided into \(\{a\}, \{b\}\) and \(A - \{a, b\}\), we obtain:
This pmm is not efficient, because the following pmm suffices for Aab:

In this case, on the goto edge labeled A from 0, it is not necessary to distinguish each character in A, hence there is no need to make the edge branch off.

These observations tell us, for each goto edge labeled by a picture, to make it branch off to other states only when necessary. To do this, during the construction of the failure function, we shall make such edges branch off according to the values of the failure function. Next section describes our algorithm, based on this idea, to construct an efficient pmm.

3. The algorithm

The algorithm to construct the pmm consists of two parts, which are summarized in Algorithm 1 and 2. We illustrate their behaviors by the following examples.

Example 1. Suppose aAbA is the pattern. In the first part, we treat each picture (denoted by an outline letter) as a character, and obtain the graph:
Algorithm 1
input: A collection of patterns \(\Gamma = \{\alpha_1, \ldots, \alpha_k\} \).
output: Partially computed functions \(g \) and \(\text{out} \).
method:

begin
 \(nst := 0; \)
 for \(i := 1 \) to \(k \) do enter(\(\alpha_i \));
 for \(\forall X \in \Delta \cup \Sigma \) such that \(g(0, X) = \text{fail} \) do
 \(g(0, X) := 0 \)
end

procedure enter(\(B_1 B_2 \ldots B_m \)):
begin
 \(state := 0; \)
 for \(j := 1 \) to \(m \) do
 if \(g(state, B_j) \neq \text{fail} \) then
 \(state := g(state, B_j) \)
 else
 begin
 \(g(state, B_j) := nst; \)
 \(state := nst; \)
 \(nst := nst + 1 \)
 end;
 out(state) := \{B_1 B_2 \ldots B_m\}
end
Algorithm 2

input: Partially computed functions g and out.
output: Functions f, g, and out.
method:

begin
 queue := empty;
 for $\forall c \in \Sigma$ such that $g(0, c) = s \neq 0$ do
 begin
 queue := queue \cup s;
 $f(s) := 0$
 end;
 for $\forall X \in \Delta$ such that $g(0, X) = s \neq 0$ do
 begin
 queue := queue \cup s;
 $f(s) := 0$;
 for $\forall c \in X$ do
 if $g(0, c) = t \neq 0$ then
 copy_subtree(s, t)
 else
 $g(0, c) := s$
 end;
 while queue \neq empty do
 begin
 let queue = $r \cdot$ tail
 queue := tail;
 for $\forall c \in \Sigma$ such that $g(r, c) = s \neq$ fail do
 begin
 queue := queue \cup s;
 $fst := f(r)$;
 while $g(fst, c)$ $=$ fail do
 $fst := f(fst)$;
 $f(s) := g(fst, c)$;
 $out(s) := out(s)$ \cup $out(f(s))$
 end;

end;
for $\forall X \in \Delta$ such that $g(r, X) = s \neq \text{fail}$ do
begin
queue := queue \cdot s;
fst := $f(r)$;
while $g(fst, X) = \text{fail}$ do fst := $f(fst)$;
f(s) := $g(fst, X)$;
for $\forall c \in X$ do
if $g(r, c) = t \neq \text{fail}$ then
 copy_subtree(s, t)
else
begin
fst := $f(r)$;
while $g(fst, c) = \text{fail}$ do fst := $f(fst)$;
st := $g(fst, c)$;
if $st \neq f(s)$ then
begin
 new := nst;
nst := nst + 1;
copy_subtree(s, new);
g(r, c) := new;
queue := queue \cdot new;
f(new) := st;
out(new) := out(new) \cup out($f(new)$)
end
else
end
end
end
end

out(s) := out(s) \cup out($f(s)$)
procedure copy_subtree(st1, st2):
begin
queue2 := {{st1, st2}};
while queue2 ≠ empty do
begin
let queue2 = (r1, r2)·tail
queue2 := tail;
out(r2) := out(r2) ∪ out(r1);
for ∀X ∈ Δ ∪ Σ such that g(r1, X) = s ≠ fail do
begin
if g(r2, X) = fail then
begin
st := nst;
nst := nst + 1;
g(r2, X) := st
end
else
st := g(r2, X);
g(r2, X) := st
end
end
end
In the second part, we construct the failure function and make goto paths branch off according to need. We first set \(f(1) = 0 \) since it is the state of depth 1. Then, we would compute the failure function for all states recursively, in nearly the same manner as the Aho-Corasick method. We would set \(f(2) = 0 \). However, if the input symbol on which we have made a goto transition from 1 to 2 is \(a \), the failure value should be 1; Otherwise, 0. Therefore we shall make the edge branch off only for \(a \) to obtain:

Note that we have copied the subtree whose root is 2 to the new state 5. Continuing in this fashion, we obtain:
We next give an example for multiple patterns.

Example 2. Suppose that A_1, aAc, ab are the patterns. In the first part, we obtain the graph:

In the second part, we initially set the graph as below:
Note that the subtree whose root is 1 has been copied to the state 3. We then inspect the goto edge from 1 and get $f(2) = 0$. Now, we inspect all edges from 3. We first inspect edges labeled by characters, and we get:

We next inspect edges labeled by pictures, and we set $f(4) = 1$. Now we determine the next state from 3 for each character in the picture A. For the character a, the failure value should be 3, hence we make the edge branch off as below:
For \(b \), since there already exists an edge labeled by \(b \) to the state 6, we shall copy there the subtree whose root is 4. For the other characters in \(A \), the next states should be all 4. Thus we obtain:

Continuing in this fashion, we can complete the pmm as is shown below:
Thus, our algorithm simply produces an efficient pmm from multiple picture-patterns. The text searching algorithm, which is summarized in Algorithm 3, is exactly the same as Aho-Corasick's. Moreover, it is easy to transform a pmm into a deterministic finite automaton, in the same manner as the Aho-Corasick [1].

Algorithm 3
input: A text string \(T = a_1a_2 \ldots a_n \) and a pattern matching machine \(M \) with functions \(g, f \) and \(\text{out} \).
output: Locations at which patterns occur in \(T \).
method:

\[
\begin{align*}
\text{begin} & \\
\quad \text{state} & := 0; \\
\quad \text{for} \ q := 1 \ \text{to} \ n & \ \text{do} \\
\quad \quad \text{begin} & \\
\quad \quad \quad \text{while} \ g(\text{state}, a_q) = \text{fail} & \ \text{do} \ \text{state} := f(\text{state}); \\
\quad \quad \quad \text{state} & := g(\text{state}, a_q); \\
\quad \quad \quad \text{if} \ \text{out}(\text{state}) \neq \text{empty} & \ \text{then print} \ q, \text{out}(\text{state}) \\
\quad \quad \text{end} & \\
\text{end} & \\
\end{align*}
\]
4. Validity of the Algorithm

Definition 2. We say the pmm M is valid for a set of patterns Γ when with M Algorithm 3 indicates that pattern α ends at position i of text T if and only if there exists $y \in \alpha$ with $T = uyv$ and the length of uy is i.

This section shows the pmm produced by Algorithm 1, 2 is valid. We first have the following lemma.

Lemma 1. Let $b_1, b_2, \ldots, b_m \in \Sigma$. Then, the following are equivalent.

1. There exists a pattern α such that $b_1 b_2 \ldots b_m y \in \alpha$, for some $y \in \Sigma^*$.

2. There exists a sequence of non-zero states r_1, r_2, \ldots, r_m such that

$$g(0, b_1) = r_1, \quad g(r_i, b_{i+1}) = r_{i+1} \quad (1 \leq i < m).$$

Proof. It is clear from the construction of the goto function.\(\square\)

We shall define sets and a mapping as follows: For a given set of patterns $\Gamma = \{\alpha_1, \ldots, \alpha_k\}$, we put $K = \alpha_1 \cup \ldots \alpha_k$. K is the set of all strings to be searched. We say that u is a prefix and v is a suffix of the string uv. Then we let W be the set of all prefixes of elements in K. We define a mapping state from W to the set of non-negative integers by

$$\left\{\begin{array}{l}
\text{state}(\varepsilon) = 0, \\
\text{state}(ua) = g(\text{state}(u), a) \quad (u \in W, a \in \Sigma, ua \in W),
\end{array}\right.$$

where ε denotes the empty word. Note that state is well-defined from the result of Lemma 1. We also put $S = \{\text{state}(u)|u \in W\}$, which is the set of all states reachable from the initial state 0. For all $st \in S$, we put $\text{rep}(st) = \{u \in W|\text{state}(u) = st\}$. It should be noted that for any $s, t \in S$, we have $\text{rep}(s) \cap \text{rep}(t) = \emptyset$ if $s \neq t$.

We are now ready to characterize the goto, failure and output functions produced by Algorithm 1, 2.

Lemma 2. Let $\alpha = X_1 \ldots X_m$ be a pattern. Then, for any j with $1 \leq j \leq m$, there uniquely exists a nonempty subset I of S such that

$$X_1 \ldots X_j = \bigcup_{st \in I} \text{rep}(st), \quad \text{depth}(st) = j \quad (\forall st \in I),$$

where depth(st) denotes the depth of st, i.e., the length of the shortest path from 0 to st.

Proof. Using the result of Lemma 1, we prove this by induction on j.\(\square\)
This lemma claims that the goto function \(g \) is valid in a simple sense. But we have to show that Algorithm 2 produces sufficient branchings of the goto paths to compute the valid failure function.

Lemma 3. Suppose that \(s \in S, s \neq 0 \). Let \(u \) be a string in \(rep(s) \). Let \(v \) be the longest string in \((SUF(u) - \{u\}) \cap W \), where \(SUF(u) \) denotes the set of suffixes of \(u \). Then, \(v \in rep(f(s)) \).

Proof. By induction on the depth of \(s \).

Concerning with the output function \(out \), the following lemma holds.

Lemma 4. For all \(s \in S \) with \(s \neq 0 \),

\[
out(s) = \{ \alpha \in \Gamma | \exists x, \exists y \in \Sigma^* : xy \in rep(s), y \in \alpha \}.
\]

Proof. It follows from the construction of \(out \) and from the results of Lemmas 2, 3. □

The following lemma characterizes the behavior of Algorithm 3 on a text \(T = a_1a_2 \ldots a_n \).

Lemma 5. After \(j \)th pass through the for-loop, Algorithm 3 will be in state \(s \) if and only if \(rep(s) \) contains the longest string in \(SUF(a_1a_2 \ldots a_j) \cap W \).

Proof. By induction on the depth of \(s \). □

We now have the following theorem.

Theorem 1. The pmm \(M \) produced by Algorithm 1, 2 is valid.

Proof. By Lemmas 4, 5. □

5. Time complexity

It is obvious that Algorithm 3 runs in linear time proportional to the text length. We then discuss the time complexity of Algorithm 1, 2, which are for the construction of pmm. Clearly, Algorithm 1 takes only linear time proportional to the sum of the lengths of the patterns. Algorithm 2 does so if the patterns consist only of characters, or only of pictures. However, it is not so simple when the patterns contain both characters and pictures. Our algorithm is designed to do branchings of the goto paths according to need during the construction of the failure function so as to decrease the number of states. The cost varies depending on how the paths...
will branch off. However, even in the worst case, it is bounded by those of Method 1 and 2 described in Section 2.

Consider the cost of Method 1. We denote by \(\#(X) \) the number of elements in a set \(X \). Then, for a pattern \(\alpha = X_1X_2\ldots X_m \), the number of strings belonging to \(\alpha \) is given by

\[
\#(\alpha) = \#(X_1) \cdot \#(X_2) \cdot \ldots \cdot \#(X_m).
\]

Note that \(\#(\alpha) = 1 \) if \(\alpha \) is a string pattern. We also denote by \(|\alpha| \) the length of a pattern \(\alpha \). Suppose that \(\Gamma = \{\alpha_1, \alpha_2, \ldots, \alpha_k\} \) is the set of patterns. Then, Method 1 takes to construct the \(\text{pmm} \) linear time proportional to

\[
\sum_{i=1}^{k} \#(\alpha_i) \cdot |\alpha_i|.
\]

We then consider Method 2. Let \(c_i \) be the number of different characters in \(A_i \) appearing in the patterns. Let \(d(X) = 1 \), if \(X \in \Sigma \); \(c_i + 1 \), if \(X = A_i \). Put

\[
d(\alpha) = d(X_1) \cdot d(X_2) \cdot \ldots \cdot d(X_m),
\]

for a pattern \(\alpha = X_1X_2\ldots X_m \). Then, the cost of Method 2 is linearly proportional to

\[
\sum_{i=1}^{k} d(\alpha_i) \cdot |\alpha_i|.
\]

Unless a large number of different characters appear in the patterns, \(d(\alpha_i) \) is much smaller than \(\#(\alpha_i) \). Moreover, if many characters appear in the patterns, accordingly the number of occurrences of pictures in the patterns is small, hence \(d(\alpha_i) \) will be 1 frequently.

Our method is better than these two methods.

6. An application to the two-dimensional pattern matching

In the two-dimensional pattern matching problem, both pattern and text are two-dimensional arrays of characters. Bird [2] described an algorithm to solve this problem by using the Aho-Corasick method. Suppose that \(\Sigma = \{\blacksquare, \square\} \), and let the pattern be

\[
\begin{array}{cccc}
\blacksquare & \blacksquare & \blacksquare & \blacksquare \\
\end{array}
\]
The method by the Bird [2], regarding each row as a string pattern, builds a pmm as shown in Fig. 2 (a). Then, the pmm runs on the text row by row searching for the rows of the pattern array (row-matching). On the other hand, the machine shown in Fig. 2 (b) is used to determine whether or not the entire pattern array occurs in the text (column-matching). The algorithm takes $O(n_1 \cdot n_2)$ time to find all occurrences of the pattern in a text of size $n_1 \times n_2$.

However, this method has the following problem: Suppose that we would detect in the text
If we search for the rectangular pattern by using the above method, we can not find it in the text.

Contrary to this, our method is able to deal with the pattern containing wild cards, i.e., pictures ‘?’, such as

hence we can find the cross in the text.

7. Conclusion

We have presented an efficient matching algorithm for patterns with pictures. Since it is a natural extension of the Aho-Corasick algorithm, it is applicable to various problems.

Japanese texts consist of both 1-byte and 2-byte characters with shift codes. Shinohara and Arikawa [5] have developed an algorithm to construct the pmm for
such texts, based on the Aho-Corasick algorithm. Taking each byte as a input symbol, the pmm runs on a Japanese text without loosing the efficiency. If we combine our algorithm with this, then we can deal with not only 1-byte pictures but also some 2-byte pictures, e.g., kanji, hiragana, etc., by regarding them as concatenations of two 1-byte pictures.

References

