SN KREZZ2MTIER Y R b

Kyushu University Institutional Repository

A Fast Matching Algorithm for Patterns with
Pictures

Takeda, Masayuki

Interdisciplinary Graduate School of Engineering Sciences Kyushu University

https://hdl. handle.net/2324/3117

HhRI1EZR : RIFIS Technical Report. 11, 1989-03-03. Research Institute of Fundamental
Information Science, Kyushu University
N—=2 3

HEFIBAMR

RIFIS-TR-CS-11

RIFIS Technical Report

A Fast Matching Algorithm for Patterns with Pictures

Masayuki Takeda
March 3, 1989

Research Institute of Fundamental Information Science
Kyushu University 33
Fukuoka 812, Japan

E-mail: take@rifis1.sci.kyushu-u.junet Phone: 092(641)1101 Ext.4484

A Fast Matching Algorithm for
Patterns with Pictures

Masayuki TAKEDA

Interdisciplinary Graduate School of Engineering Science

Kyushu University 39, Kasuga 816, Japan
March 3, 1989

Abstract

The pattern matching problem is to find all occurrences of patterns in a
text string. In this paper, we consider patterns with pictures. For example, let
A be a picture for a, b, ..., z,and N for 0, 1, ...,9. Then we consider patterns
such as abNN, aTNNNNA, ..., etc. For multiple string patterns, the Aho-
Corasick algorithm, which uses a finite state pattern matching machine, is
widely known to be quite efficient. As a natural extension of this algorithm,
we present an efficient matching algorithm for multiple patterns with pictures.
A pattern matching machine can be built easily and quickly, and then it runs
in linear time proportional to the text length as the Aho-Corasick achieves.
Moreover, we give a validity proof of our algorithm.

1. Introduction

The pattern matching problem is to find all occurrences of character strings, called
patterns, in another string, called a text. In this paper, we consider a matching
problem for patterns with pictures. For example, let A be a picture for a, b, ..., z,
and N for 0, 1, ..., 9. Then we deal with patterns like abNN, a7ZNNNNA, ..., etc.
Let us call such patterns picture-patterns.

For string patterns, three matching algorithms are widely known: the Knuth-
Morris-Pratt [4], the Boyer-Moore [3], and the Aho-Corasick [1]. While the first two
are for a single pattern, the third can simultaneously deal with multiple patterns.
In this method, from a collection of patterns a finite state machine is built which
recognizes all occurrences of the patterns in a single pass through the text. Such a
machine is called a pattern matching machine, pmm for short. It runs in linear time

1

Fig. 1: The pmm for {ac, ba, bb, baa, bacd}

proportional to the text length. Moreover, the construction of the pmm takes only
linear time proportional to the sum of the lengths of the patterns.

Fig. 1 shows the pmm for patterns ac, ba, bb, baa, bacd. The solid arrows
represent the goto function, and the broken arrows represent the failure function,
where broken arrows to the state 0 from all but the states 0, 5 and 6 are omitted.
The underlined strings below the states mean the output function.

Consider how to construct a pmm for multiple picture-patterns. It is easy when
the patterns consist only of pictures. We can construct a pmm easily if we take each
picture as a character. However, it is difficult for patterns with both characters and
pictures.

In this paper, we present an algorithm to construct an efficient pmm for multiple
picture-patterns. A machine can be built easily and quickly, where the number of
states is reasonably decreased without the state minimization technique. Moreover,
we can easily transform it into a deterministic finite automaton in the same manner

as the Aho-Corasick [1].

2. Observations

We begin by defining the picture-pattern matching problem.

Definition 1. Let ¥ be an alphabet and let A = {A;, As,..., A,}, where § # A; C
Y and A;NA; =0 (2 # j). Each A; is called a picture. A patternis an element in the
set (X U A)*. We then extend the ordinary pattern matching problem as follows:

Given a pattern X; X5 ... X, (X; € BUA) and a text aias . .. an, (a; € X),
to find all indices 7 with ajajt1 ... @j4m-1 € X1 Xp... X,

We consider this problem for multiple patterns.
Now, let us consider to solve this problem by using the Aho-Corasick type pmm.
From here on, we assume that

A={ab,...,z}, N={0,1,...,9}, T=AUN, A={A N}

Method 1. The naive solution is to construct the pmm for all strings in patterns.
That is, if the given pattern is aA, then we construct the pmm for strings aa,ab,. . .,az
as below.

However, for a pattern A™ the number of states of the pmm is

26™ —1
25

This method thus increases the number of states exponentially.

1+26+26%+...4+26™ =

Method 2. Another solution is as follows: We determine the family of disjoint
sub-pictures from A and the characters which occur in the patterns, then we con-

struct a pmm by taking each of these sub-pictures as a characters. For the pattern
aA, we divide A into {a} and A — {a} to obtain:

However, for the pattern Aab, since A is divided into {a}, {b} and A — {a,b}, we
obtain:

In this case, on the goto edge labeled A from 0, it is not necessary to distinguish
each character in A, hence there is no need to make the edge branch off.

These observations tell us, for each goto edge labeled by a picture, to make it branch
off to other states only when necessary. To do this, during the construction of the
failure function, we shall make such edges branch off according to the values of
the failure function. Next section describes our algorithm, based on this idea, to
construct an efficient pmm.

3. The algorithm

The algorithm to construct the pmm consists of two parts, which are summarized
in Algorithm 1 and 2. We illustrate their behaviors by the following examples.

Example 1. Suppose aAbA is the pattern. In the first part, we treat each picture
(denoted by an outline letter) as a character, and obtain the graph:

Algorithm 1
input: A collection of patterns I' = {ay, ..., ax}.

output: Partially computed functions g and out.
method:

begin
nst := 0;
for ¢ :=1 to k do enter(w;);
for VX € A UZX such that ¢(0, X) = fail do
9(0,X):=0

end

procedure enter(BB;... B,):
begin
state := 0;
for j:=1 to m do
if g(state, B;) # fail then
state := g(state, B;)
else
begin
g(state, B;) := nst;
state := nst;
nst:=mnst+1
end;
out(state) := {B1B; ... B,,}
end

Algorithm 2

input: Partially computed functions g and out.
output: Functions g,f and out.

method:

begin
queue := empty;
for Ve € ¥ such that ¢g(0,¢) = s # 0 do
begin
queue 1= queue - s;
f(s):=0
end;
for VX € A such that ¢(0,X) = s # 0 do
begin
queue := quUeue - S;
f(s) = 0;
for Ve € X do
if g(0,¢) =t # 0 then
copy_subtree(s,t)
else
9(0,¢) :=s
end;
while queue # empty do
begin
let queue = r - tazl
queue := tail;

for Ve € X such that g(r,c) = s # fail do

begin
quUEuE = qUEUE - S;
fst= f(r);

while g(fst,c) = fail do fst:= f(fst);
f(s) := g(fst, c);
out(s) = out(s) U out(f(s))

end;

for VX € A such that g(r, X) = s # fail do

begin
queue := queue - S ;
fst = f(r);

while g(fst, X) = fail do fst:= f(fst);
f(s) = g(fst, X);
for Vc € X do
if g(r,c) = t # fail then
copy_subtree(s,t)

else
begin
fst:= f(r);
while g(fst,c) = fail do fst:= f(fst);
st = g(fst, o)
if st # f(s) then
begin
new = nst;
nst :=nst 4+ 1;
copy_subtree(s,new);
g(r,c) == new;
queue := queue - new;
f(new) := st;
out(new) := out(new) U out(f(new))
end
else
g(r,c):=s
end;
out(s) := out(s) U out(f(s))

end
end
end

procedure copy_subtree(stl, st2) :
begin
queue := {(stl, s12)};
while gueue2 # empty do
begin
let queue2 = (rl,r2) - tasl
queue? = tail;
out(r2) := out(r2) U out(rl);
for VX € AU X such that ¢g(rl, X) = s # fail do
begin
if g(r2, X) = fail then
begin
st 1= nst;
nst :=nst + 1;
g(r2, X) = st
end
else
st = g(r2, X);
queue2 := queue? - (s, st)
end
end
end

In the second part, we construct the failure function and make goto paths branch
off according to need. We first set f(1) = 0 since it is the state of depth 1. Then,
we would compute the failure function for all states recursively, in nearly the same
manner as the Aho-Corasick method. We would set f(2) = 0. However, if the input
symbol on which we have made a goto transition from 1 to 2 is a, the failure value
should be 1; Otherwise, 0. Therefore we shall make the edge branch off only for a
to obtain:

Note that we have copied the subtree whose root is 2 to the new state 5. Continuing
in this fashion, we obtain:

We next give an example for multiple patterns.

Example 2. Suppose that A1, aAc, ab are the patterns. In the first part, we obtain
the graph:

In the second part, we initially set the graph as below:

10

Note that the subtree whose root is 1 has been copied to the state 3. We then
inspect the goto edge from 1 and get f(2) = 0. Now, we inspect all edges from 3.
We first inspect edges labeled by characters, and we get:

We next inspect edges labeled by pictures, and we set f(4) = 1. Now we determine
the next state from 3 for each character in the picture A. For the character a, the
failure value should be 3, hence we make the edge branch off as below:

11

For b, since there already exists an edge labeled by b to the state 6, we shall copy
there the subtree whose root is 4. For the other characters in A, the next states
should be all 4. Thus we obtain:

Continuing in this fashion, we can complete the pmm as is shown below:

12

Thus, our algorithm simply produces an efficient pmm from multiple picture-
patterns. The text searching algorithm, which is summarized in Algorithm 3, is
exactly the same as Aho-Corasick’s. Moreover, it is easy to transform a pmm into
a deterministic finite automaton, in the same manner as the Aho-Corasick [1].

Algorithm 3

input: A text string T' = aya,... a, and a pattern matching machine M
with functions ¢, f and out.

output: Locations at which patterns occur in 7.

method:
begin
state := 0;
for ¢g:=1 to n do
begin
while g(state,a,) = fail do state := f(state);
state := g(state, a,);
if out(state) # empty then print g, out(state)
end
end

13

4. Validity of the Algorithm

Definition 2. We say the pmm M is valid for a set of patterns I' when with M
Algorithm 3 indicates that pattern « ends at position 7 of text 7' if and only if there
exists y € o with 7' = uyv and the length of uy is 1.

This section shows the pmm produced by Algorithm 1, 2 is valid. We first have the
following lemma.

Lemma 1. Let by,bq,...,b,, € ¥. Then, the following are equivalent.
(1) There exists a pattern « such that b1b,...b,,y € «, for some y € L*.

2) There exists a sequence of non-zero states ry, 7y, ..., r, such that
q
9(0, bl) =T, Q(T’i, bi+1) = Tit1 (1 <1< m) .

Proof. It is clear from the construction of the goto function.O

We shall define sets and a mapping as follows: For a given set of patterns I' =
{a1,...,a1}, weput K = oy U...a;. K is the set of all strings to be searched. We
say that u is a prefiz and v is a suffiz of the string uv. Then we let W be the set
of all prefixes of elements in K. We define a mapping state from W to the set of
non-negative integers by

{ state(e) =0,

state(ua) = g(state(u),a) (u € W,a € X,ua € W),

where ¢ denotes the empty word. Note that state is well-defined from the result of
Lemma 1. We also put S = {state(u)|u € W}, which is the set of all states reachable
from the initial state 0. For all st € S, we put rep(st) = {u € Wstate(u) = st}. It
should be noted that for any s,¢ € S, we have rep(s) Nrep(t) = 0 if s # ¢.

We are now ready to characterize the goto, failure and output functions produced
by Algorithm 1, 2.

Lemma 2. Let o = X; ... X, be a pattern. Then, for any 7 with 1 < 7 < m, there
uniquely exists a nonempty subset I of S such that

Xi...X; = | rep(st), depth(st)=j (VsteI),
stel

where depth(st) denotes the depth of st, i.e., the length of the shortest path from 0
to st.
Proof. Using the result of Lemma 1, we prove this by induction on 7.0

14

This lemma claims that the goto function g is valid in a simple sense. But we have to
show that Algorithm 2 produces sufficient branchings of the goto paths to compute
the valid failure function.

Lemma 3. Suppose that s € S, s # 0. Let u be a string in rep(s). Let v be the
longest string in (SUF(u) — {u}) N W, where SUF(u) denotes the set of suffixes of
u. Then, v € rep(f(s)).

Proof. By induction on the depth of s.0.

Concerning with the output function out, the following lemma holds.
Lemma 4. For all s € S with s # 0,
out(s) = {a € I'|3z,Jy € " : zy € rep(s),y € a}.

Proof. It follows from the construction of out and from the results of Lemmas 2,
3. 0O

The following lemma characterizes the behavior of Algorithm 3 on a text 7' =

a1Qg ... Qy.

Lemma 5. After jth pass through the for-loop, Algorithm 3 will be in state s if
and only if rep(s) contains the longest string in SUF(aqaz...a;) N W.
Proof. By induction on the depth of s. O

We now have the following theorem.

Theorem 1. The pmm M produced by Algorithm 1, 2 is valid.
Proof. By Lemmas 4, 5. O

5. Time complexity

It is obvious that Algorithm 3 runs in linear time proportional to the text length. We
then discuss the time complexity of Algorithm 1, 2, which are for the construction
of pmm. Clearly, Algorithm 1 takes only linear time proportional to the sum of
the lengths of the patterns. Algorithm 2 does so if the patterns consist only of
characters, or only of pictures. However, it is not so simple when the patterns
contain both characters and pictures. Our algorithm is designed to do branchings
of the goto paths according to need during the construction of the failure function
so as to decrease the number of states. The cost varies depending on how the paths

15

will branch off. However, even in the worst case, it is bounded by those of Method 1
and 2 described in Section 2.

Consider the cost of Method 1. We denote by #(X) the number of elements in
a set X. Then, for a pattern = X1 X5 ... X,,, the number of strings belonging to
o is given by

#(o) = #(X1) - #(X2) - .. .- #(X)) -

Note that #(a) = 1 if @ is a string pattern. We also denote by || the length of a
pattern a. Suppose that I' = {a1, a2, ..., ax} is the set of patterns. Then, Method 1
takes to construct the pmm linear time proportional to

Z #(e) - |yl -

We then consider Method 2. Let ¢; be the number of different characters in
A; appearing in the patterns. Let d(X) =1, if X € ¥; ¢+ 1, if X = A;. Put
dla)y=d(Xy)-d(Xz2)-...-d(Xy), for a pattern @ = X7 X5 ... X,,. Then, the cost of
Method 2 is linearly proportional to

Zd(a2) - eyl

Unless a large number of different characters appear in the patterns, d(¢;) is much
smaller than #(«;). Moreover, if many characters appear in the patterns, accord-
ingly the number of occurrences of pictures in the patterns is small, hence d(a;) will
be 1 frequently.

Our method is better than these two methods.

6. An application to the two-dimensional pat-
tern matching

In the two-dimensional pattern matching problem, both pattern and text are two-
dimensional arrays of characters. Bird [2] described an algorithm to solve this prob-
lem by using the Aho-Corasick method. Suppose that ¥ = {@,3}, and let the
pattern be

(b) column-matching

Fig. 2: The Bird method

The method by the Bird [2], regarding each row as a string pattern, builds a2 pmm
as shown in Fig. 2 (a). Then, the pmm runs on the text row by row searching for the
rows of the pattern array (row-matching). On the other hand, the machine shown in
Fig. 2 (b) is used to determine whether or not the entire pattern array occurs in the
text (column-matching). The algorithm takes O(nq - ny) time to find all occurrences
of the pattern in a text of size ny X ns.

However, this method has the following problem: Suppose that we would detect

in the text

17

by using the above method, we can not find it in the text.
Contrary to this, our method is able to deal with the pattern containing wild
cards, i.e., pictures ‘?’, such as

hence we can find the cross in the text.

7. Conclusion

We have presented an efficient matching algorithm for patterns with pictures. Since
it is a natural extension of the Aho-Corasick algorithm, it is applicable to various
problems.

Japanese texts consist of both 1-byte and 2-byte characters with shift codes.
Shinohara and Arikawa [5] have developed an algorithm to construct the pmm for

18

such texts, based on the Aho-Corasick algorithm. Taking each byte as a input
symbol, the pmm runs on a Japanese text without loosing the efficiency. If we
combine our algorithm with this, then we can deal with not only 1-byte pictures
but also some 2-byte pictures, e.g., kanji, hiragana, etc., by regarding them as
concatenations of two 1-byte pictures.

References

[1] Aho, A. V., Corasick, M. J. : Efficient String Matching : An Aid to Biblio-
graphic Search, Comm. ACM, Vol. 18, No. 6 (1975), pp. 333-340.

[2] Bird, R. S. : Two Dimensional Pattern Matching, Inf. Process. Lett., Vol. 6,
No. 5 (1977), pp. 168-170.

[3] Boyer, R. S. , Moore, J. S. : A Fast String Searching Algorithm, Comm. ACM,
Vol. 20, No. 10 (1977), pp. 762-772.

[4] Knuth, D. E. ; Morris, J. H. , Pratt, V. R. : Fast Pattern Matching in Strings,
SIAM J. Comput., Vol. 6, No. 2 (1977), pp. 323-350.

[5] Shinohara, T. and Arikawa, S.: Pattern Matching Machines for Japanese Texts,
Research Report No. 110 (1986), Research Institute of Fundamental Informa-
tion Science, Kyushu University.

19

