
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

A Fast Matching Algorithm for Patterns with
Pictures

Takeda, Masayuki
Interdisciplinary Graduate School of Engineering Sciences Kyushu University

https://hdl.handle.net/2324/3117

出版情報：RIFIS Technical Report. 11, 1989-03-03. Research Institute of Fundamental
Information Science, Kyushu University
バージョン：
権利関係：

cal Report

A Fast Matching Algorithm for Patterns with Pictures

Masayuki Takeda

March 3, 1989

Research Institute of Fundamental Information Science
Kyushu University 33

Fukuoka 81 2, Japan
E-mail: takeerifisl .sci.kyushu-u.junet Phone: 092(641)1101 Ext.4484

A Fast RJatching Algorithm for
Patterns with Pictures

Masayuki TAKED-4
Interdisciplinary Graduate School of Engineering Science

K g u s h University 39, Kasuga 816, Japan

Abstract

The pattern matching problem is to find a13 occurrences of patterns in a
text string. 111 this paper, sve consider patterns with pictures. For example, let
A be a picture for a, b, . . . z, and _A; for 0, 1. . . .; 9, Then we consider patterns
such as abW!V, a7i"v'i%-NNA, etc. For multiple string patterns, the Aho-
corasick algoritl-im, which uses a finite state pattern matching machine, is
widely known to be quite efficient, As a natural extension of this algorithm,
we present an efficient matching algorithm for multiple patterns with pictures.
-4 pattern matching machine can be built easily and quickly, and then it runs
in linear time proportional to the text iength as the Ano-Corasick achieves.
hloreorer, we give a validity proof of our algorithm.

I. Introduction

The pattern matching problem is to End all occurrences of character qtrings, called

patterns, in another string, called a text. In this paper, we consider a matching

problem for patterns with pictures. For example, let A he a picture for a , 5, . . ., z,
and !IT for 0 ; 1, . . ., 9. Then we deal with patterns like abNN, a?NNXXX, . . ., ete.

Let us call sucll patterns picture-patterns.

For string patterns, three matching algorith~rs are widely known: the Icnuth-

Morris-Pratt 141, the Boyer-Moore [3], and the Aho-Corasicli [I]. While the first two

are for a single pattern, the third can simultaneously deal with multiple patterns.

In this method, from a collection of patterns a finite state machine is built which

recognizes all occurrences of the patterns in a single pass through the text. Such a

machine is called a pattern matching machine, pmm for short. It runs in linear time

Fig. I: The pmm for (ac, ba, bb, baa, bacd)

proportional to the text length. !vforeover, the construction of the pmm takes only

linear time proportional to the sum of the lengths of the patterns.
Fig. 5. shows "re p m r for patterns ac, ba, bb, baa, bacd. The solid arrows

represent the goto function, and the broken arrows represent the failure function,
where broken arrows to the state 0 from all but the states 0, 5 and 6 are omitted.
The underlined strings below the stakes mean the output function.

Consider how to construct a p m for multiple picture-patterns. It is easy when

the patterns consist only of pictures. 'vtTe can construct a p m easily if we take each
picture as a character. Rosvever, it is difffcult for patterns with both characters and

pictures.
in this paper, we present an algorithm to construct an effcient pmm for multiple

picture-patterns. 4 machine can be built easily and qu ick l~ where the number of
states is reasonably decreased without the state Illinimization technique. Moreover:

can easily transform it into a deGer&nistic finite autoaaton in the same manner
2s the Aho-Corasick [I].

2 . Bbservat ions

mTe begin by defining the picture-pattern matching problem.

DeEniLion 1. Let T; be an alphabet and let A = {Al, Az,. . .: Ap), where B # A, G
C and -4;n Aj = 0 (i f 3). Each A; is called a picture. A pattern is an element in the

set (C U A)+. We then extend the ordinary pattern matching problem as follows:

Given a pattern X;& . . . Xm (Xi E CUA) and a text a l a z . . . a, (a; E C);
to find aii indices j with ujaj+l.. . ajtmV1 E XlX2. . . -Xm.

JVe consider this problem for multiple patterns.

Now, Let us consider to solve this problem by using the Afio-Corasick type pmm.
From here on. we assume that

hfetfiod 1. The naive solution is to construct the pmm for all strings in patterns.
That is, if the given pattern is aA, then we construct the pmm for strings aa, ab,. . . ;az
as below.

However, for a pattern -4" the number of states of the pmrn is

This method thus increases the number of states exponentially.

Method 2. Another solution is as follotvs: T;te determine the family of disjoint
sub-pictures from A and the characters which occur In the patterns, then we con-
struct a pmm by taking each of these sub-~ictures as a characters. For the pattern
aA, we divide A into (a) and A - (a) to obtain:

However, for the pattern Aab, since A is divided k t o {a); {b) and ,4 - {a, b), mTe
obtain:

This pmm is not efficient, because the following pmm su%ces for Aab:

In this case, on the goto edge labeled A from 8, it is not necessary to distinguish
each character in A, hence there is no need to make the edge branch off.

These observations tell us, for each goto edge labeled by a picture, to make it branch
off to other states o n b when necessary. To do this, during the construction of the
failure function: we shall make such edges branch off according to the values of
the failure kinction. Next section describes our algorithm, based on this idea, to

construct an efficient pmm.

3, The algorithm

The algorithm to construct the p m consists of two parts, which are summarized
in Algorithm 1 and 2. We ilI~-~stra,te their behaviors by the following examples.

Exaanple 1. Suppose aAbA is the pattern. In the first part, we treat each picture
(denoted by an outline letter) as a character, and obtain the graph:

Algoritl~l~b 1
input: A collection of patterns F = (a l , . . . , ak).
output: Partially computed ft~nctions g and out.
n~ethod:

begin
nst := 0 ;
for 2' := 1 to k do enteria ,) ;
for YX E A U Z such that y(0, X) = fail do

g(0. X) := 0
elad

procedure e n t e r (B I B a . . . B,):
begin

state := 0;
for j := 1 to rn do

if g(state , B, j # faif then
state := g(state , B j)

else
begin

yjstate, 4) := nst:
state := n s t ;
n s t := n s t + 1

end;
out (s ta te) := {BIB2 . . . B,)

end

input: Partially computed functions g and out ,
output: Functions g , f and out.

begin
queue := empty;
for tic E C such that .gjO, cj = s f 0 do

begin
queue := queue - s ;
f (s$:= o

end;
for VX E A such that g (O , S) = s # O do

begin
queue := que-tie . s :
f (s) := 0 ;
for 'dc f X do

if g(O, c) = t $I 0 then
copysubtree js, t)

else
g(0,cj := s

end;
while queue # empty d o

begin
let que,zie = r . tai l
queue := tail;
for Vc f C such that g(r, c) = s # fail d o

begin
queue := queue - s;

f s t := f'(r);
wlnile g (f s t ; c) = fail $0 f s t := fjfst);
f (s) := g (f s t , c) ;
ou t (s) := ou t (s) U out(f (s))

end;

for YX E A such that c~(r,X) = s f fail do
begin

queue := queue s ;
f st := f(r);
while g(fst, Xj = fail do f s t := fifst);
f(s) := g(fst, X) ;
for v c f X do

if y(r, G) = t f faif then
copysubtreejs, t)

else
begin

fst .= fir);
wl-iile g(f st, c) = fail do fst := j(f st):
st := g(fst; c);
if st # f(s) then

begin
n e w := nst;
nst := nst + 1;
copg-subtreejs, new);
g(r,c) := new;
queue := queue. new;
f(newj := st;
outjnew) := owt(new) LI out! f (nezii))

end
else

g(r, cj := s
end;

o~tjs) := outjs) u out(f(s)>
end

end
end

procedure copy subt ree(s t1 , st21 :
begin

queue2 := ((s t l , s t 2)) ;
while qz~eue2 # elmpty do

begin
let q ~ e u e 2 = (rl , r2) - tail
queue2 := ta i l ;
o u t (~ 2 j := outjr2) U out (r1) ;
for ViY E A U C scch that gjrl. X) = s # fail do

begin
if g(r2, X) = fail then

begin
st := n s t ;
n s t := n s t + 1;
g(l-2, X) := st

end
else

s t := g(r2, Xj;
queue2 := queue2 - (s : s t)

end
end

end

In the second part, \x7e construct the failure function and make goto paths branch

off according to need. We first set f (1) = 0 since it is the state of depth 1. Then,
we would compute the failure function for all states recursively, in nearly the same
manner as the Aho-Corasick method. JTYe would set f (2) = 0. However, if the input
symbol on which m7e have made a goto transition from 1 to 2 is a. the failure value
sbould be 1 ; Otherwise, 0. Therefore we shall make the edge branch off only for a

to obtain:

Note that we have copied the subtree whose root is 2 to the new state 5 . Continuing
in this fashion: we obtain:

TVe next give an example for multiple patterns.

Example 2 . Suppose that A l , aAc; ab are the patterns. In the first part, we obtain

the graph:

In the second part, we initially set the graph as below:

Note that the subtree whose root is 1 has been copied to the state 3. Yde then
inspect the goto edge from I and get f (2) = 0. Now, we inspect all edges from 3.
VtTe first inspect edges labeled by characters, and we get:

T;Ve nest inspect edges labeled by pictures, and we set f(4) = 1. Yow vc7e determix
the next state from 3 for each character in the picture A. For the character a, the
failure value should be 3, hence we make the edge branch off as below:

For b; since there already exists an edge labeled by b to the state 6, we shall copy

there the subtree whose root is 4. For the other characters in A, the next states

should be all 4. Thus we obtain:

Continuing in this fashion, we can complete the pmm as is shown below:

Thus, our algorithm simply prodaces an efficient p m from multiple picture-

patterns. The text searching algorithm, which is summarized in Algorithm 3, is
exactly the same as Aho-Corasick's, AlIoreover, it is easy "c transform a p m into
a deterministic finite automaton, in the same manner as the Afio-Corasick [I],

Algorithm 3
input: A text string T = alaz . . . a, and a pattern matching machine A1

with functions g, f and out.
output: Locations at which patterns occur in T .
method:

begin
state := 0;
for p := l to n do

begin
while g(stute, a,) = fail do state := f(s-tate);
state := gjstate, a,);
if out(state> # elnpty then print q, out(state)

end

4. Validity of the Algorithm

Definition 2. We say the prnm :W is valid for a set of patterns I? when with 1W
Algorithm 3 indicates that pattern cr ends a t position i of text T if and only if there
exists y E a with T = u p and the Length of uy is i.

This section shows the p m produced by Algorithm 1, 2 is valid. We first have the
following lemma.

Lelnma 1. Let bl, b2, . . . , b, f C. Then. the following are equivalent.
(1) There exists a pattern a such that bl bz . . . b,y f a, for some y E C*.

(2) There exists a sequence of non-zero states r l ; rz, . . . , r , such that

Proof. It is clear from the construction of the goto function.O

i k shall define sets and a mapping as follotvs: For a given set of patterns T =

{a:, ai;), we put K = al b . . . ai;. I< is the set of all strings to be searclied. 'tile
say that u is a prefix and v is a su@x of the string uv. Then ive let 55' be the set
of ail prefixes of elements in I<. We define a mapping state from JV to the set of
non-negative integers h y

where E denotes the empty word. Note that state is well-defined from the result of
Lemma 1. We also put 5' = {stnie(u)ju E lV) , which is the set of all states reachable
from the initial state 0. For ail st E S, we put rep(s-t) = (u E JV/sta-te(u) = sf). It
should be noted that for any s, t E S , rrre have rep (s) n rep j t) = O if s f i .

'IYe are now ready to characterize tile goto, failure and output functions produced
b y Algorithm 4, 2.

Lemma 2. Let a = _ f i l e . . iYm be a pattern. Then. for any j with 1 < j < m, there
uniquely exists a nonempty subset 1 of S such that

- X I . . . Xj = U repjsi), depthlstj = j (Yst E I) ,
s t E I

where depth(st) denotes the depth of st, i.e., the length of the shortest path from O
to st.

Proof. Using the result of Lemma 1: we prove this by induction on j.o

This lemma claims that the goto function g is valid in a sixple sense. But we have to

show that Algorithm 2 produces sufficient branchings sf the goto paths to compute

the valid failure function.

Lemma 3. Suppose that s E S. s f 0. Let u be a string in repjsj, Let v be the

longest string in (S U F (u) - {u)) Q TJ$,', where SUFCu) denotes the set of suffixes of

u. Then, v E rep(f (s)) .
Proof. By induction on the depth of s.U,

Concerning with the output function out, the following lemma holds.

Lemma 4. For all s f S with s f 0 ,

Proof. It fo'oi!o-cr.s from the construction of out and from the results of Lemmas 2,
3. Q

The following Lemma characterizes the behavior of Algorithm 3 on a text T =

. . . a,.

Lemma 5 . After j t h pass through the for-loop, Algorithm 3 tvill be in state s if
and only if rep(s,) contains the longest string in St?F(a: a2 . . . a, 1 n TV.
Proof- By induction on the depth of s.

IYe now have the foliotving theorem.

Theorem 1. The pmm ,%I produced by Algorithm 1, 2 is valid.

Proof. By Lemrnas 4, 5.

Time complexity

It is obvious thax Algorithm 3 runs in linear time proportional to the test length. We
then discuss the time complexity of Algorithrn 1, 2, which are for the constructio~

of pmm. Clearly, Algorithm I takes only Linear time proportional to the sum of

the lengths of the patterns. Algorithm 2 does so if the patterns consist only of

characters. or only of pictures. However, it is not so simple when the patterns

contain both characters and pictures. Our algorithm is designed to do branchings

of the goto paths according to need during the construction of the failure f~lnction

so as to decrease the number of states. The cost varies depending on how the paths

;;.,rill branch off, However, even in the worst case, it is bounded by those of Method 1
and 2 described in Section 2,

Consider the cost of Method 1. We denote by # (X) the number of elements in

a set X . Then, for a pattern a = & X z . . . Xm, the number of strings belonging to
a is given by

= #(XI) - #(X2) #(Xm) -

Note that #(a) = 1 if a is a string pattern. We also denote by /a / the length of a

pattern a. Suppose that T = (a l , a2; . . . , ak) is the set of patterns. Then, Method 1
takes to construct the pmm linear time proportional to

TiTe then consider h4ethod 2. Let c, be the n u d e r of different characters in

A; appearing in the patterns. Let d (X) = I, if X E C; c; + 1, if X = A,. Put

d(cr j = d(Xl) . 4X2) - d(Xm) for a pattern a = X;X2 . . . Xm. Then, the cost of
Method 2 is linearly proportional to

Gnless a large number of different characters appear in the patterns, d (a i j is much

smaller than +(a,). Moreover, if many characters appear in the patterns, accord-

ingly the number of occurrences of pictures in the patterns is small, hence d (a ; j wilf
be 1 frequently.

Our method is better than these two methods.

6. An application to the two-dimensional pat-
tern mat ching

In the two-dimensional pattern matching problem, both pattern and text are two-

dimensional arrays of characters. Bird f2j described an algorithm 50 solve this prob-

lem by using the Ailo-Corasick method. Sx~ppose that C = {B ,D): and let the

pattern be

(a) row-matching

(b) column-matching

Fig. 2: The Bird method

The rnethod by the Bird [2]? regarding each row as a string pattern, builds a p m -

as shown in Fig. 2 (a). Then, the pmrn runs on the text sow by row searching for the
rows of the pattern array (row-matching). On the other hand, the machine shown in
Fig. 2 (b) is used to determine whether of not the entire pattern array occurs in the

text (column-matching). The algorithm takes O(nl - n2) time to find all occurrences
of the pattern in a text of size nl x n2.

However, this method has the following problem: Suppose that we would detect

in the t.ext

If tve search for the rectangular pattern

by using the above method, we can not find it in the text.
Contrary to this, our method is able to deal with the pattern containing wild

cards, i.e., pictures ??', such as

hence we can find the cross in the text.

llie have presented an efficient matching algorithm for pat terns with pictures. Since
it is a natural extension of the A4ho-Corasick algorithm, it is applicable to various
problems.

Japanese texts consist of both 1-byte and 2-byte characters with shift codes.
Shinohara and Arikawa [5] have developed an a!goritllm to construct the p m for

such texts: based on the Aho-Corasick algorithm. Taking each byte as a input
symbol, the pmm runs on a Japanese text without loosing the efficiency. If we
combine our algorithm xvith this, then we can deal avith not only I-byte pictures
but also some 2-byte pictures, e.g., kanj i , hirngana, etc., by regarding them as

concatenations of two 1-byte pictures.

References

[lj Aha, A. V. , Corasick, ?!vK J. : Efficient String hlatching : An Aid to Biblio-
graphic Search, Comm, AC'L+fJ Yo?. 18, n'o. 6 (1975j, pp. 333-3413.

121 Bird, R. 5. : T x o Dimensional Pattern hfatching, In5 Process. Lett., Voi. 6,

KO. 5 (1977), pp. 168-170.

[3] Moyer, R. S. . Moore, J. S. : A Fast String Searching Algorithm. Comrn. A C'LII,
'iiol. 20. KO. 10 (1977): pp. 762-712.

[4] Knuth, D. E. , Illorris, J. W. , Prait, V. R. : Fast Pattern Matching in Strings;
SIZ1?4 J . Cornput., Vol. 6, Xo. 2 (!977$, pp. 323-350.

[5j Shinohara; T. and Arikawa, S. : Pattern hfatching Machines for Japanese Texts,
Research Report No. 110 (1986), Research Institute of Fundamental Informa-
tion Science, Kyushu University.

