NMARZZMIZRY R MY

Kyushu University Institutional Repository

Model Inference Using Bidirectional Refinements

Kawasaki, Youji
Department of Information Systems, Interdisciplinary Graduate School, of Engineering Science,
Kyushu University

Shinohara, Takeshi
Department of Artificial Intelligence Kyushu Institute of Technology

Arikawa, Setsuo
Research Institute of Fundamental Information Science Kyushu University

https://doi.org/10.5109/3116

HERIEER : Bulletin of informatics and cybernetics. 24 (1/2), pp.1-13, 1990-03. #EEtRIZHFRES
N—T 37

HEFIBEMR

¥, KYUSHU UNIVERSITY

RIFIS-TR-CS-10

RIFIS Technical Report

Model Inference Using Bidirectional Refinements

Youji Kawasaki
Takeshi Shinohara
Setsuo Arikawa

December 29, 1988

Research Institute of Fundamental Information Science
Kyushu University 33
Fukuoka 812, Japan

E-mail: shino@iizuka.kyutech.junet Phone: 0948(28)5551

Model Inference Using Bidirectional Refinements

Youji KAWASAKI

Department of Information Systems,
Interdisciplinary Graduate School of Engineering Science,
Kyushu University 39, Fukuoka 812, Japan

Takeshi SHINOHARA

Department of Artificial Intelligence,
Kyushu Institute of Technology, Iizuka 820, Japan

and
Setsuo ARIKAWA

Research Institute of Fundamental Information Science,
Kyushu University 33, Fukuoka 812, Japan

Abstract
Model inference is an inductive inference of theories from their
models. In this paper, we propose a method of model inference for logic
programs using both refinements in direction from general to specific
and the opposite. By our method we can identify the target program
from a program analogous to the target.

1 Introduction

Inductive inference problem is formalized as a process to identify an unknown
rule from the examples of the facts implied by the rule. Gold[2] discussed
inductive inference of languages and gave the criteria of successful inference
widely known as the notion of “identification in the limit.” Blum and Blum[1]
showed that any inferable class of recursive functions is characterized by a
complexity measure. Model inference is an inductive inference introduced by
Shapiro[8, 9], in which theories are inferred from the facts, thatis, their models.

t Presently at NEC Corporation.
Mailing address: T. Shinohara
Department of Artificial Intelligence, Kyushu Institute of Technology, lizuka 820, Japan

E-mail: shino@iizuka.kyutech. junet

The most naive, and essential in a sense, method of inductive inference is so
called “enumerative method” or “identification by enumeration.” The method
enumerates all possible hypothesis and outputs the first one that can explain all
examples given so far. Clearly the enumerative method does not work efficiently.
Shapiro[8, 9] discussed inductive inference of first order theories from their
models and implemented the model inference system MIS. A feature of the
method adopted in MIS is that it modifies the current hypothesis to obtain the
next correct hypothesis. The notion of “refinement” is originally introduced by
him, and it is used to modify hypothesis. By using refinement we can avoid to
enumerate some of incorrect hypotheses. The initial hypothesis of MIS is {{J}
representing a contradiction, and it is refined in direction from general to specific.

Laird[5, 6] discussed refinements in more abstract way. He considered
refinements in direction from general to specific but also in the reverse direction.
We call the former downward refinements and the latter upward. Ishizakal4]
pointed out that MIS lacks naturalness in the initial hypothesis and the direction
of refinement and presented more efficient and natural method of model inference
which utilizes the notion of least generalization by Plotkin.

No matter which direction of downward and upward is used, it is somewhat
unnatural to adopt a refinement in one direction. In this paper we propose an
inductive inference method using refinements in both directions and apply it to
logic programs. The theory of analogy formalized by Haraguchi[3] suggests us to
find a similar program to the target and adopt it as the initial hypothesis. When
we have a program analogous to the target and try to modify it, we do not know
which direction of refinement should be applied. Further, in some cases, we can
not reach any correct program by refining the initial program in one direction.
The method we propose can be applied to model inference problems in such a

situation.

2 Preliminaries

In this section, we present some basic definitions on inductive inference and logic

programs.

2.1 Logic Programs

First we briefly review logic programs and related notions according to Lloyd [7].
We assume basic terminologies on first order predicate logics. Throughout in this
paper we assume that a first order language L has finitely many predicate
symbols and funection (including constant) symbols.

-9

A program clause is a definite clause in L of the form
A<B1,Bs,..,B, (n=0),

where A, By By, ... , By are atomic formulas. We will use the word “atom” to
abbreviate “atomic formula.” The atom A of the program clause above is called
the head. The sequence By By, ..., B, of atoms is called the body. If a program
clause has no body, that is, if n=0, then it is called a unit clause. A logic program
or simply program is a finite set of program clauses. A goal clause is a clause of

the form
«B1,Bs, ..., B, (n=0).

We call a goal clause with n=0 a empty clause, and denote it by LJ. A Horn clause
is a program clause or a goal clause.

In this paper we deal with pure-Prolog as a logic programming language. We
adopt the notation of DEC-10 Prolog. That is, variable symbols are denoted by
capitalized names like X, Y, and predicate, function and constant symbols are
denoted names starting with lower case letters like p, f, a. A term [] denotes a
empty list, a term [x1, x2, ... x5 | y] denotes a list such that the first n elements are
X1,%2, ... n and the remaining listis y. We take the set {{ 1} as a special program.

The Herbrand base of L is the set of all ground atoms in L and it is denoted by
Bj,. A subsetof By, is called an Herbrand interpretation. An Herbrand model of a
program P is an Herbrand interpretation that is a model of P. As is well-known,
any program P has a unique least Herbrand model that is equal to the set of
ground atoms implied by P.

2.2 Inductive Inference Problems and RBefinements

Shapiro’s model inference is defined as an inductive inference of first order
theories[8, 9]. Laird[5, 6] discussed inductive inference problems more generally,
and showed the usefulness of refinements. In this section we define inductive
inference problems and related notions according to Laird.

Definition 2.1 An inductive inference problem is a 6-tuple (D, dg, €, h, ASK, EX),
where

- D is a finite or countable set of objects partially ordered by =,

- dgisan elementin D,

- €is a countable set of expressions,

- h: € — Dis a mapping from € onto D,

- ASK is an oracle which answers 1 if h(e1)= h(eg), 0 otherwise for any pair (e,

e9)€EXE, and

- EX is an oracle which returns a signed expression +e or —e, if do= h(e) or
not, respectively.

D is called a semantic domain of objects, dg is called a target. When h(e)=d, e is
called an expression of d and d is called a semantics of e. We denote the answers of
ASK and EX by ASK(ej, e2) and EX(), respectively. We call +e a positive

example, —e a negative example.

Definition 2.2 The oracle EX gives a sufficient presentation of dgif the set {e € €
| h(e)=x for all positive example +x given by EX and h(e) *x for any negative
example —x} = {e € €| h(e)=dp}.

An inductive inference machine is an effective procedure that receives inputs
from time to time and produces outputs from time to time. An inductive inference
machine M identifies dg in the limit if the sequence of outputs produced by M
converges to e such that h(e)=dp whenever any sufficient presentation of dy is
given by EX. An inductive inference machine M identifies the set D in the limit if
M identifies any dg € D in the limit. The notion of “identification in the limit” is
introduced by Gold[2], and it is widely accepted as a reasonable criterion of
successful inductive inference.

If the set € is recursively enumerable and the oracle EX gives a sufficient
presentation, we can easily solve the inductive inference problem by using a
simple method called enumerative method or generate and test. Hereafter we
assume the oracle EX gives a sufficient presentation. Such a simple method,
however, does not work efficiently. If we have a binary relation on € that is
reflected by h to the semantic relation =, we can solve the problem more

efficiently using it.

Definition 2.3 Let =, be an ordering of €, = be a partial ordering of D, and h: €
— D be a mapping from € onto D. Then A is said to be an order homomorphism if
h(e1)= h(e2) whenever e1 = ¢ e9.

Let the mapping h be an order homomorphism, and let e be the current
hypothesis in an inference process. If we know h(e)= h(x) for some negative
example —x, then we can neglect all expressions ¢’ such that ¢ =, e. Because
h(e)= h(e)= h(x) and h(e’) = dg contradict do > h(x). Further, if we know h(e) > h(x)
for some positive example +x, then we need not examine any expression e’ such
thate =, ¢’. Hereafter we assume the mapping & is an order homomorphism with
respect to =.

Definition 2.4 A downward refinement is a finitely axiomatizable binary
relation p on € such that e; p eg implies A(e;)= h(e2). An upward refinement is a
finitely axiomatizable binary relation y on € such that e; 7 eg implies h(eg)= h(e1).
We denote the set {¢’| e p €’} by p(e) and {¢’| € 7 e} by 7(e). Similarly we denote the
set {e’| e p* €} by p*(e) and {€’| & r* e} by 7*(e), where p* and y* are the reflexive
transitive closures of p and 7, respectively.

Definition 2.5 A downward refinement p is called complete for e € € if h(p*(e)) =
{d| ke)=d}. An upward refinement y is called complete for e€ € if h(y*(e))= {d |
d=h(e)}. A refinement is called simply complete if it is complete for any

expression e€E.

Laird showed that an inductive inference problem can be solved whenever € is
recursively enumerable, the oracle EX gives sufficient examples, and a complete
refinement is available. As he pointed out, however, his method for general case
does not seem to be natural, since it obtains expressions by not only refining but
also enumerating. He also showed that some conditions on refinement are useful
to make the inference method more efficient.

When € has a top element eg such that h(eg)= h(e) for all e € €, any semantic
object d € D can be obtained by repeatedly refining eg downward using a complete
refinement p, and therefore we need not enumerates all expressions. Further, if
the refinement p is locally finite, that is, if p(e) is finite for any e € €, a simple
queuing mechanism suffices us to obtain all refined expressions. The following
procedure is given by Laird. Note that the existence of the top element egin € and
a locally finite complete downward refinement p is used to simplify the inference
procedure. In the dual case, that is, in case of upward refinement, the similar
method is applicable. More detailed discussions are found in the literatures(5, 6].

Procedure 1. (Inference by Downward Refinement with a Top Expression)
Input: A recursively enumerable set € of expressions.
A locally finite complete downward refinement p.
A top element eg € €.
An oracle ASK.
An oracle EX giving a sufficient presentation of dg.
Output: A sequence of expressions Hy, Hy, ..., such that H; is correct for the first i
examples given by EX.
Method: begin
@ < emptyqueue

