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Abstract 
Model inference is an inductive inference of theories from their 

models. In this paper, we propose a method of model, inference for logic 

programs using both refinements in direc.tion from general to specific 

and the opposite. By our method we can identify the target program 

from a program allalogous to the target, 

31 Introduction 

Inductive inference problem is formalized as a process to identify an unknown 
rule from the examples of the facts implied by the rule. Gold[2] discussed 

inductive inference of languages and gave the criteria of successful inference 

widely known as the notion of "identification in the limit." Blum and B3um[l] 

showed that any inferable class of recursive functions is characterized by a 

complexity measure. Model inference is an inductive inference introduced by 

Shapiro[8,9], in which theories are inferred from the facts, that is, their models. 
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The most naive, and essential in a sense, method of inductive inference is so 

called "enumerafiue method" or ""ienfification by enumeration." The method 
enumerates all possible hypothesis and outputs the first one that can explain all. 

examples given so far. Clearly the enumerative method does not work efficiently. 

Shapiro[8, 93 discussed inductive inference of first order theories from their 

models and implemented the model inference system MIS. A feature of the 

method adopted in hKIS is that it modifies the current hypothesis to obtain the 

next correct hypo.thesis. The notion of ""refinemenf9? is originally introduced by 

him, and i t  is used to modify hypothesis. By using refinement we can avoid to 

enumerate some of incorrect hypotheses. The initial hypothesis of M[41S is ( E l ]  
representing a contradiction, and it is refined in direction from general to specific. 

LairdES, 63 discussed refinements in more abstract way. I-fe considered 

refinements in direction from general. to specific but also in the reverse direction. 

We call the former downward refinements and the latter upward. Ishizaka[4] 

pointed out that LWS lacks naturalness in the initial hypothesis and the direction 

of refinement and presented more efficient and natural. method of model inference 

which utilizes the notion of least generalization by Plotkin, 

No matter which direction of downward and upward is used, it is somewhat 

unnatural to adopt a refine~nent in one direction. In this paper we propose an 

inductive inference method using reEnements in both directions and apply i t  to 

logic programs, The theory of anlalogy formalized by HaraguchiISI suggests us to 

find a similar program to the target and adopt it as the initial hypothesis. When 

we have a progrm analogous to the target and b y  to modify id ,  we do not know 

which direction of refinement should be applied. Further, in some cases, we can 

not reach any correct program by refining the initial program in one direction, 

The method we propose can be applied to model inference problems in such a 

situation. 

2 Preliminaries 

In this section, we present some basic definitions on inductive inference and logic 

programs. 

First we briefly review logic programs and related nokions according to Lloyd [7]. 

We assume basic terminologies on Erst order predicate logics. Throughout in this 

paper we assume that a first order language L has finitely many predicate 

sylnbols and function (including eonstant) symbols. 



A program clause is a definite clause in L of the form 

A+Bp, B2, ... , B ,  (n2 O ) ,  

where A, B l ,  232, ... , I?, are atomic formulas. We will use the word "atom" to 

abbreviate "atomic formula." The atom A of the program clause above is called 

the head, The sequence B1, Bz, ... , B,, of atoms is called the bod~r. If a program 

clause has no body, that is, if n = 0 ,  then it is called a unit clause. A logic program 

or simply program is a finite set of program clauses. A goal clause is a clause of 

the form 

We call a goal clause with n = O a empty clause, and denote i t  by O . A Horn clause 

is a program clause or a goal clause. 

In this paper we deal with pure-Prolog as a logic progra ing language. We 

adopt the notation of DEG-10 Prolog. That is, variable symbols are denoted by 

capitalized names like X, Y, and predicate, function and constant syrnbols are 

denoted names starting with lower case letters like p, f, a. A term [I denotes a 

empw list, a term [XI, x2, ... x,  1 y ]  denotes a list such that the first n elements are 

xa, ... xn and the remaining list is y,  We take the set (El) as a special progrm. 
The Hestarand base of E is the set of all ground atoms in L and it is denoted by 

BL. A subset of Br, is called an Igerbrand interpretation. An Herbrand model of a 
program P is an Herbrand interpretation that is a model of P. As is well-known, 

any program P has a unique least Herbrand model that is equal to the set of 

ground atoms implied by P, 

2.2 Inductive Inference Problems and Refinements 

Shapiro's model inference is defined as an inductive Inference of first order 

theories[8,9], Lairdi5, ti] discussed inductive inference problems more generally, 

and showed the useklness of refinements. In this section we define inductive 

inference problems and related notions according to Laird, 

Definition 2,1 An inductive infire~zceproblem is a 6-tuple (D,  do, E, h ,  ASK, EX) ,  

where 

- D is a finite or countable set of objects partially ordered by 2, 
do is an element in D,  

- E is a countable set of expressions, 

h: E: -. D is a mapping from E onto D, 

ASK is an oracle which answers 1 if Iz(el)2 h(ea), 0 otherwise for any pair (el, 

e2)EEXE, and 



EX is an oracle which returns a signed expression +e or -e, if doZ h(e)  or 

not, respectively, 

D is called a semantic dornain of objeck, do is called a target. When h(e)  = d ,  e is 

called an expression of d and d is called a semantics of e, We denote the answers of 

ASK and EX by ASR(e l ,  ez)  and EX() ,  respectively. We call + e  a positive 

example, - e a negatiue example. 

DefiraiUon 2.2 The oracle EX gives a sufficient presentation sf do if the set { e C I 
I h ( e ) Z  x for all positive example +x given by EX and iz(e)&x for any l~egative 

example -x ) = ( e f h: h(e) = do ). 

An inductive inference machine is an effective procedure that receives inputs 

from time to time and produces outputs from time to time. An inductive inference 

machine M identifies do in the l imi t  if the sequence of outputs produced by M 

converges to e such that h(e)=do whenever any sufficient presentation of do is 

given by EX. An inductive inference machine 34 identifies the set @ in the l imit  if 

M identifies any do C D in the limit. The notion of ""ientiGeation in the limit" is 

i~~troduced by Gold[2], and it is widely accepted as a reasonable criterion of 

successful inductive inference. 

If the set E is recursively enumerable and the oracle EX gives a sufficient 

presentation, we can easily solve the inductive inference problem by using a 

simple method called enumerative method or generate and  test. Hereafter we 

assume the oracle EX gives a sufficient presentation. Such a simple method, 

Izowesrer, does not work efficiently. If we have a binary relation on E: that is 

reflected by h to the semantic relation 2, we can solve the problem more 

efficiently using it. 

Definition 2 3  Let 2 t. be an ordering of I, 2 be a partial ordering of D, and h: I 
-. D be a mapping from E onto D. Then h is said to be an order homomorphism if 

h(el )  2 h(e2) whenever el 2, e2. 

Let the mapping h be an order homomorphis~n, and let e be the current 
hypothesis in an inference process. If we know k ( e ) 2  h(x)  for some negative 

example -x, then we can neglect all expressions e9 such that e' 2, e. Because 

h(e ' )Z  h ( e ) Z  h ( x )  and Me') = dg contradict do&h(x). Further, if we know h . ( e ) xh (x )  

for some positive exmple +x,  then we need not examine any expression e' such 

that e 2, e'. Hereafter we assume the mapping h is an order homomorphism with 

respect to 2. 



Defini-tion 2.4 A downward refinement is a finitely axion~atizable binary 

relation p on I such that el p e2 implies h(el)2 h(e2). An upward refinement is a 

finitely axiomatizable binary relation 7 on E such that el  7 e2 implies h(e2)Z h(el). 

We denote the set (e' 1 e p e') by p(e) and (e9 I e' 7 e) by y(e). Similarly we denote the 

set (e' f e p* e') by p*(e) and { e' I e9 r* e) by r*(e), where p" and r* are the reflexive 

transitive closures of p and 7, respectively. 

Definition 2.5 A downward rehrinement p is called cotnplete for e 6 E if h(p*(e)) = 
( d I h(ef 2 d),  An upward refinenlent r is called complete f ir eC I if h(r*(e)) = ( d I 
d l  ,$(el). A refinement is called simply comnpkete if i t  is complete for any 

expression eC E, 

Laird showed that an inductive inference problem can be solved whenever E is 

recursively enumerable, the oracle EX gives sufficient examples, and a complete 

refinement is available. As he pointed out, however, his method for general case 

does not seem to be natural, since it obtains expressions by not only refining but 

also enumerating. Me also showed that some conditions on refinement are useful 

to make the inference rmethod more eficient. 

When E has a top element eg such that h(eg)l h(e) for all e f E, any semantic 

object d C D can be obtained by repeatedly refining eg downward using a complete 

refinement p, and therefore we need not enumerates all expressions. Further, if 

the refinement p is locally finite, that is, if p(e) is finite for any e f I, a simple 

queuing mechanism suffices us to obtain all refined expressions. The following 

procedure is given by Laird, Note that the existence of the top element eg in E and 

a locally finite complete downward refinement p is used to simplify the inference 

procedure. In the dual case, that is, in case of upward refinement, the similar 

method is applicable. More detailed discussions are found in the literatures[fj, 61. 

Procedure 1. (Inference by Downward Refinement with a Top Expression) 

Input: A recursively enumerable set E of expressions, 

A locally finite complete downward refinement p. 

A top element eg f I. 
An oracle ASK. 

An oracle EX giving a sufficient presentation of do. 

Output: A sequence of expressions H I ,  Hz,  ... , such that Hi is correct for the first i 

exarnples given by EX. 

Method: begin 

& +- ermptyqueue 



S + ernptyset (holding the set of examples) 

N t eo (Start with the top element) 

do forever 
begin 

S +S U E X 0  
while ASK(N, e) = 1 for some - e f S or 

ASK(H,  e )  = 0 for some + e 5. 5 (13 is incorrect) do  

begin 
if ASX(H,  e )  = 1 for some - e C S and 

ASK(H, e) = l. for all +- e f S then 
Add p(m to the tai% of & (queuing refined expressions offl) 

Remove the head element of $, and let it be El' 

end 
Output H 

end 
end. 

3 Model Inference Using Bidirectional Refinements 

Mere we introduce a method of model inference for logic programs using 

bidirectional refinements. First we sketch the method in the context that 

bidirectional refinements should naturally be needed. 

3,1 Model Inference Based on Analogy 

We start this section with overviewing Shapiro's model inference method MIS 

[S, 91, The initial hypothesis adopted by MIS is a top element (a) which 
represents a contradiction, mS refines the current hypothesis downrvard, that is, 

enumerates logic programs in direction from general to specific. This feature 

might be somewhat strange in some ease where we are inductively learning in a 

common sense, as Pshizaka[$j also pointed out. Xshizaka proposed an inference 

method which utilizes the notion of least generalization by Plotkin. As we have 

seen in the previous section, LairdC5, 61 focused on refinement and introduced 
some interesting refinements. Although he discussed not only downward 

refinement but also upward refinement, any inference procedure presented by 
him uses a refinement in one direction. 

No matter which direction of refinements we use, i t  is not natural to start an 

inference with a program (13) or () as the initial hypothesis . In fact, to solve a 



problem using programs we will first "cy to find the target program in the library, 

and if we fail to find the exact program, then try to find a program analogous to 

the target and modify i t  . When we start with a program pg analogous to the 

target, we do not know in which direction, downward or upward, refinement 

should be applied to pg, and in some cases we can not reach any correct prograrn 

by refining po in one direction. The method we will introduce here uses 

refinements of both directions at  a time to deal with such a initial hypothesis. We 

can observe the difference between refiliemelzts in one direction and those in both 

directions from the following two exmpfes of inferring a prog3ram to append two 

lists. 

Example 3.1 (Refinement in Dow~nward Direction) 

Let take a prograrn (0 3 as the initial. hypothesis, and refine i t  downward. The 
following is a possible sequence of progrms from (El) Lo the target. To avoid 

mbiguity we punctuate clauses in the set notation by semicolon. 

(0 

(append(X, Y, Z)) 

(append(X, Y ,  Z) ;  append(EAIXi, Y, CnjZI)) 

(append(E1, Y ,  Z); append(EAIN, Y, [AIZl)] 

(append(El, Y ,  Y); append(EA]Xl, Y, [AIZIl) 
(append(E1, Y ,  Y ) ;  append(EAjN, Y, [AlZl)+append(X, Y ,  Z)) 

Example 3.2 (Refinement in Downward and Upward Directions) 

Consider the following program to catenate terms as a program analogous to 

the target. 

(cat([], A, [All; cat([UIXl, Y, TUIZl)t-cat(X, Y, Z)) 
Let take the program obtained by replacing a predicate symbol 'kcat" by "append" 

as the initial hypothesis. Then refine i t  upward and then downward. 

jappend(E1, A, [All; append([ U$W, Y, TUiZl)+append(X, f7,Z)) 

(append( tl, A, B); append(LUfX1, Y, EU\Zl)+append(x, Y ,  Zl) 

(append(E1, A, A); append([ U f N ,  Y, [ U]Zl)+append(X, Y, Z)) 
Thus rve can reach the target program by using reEnements of both directions. 

3.2 Refinennents for Logic Programs 

In the framework by Laird we should define a domain D of semantic objects, the 

set E of expressions, and an order homomorphism h: E--6). Let E be a set of logic 

p r o e m s ,  and D be the set of Nerbrand interpretations. Let h be a mapping such 

that h(e) is the set of ground atoms satisfied by a logic progrm e ,  that is, the 



minimal Herbrand model of e. We assume that the ordering of D is the ordinal set 

inclusion. Note that G has a maximum element {a), whose semantics is the set of 

all ground atoms, that is, the Herbrand base. 

Definition 3.1 A most general term is a constant or a tern1 of the form Axl, x2, ... I 

x,) and a most general atom is an atomic formula of the form p(x1, x2, ... , x,), 

where f is an n-place function symbol, p is an n-place predicate symbol and xl, 

x2, ... , xn are mutually diMkrent variable symbols. 

Now we define a downward refinement and an upward refinement for logic 

programs, whicfi are essentially the restrictions of Laird's refinements for more 

general class of logic programs. I t  should be noted that our class of logic programs 

is closed under the refinements defined below. 

Definition 3.2 Let P = ( ei I i = I, ... , n 3 be a logic progrm, Then p(P) is the set of 

logic programs obtained by one of the following operations. For each operation i), 

pi(P) denotes the set of logic programs obtained by the operation i). 
1) Delete a clause ci . 
23 Add the resolvent of ci and cj ( i  and j are possibly the same) to P. 

3) Unify two variables in e;, and add the result to P. 

4) Substitute a most general term for a variable in ci , and add the result to P. 
5) If a clause ci has a head then append a most general atom to the body, 

otherwise append it as the head. 

Example 3.1 Let P = b(X, Y)c-q(W; qifiZ))+r(Z)). Then p(P), we have just 

defined, contains the folloviing prograrzls. 

1) brx ,  y )+q ( rn~  
2)  b(X, Y)t-q(m; q(fbZS)+r(Z); p(flA), B)t-r(A)) 
3) (p (X ,  Y)+q(X); q(fiZ))+r(Z); p(A, A)+qiA3) 

4) (p(X, Y I s g Q X ) ;  q(flZ))+riZ); q(Ag(A, Bl)t-p.{g(A, B3)) 

5) (plX, Y)+q(X);  q(flZ))+r(Z); q(AA))c-r(A), p(B, el) 

Theorem 1, p is a complete downward refix~ement for the set E of logic programs. 

Proof. It is clear that p is a downward refinement, that is, Pz < p(P1) implies 

h(P1) > h(P2). 
We can easily prove the completeness of refinement p in a similar way to 

Laird's downward refinement for clause-form sentences., So, here we only give a 

brief sketch how a logic program equivalent to P2 car1 be obtained by refining a 

logic progrm P i ,  when assuming h(P1) > fe(Ps). 



If Pl  is inconsistent, then we can get empty clause by using p2 repeatedly. 

Since p*({U)) contains any program, we have Pz f p*(P1). Therefore we assume 

the consistency of Pl  without loss of generality, L e e 1  be a consistent program, 

P2 = ( ci 1 i = l ,  ... , n ), and h(P1) 2 h(P2), Then clearly h(P1) 3 h((ci)) for any 

i = l ,  ... , n, If we can show P I U  (e l )  < p*(P1), then we can also show PlCdPz C 
p*(P1) inductively, by deleting all clauses in PI from PlUP2 we can find P2 in 

p*(P1). Therefore i t  is suficient for us to show PlhJ (el f p"(P1) for any clause c 

such that h(P1) > h({c)) and c is not a tautology. 

Let e = p(x)+ql(%), qz(23, ... , q,(2), where 2 denotes all variables in e, Then 

Let 3 be Skolem constants corresponding to 32 and substitute 2 by B. The resulted 

formula is 

Since we assume h(P1) 2 h((c)), there exists a derivatio~z of the empty clause Cl 

from PI  and --e[SJi, that is, from PI U(+p(s); ql(S).t-; qz(s)+-; ... ; q , ( ~ ) + ) ,  Consider 

the resolution proof tree, as in Fig.1, whose nodes are labeled by clauses. If a 

clause c3 is derived from c l  and ez in a derivation, then corresponding nodes N1, 

N z  and N3 are labeled by e l ,  e2 and e3, respectively, and Na and WI2 are children of 

N3. The label of every leaf is a clause in F f  u(+~(s);  q1(3+-; q2(s)+; ... ; q,(s)c-). 

The root is labeled by the empty clause i? . We call such a label of node N an r- 

clause and denote it by r(N).  

Based on the resolution proof tree, we construct a refinement path from PI to 

PICd(c), First we label each node by an additional clause called x-clause. The x- 

clause of node N, denoted by x(N) ,  is defined inductively from leaves to the root. 

a)If N is a leaf, then x(N)[SI = r(1""VV). 

b)If exactly one child node N1 of N is a leaf such that r(N1) f --e[Sj, then 

x(N)[s]  =B[x(rVz)], where PVz is another child of N and 8 Is the unifier used to 

resolve r(N1) and r(N2). 

c) If no child of N has any clause in -431 as its r-clause, then x(N)[s]  is the 

resolvent of x(Nl)[S]  and x(Nz)[s]  using the same aton1 and unification as in the 

derivation of r(N) from r(N1) and r(M2). 

d) If both of the children of N are labeled by r-clauses from --e[S], then r (N)  

should be the empty clause , i t  contradicts the assumption that c is consistent. 
Therefore we can ignore this case. 

In Fig2 x-clauses of the tree in Fig.1 are illustrated, where underlined clauses 

are from -c and marked clauses by b) and c) are defined by the respective rule. 



Fig. 1. A Resolution Proof Tree 

We can easily observe that each x-clause is obtained by using p, the x-clause of 

the soot node is a subclause of c, and therefore the program PIU(c) is constructed 

by the refinement, For example, for the logic prograrn PI = ( el: p(fTX))t-q(dY); c2: 

q(fTY))+; c3: s(fiZ))+p(Z), q(fTZ1) ) and the prograna clause c = r(fTflU))>t-q(U), 

s(U, V) in Fig.1 and Fig.2, the refinement p3 can add 

then p2 may add the resolvent of x l  and cl 

3~2 = r(fifTET)))+q(U), q(flAU))), 

and the resolvent of x2 and c2 

x3 = r(flAU))l+q(Ud, 

p5 can add a clause 

x4 = r ( f l f l  tl)))+q(U), s(U, V) = c, 



Fig. 2, X-clauses of a Resolution Proof Tree 

which is the result of appending a x~ost general atom s(U, Vb to the body of xs. 

Thus we can get a program (el, cz, c3, xl, xg, xg, xq=c ) in p*(Pa). Since we can 

delete any clause by pl ,  finally we have the logic progrm {el, ezl eg, e). 

Definition 3.3 Let P = f ci 1 i = I, ... , n ) be a logic program. Then r(P) is the set of 

logic programs obtained by one of the following operations. 

I) Add a ground clause to P . 
2) Let ci = A +Al, As, ... , A,. Select an atom B arbitrarily, and replace ci by 

two clauses 

A+Al,Az, ... ,A,,B and 
Bc-A1,Az, .,. ,An. (anti-resolution) 

3) Replace some occurrences of a variable in ei by a new variable. 

(anti-unification) 

4) Replace some occurrences of a most general term t in ei such that no variable 
in t occurs oGher than in t by a new variable. (anti-substitution) 

5) If a clause ei has a body then remove an atom from the body, otherwise 

remove the head (the result of removing head is the empty clause ) . 

Example 3.2 Let P = (p (X ,  Y)+q(X); q(f[Z))cr(flZ))). Then r(P) contains the 

following programs. 



1) @(X, Y)+q(X); q(ll[Z))+r(fiZl); ~(a)*r(ll[a>),p(flAb)))) 

2) (p(X, Y)+q(X); q(AZ))+r(AZ)), r(fla)); r(jTa))+s(fiZ))) 

3) (p(X,  Y)+q(U); q(fTZ))+r(fiZ))) (Note that the first occurrence of X is not 

replaced.) 

4) (p(X, Y)+q(m; qgAZ))+r( u3) 
5) e;lix, r>+; q(flz>>+r(AZS)) 

We can easily show the completeness of y also in a similar way to Laird. 

Theorem 2. y is a complete upward refinement for the set E of logic programs. 

3.3 Inkrenee Procedures 

Now we present our inference procedure using two refinements p and 7 .  In the 

procedure, we use a dovetailing tecl~nique to refine progrms where p(P, n) and 

r(P, n) denote the programs obtained right; aRer the n-%b computation step of p(P) 

and r (P) ,  respectively for a progrm P and an positive integer n. Note that p(P, n) 

and y(P, n) may not be any progrm for a particular n. 

Procedure 2. (Model Inference Using Bidirectional Refinements) 

Input: A logic program PO C sE. 
An oracle ASK. 

An oracle EIX giving a suficient presentation of the target do. 

Output: A sequence of logic programs 191,  Hz, ... , such that Hi is correct for the 

first i exmples given by EX. 
Method: begin 

$ : = emptyqueue 

15 : = emptyset 

H : =  pe, 

do forever 

begin 

S : = S U E X o  
while ASK(N, el = 0 for sorne -+ e C I or 

ASK(H, e)  = l for some - e f E do 

begin 

if ASK(N, e )  = 0 for some + e C E: then 
Add [hu', H ,  11 to & (Dovetail upward refinement) 

if ASKIN, e )  = 1 for some - e C E then 

Add [W, 13, I] to $ (Dovetail downward refinement) 



H : = NEXT(]  

end 

output H 
end 

end 

where NEXT() is: 

repeat 

Remove the head elernent of &, and let i t  be [w, P, n] 

Add [w, B, n + 1 ] to $ (to continue the dovetailing) 

if w ='u9 then 

NEXT : = r(P, n) 

else 
ATEXT : = p(P, n) 

until NEXT has a value. 

We can easily show that the inference procedure above correctiy infers the 

target program. 

Theorem 3, Procedure 2 identifies do in the limit. 

Dovetailing in Procedure 2 seems to make the inference process ineficient. To 

sinlplify the procedure we need some restrictions on refinements. As we have 

seen in Section 2, when the refinement is locally finite the dovetailing mechanism 

can be replaced by a simple queuing one. Using one of the upward and downward 

refinenlents, we need the connpleteness of the refinennenf; to gualantee the 

proceduer correctly infers. On the contrast, using bidirectional refinements at  a 

time, we need not the completeness of the both refinements, From our 

observation the following theorem is obvious. 

Theorem 4, Procedure 2 identifies do in the limit if the downward refinement p 

is complete and the upward refinement 7 is reachable to the top elenlent (U ). 

Our downward refinement p is locally finite since E contains a t  most finitely 

many function syrmbols and predicate sydols .  On the other hand, our upward 

refinement is not locally finite under the assumption, Because the number of 

ground clauses to be added by 7.1 is infinite and the nunlber of atoms we can select 

in ~2 is also infinite. Since we apply upward reEnement to a progrm P only 

when P can not explain some positive example, the ground clause to be added 

might be one of such examples. Even if we always select a most. general atom in 



anti-resolution, the atom can be refined to any atom by downward refinement. 

Thus we have a modified upward refinement. 

Definition 3,4 Let p = { ci I i = 1, ... , n ) be a logic program, and S be the set of 

exmples given by EX so far. Then f ( p )  is the set of logic programs obtained by 

one of the following operations. 

1) Add a ground atom. e such that -!- e C S and ASK@, e)  = 0 top . 
2) Let ci = A t A 1 ,  A2, ... , A,,, Select a most general atom B arbitrarily, and 

replace ci by two clauses 

A+Al,R2, ... ,A,,, B and 

B+-A1, A2, ... An. (anti-resolution) 
3) Replace some occurrences of a variable in by a new variable, 

(anti-unification) 

4) Replace some occurrences sf a most general term t in ci sueh that no variable 

in t occurs other than in t by a new variable. (anti-substitution) 

5) If a clause ci has a body then renlove an atom from the body, otherwise 

remove the head (the result of renloving head is the empty clause ) . 

Theorem 5. 7 is a locally finite (but not completed upward refinement. 7 is 
reachable to (E l  ). 

NOW we have a simplified model inference procedure corresponding to 

Procedure 1 in sectioll 2, 

Procedure 3. (Model Inkrenee Using Locally Finite Bidirectional Refinenlents) 

Input: A logic program po C I. 

An oracle ASK. 
An oracle EX giving a sufEcient presentation of the target do. 

Output: A sequence of logic psogrms H I ,  H2, ... , sueh that Hi is correct for the 

Erst i exmples given by EX. 
Method: begin 

& : = emptyqueue 

S : = emptyset 

N:= po 
do forever 
begin 

S : =  S U E X O  

while ASK(H, e )  = O for some + e C E or 
ASK(W, e) = 1 for some -e < E do 



begin 
if A%K(H, e )  = 0 for some + e < E then 

Add ?(%I) to the tail of $ 
if ASK(H, e )  = 1 for some - e C E then 

Add p(Ma to the tail of $ 
Remove the l~ead elemenbof &, and let i t  be H 

end 
Output 13- 

end. 

4 Concfuding Remarks 

We have discussed the method of model inference using bidirectional 

refinements. By the method we can identify a target program from an initial 

progrm analogous to the target, However, we have not yet an essential problem 

on what criteria we should select an analogous program to the target. Although 

we improve the efficiency by restricting refinements to be locally finete, further 

studies should be needed to apply our method to prac.tical problems. 
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