
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Model Inference Using Bidirectional Refinements

Kawasaki, Youji
Department of Information Systems, Interdisciplinary Graduate School, of Engineering Science,
Kyushu University

Shinohara, Takeshi
Department of Artificial Intelligence Kyushu Institute of Technology

Arikawa, Setsuo
Research Institute of Fundamental Information Science Kyushu University

https://doi.org/10.5109/3116

出版情報：Bulletin of informatics and cybernetics. 24 (1/2), pp.1-13, 1988-12-29. Research
Association of Statistical Sciences
バージョン：
権利関係：

S Technical Report

Model lnfereiice Using Bidirectional Refinements

Youji Kawasaki
Takeshi Shinohara

Setsuss Arikawa

December 29, 1988

Research Institute of Fundamental Information Science

Kyushu University 33

Fwkuoka 81 2, Japan
E-rnai!: shino@iizuka.kylitech.junet Phone: 0948(28)5551

Model Inference Using Bidirectioa~al Refinements

Depart~nent of Information Systems,

Interdisciplinary Graduate School, of En@;ineering Science,

Kyushu University 39, Fukrnoka 812, Japan

Takeshi SHINOHAEA

Department of Artificial Intelligence,

Kyushu Institute of Technologj~, fizuka 820, Japan

and

Research Instit~zte of Fundamental Indbrmation Science,

Kyushu University 33, Fukuoka 812, Japan

Abstract
Model inference is an inductive inference of theories from their

models. In this paper, we propose a method of model, inference for logic

programs using both refinements in direc.tion from general to specific

and the opposite. By our method we can identify the target program

from a program allalogous to the target,

31 Introduction

Inductive inference problem is formalized as a process to identify an unknown
rule from the examples of the facts implied by the rule. Gold[2] discussed

inductive inference of languages and gave the criteria of successful inference

widely known as the notion of "identification in the limit." Blum and B3um[l]

showed that any inferable class of recursive functions is characterized by a

complexity measure. Model inference is an inductive inference introduced by

Shapiro[8,9], in which theories are inferred from the facts, that is, their models.

t Presently a t NEC Corporation.
Mailing address: T. Sbinottara

Department ofArtLficial Intelligence, Kyushu Institute of Technology, Iiztlka 820, Japan

E-mail: shino@iizuka.kyutech.jiu~et

The most naive, and essential in a sense, method of inductive inference is so

called "enumerafiue method" or ""ienfification by enumeration." The method
enumerates all possible hypothesis and outputs the first one that can explain all.

examples given so far. Clearly the enumerative method does not work efficiently.

Shapiro[8, 93 discussed inductive inference of first order theories from their

models and implemented the model inference system MIS. A feature of the

method adopted in hKIS is that it modifies the current hypothesis to obtain the

next correct hypo.thesis. The notion of ""refinemenf9? is originally introduced by

him, and i t is used to modify hypothesis. By using refinement we can avoid to

enumerate some of incorrect hypotheses. The initial hypothesis of M[41S is (E l]
representing a contradiction, and it is refined in direction from general to specific.

LairdES, 63 discussed refinements in more abstract way. I-fe considered

refinements in direction from general. to specific but also in the reverse direction.

We call the former downward refinements and the latter upward. Ishizaka[4]

pointed out that LWS lacks naturalness in the initial hypothesis and the direction

of refinement and presented more efficient and natural. method of model inference

which utilizes the notion of least generalization by Plotkin,

No matter which direction of downward and upward is used, it is somewhat

unnatural to adopt a refine~nent in one direction. In this paper we propose an

inductive inference method using reEnements in both directions and apply i t to

logic programs, The theory of anlalogy formalized by HaraguchiISI suggests us to

find a similar program to the target and adopt it as the initial hypothesis. When

we have a progrm analogous to the target and b y to modify id , we do not know

which direction of refinement should be applied. Further, in some cases, we can

not reach any correct program by refining the initial program in one direction,

The method we propose can be applied to model inference problems in such a

situation.

2 Preliminaries

In this section, we present some basic definitions on inductive inference and logic

programs.

First we briefly review logic programs and related nokions according to Lloyd [7].

We assume basic terminologies on Erst order predicate logics. Throughout in this

paper we assume that a first order language L has finitely many predicate

sylnbols and function (including eonstant) symbols.

A program clause is a definite clause in L of the form

A+Bp, B2, ... , B , (n2 O) ,

where A, B l , 232, ... , I?, are atomic formulas. We will use the word "atom" to

abbreviate "atomic formula." The atom A of the program clause above is called

the head, The sequence B1, Bz, ... , B,, of atoms is called the bod~r. If a program

clause has no body, that is, if n = 0 , then it is called a unit clause. A logic program

or simply program is a finite set of program clauses. A goal clause is a clause of

the form

We call a goal clause with n = O a empty clause, and denote i t by O . A Horn clause

is a program clause or a goal clause.

In this paper we deal with pure-Prolog as a logic progra ing language. We

adopt the notation of DEG-10 Prolog. That is, variable symbols are denoted by

capitalized names like X, Y, and predicate, function and constant syrnbols are

denoted names starting with lower case letters like p, f, a. A term [I denotes a

empw list, a term [XI, x2, ... x, 1 y] denotes a list such that the first n elements are

xa, ... xn and the remaining list is y, We take the set (El) as a special progrm.
The Hestarand base of E is the set of all ground atoms in L and it is denoted by

BL. A subset of Br, is called an Igerbrand interpretation. An Herbrand model of a
program P is an Herbrand interpretation that is a model of P. As is well-known,

any program P has a unique least Herbrand model that is equal to the set of

ground atoms implied by P,

2.2 Inductive Inference Problems and Refinements

Shapiro's model inference is defined as an inductive Inference of first order

theories[8,9], Lairdi5, ti] discussed inductive inference problems more generally,

and showed the useklness of refinements. In this section we define inductive

inference problems and related notions according to Laird,

Definition 2,1 An inductive infire~zceproblem is a 6-tuple (D, do, E, h , ASK, EX) ,

where

- D is a finite or countable set of objects partially ordered by 2,
do is an element in D,

- E is a countable set of expressions,

h: E: -. D is a mapping from E onto D,

ASK is an oracle which answers 1 if Iz(el)2 h(ea), 0 otherwise for any pair (el,

e2)EEXE, and

EX is an oracle which returns a signed expression +e or -e, if doZ h(e) or

not, respectively,

D is called a semantic dornain of objeck, do is called a target. When h(e) = d , e is

called an expression of d and d is called a semantics of e, We denote the answers of

ASK and EX by ASR(e l , ez) and EX() , respectively. We call + e a positive

example, - e a negatiue example.

DefiraiUon 2.2 The oracle EX gives a sufficient presentation sf do if the set { e C I
I h (e) Z x for all positive example +x given by EX and iz(e)&x for any l~egative

example -x) = (e f h: h(e) = do).

An inductive inference machine is an effective procedure that receives inputs

from time to time and produces outputs from time to time. An inductive inference

machine M identifies do in the l imi t if the sequence of outputs produced by M

converges to e such that h(e)=do whenever any sufficient presentation of do is

given by EX. An inductive inference machine 34 identifies the set @ in the l imit if

M identifies any do C D in the limit. The notion of ""ientiGeation in the limit" is

i~~troduced by Gold[2], and it is widely accepted as a reasonable criterion of

successful inductive inference.

If the set E is recursively enumerable and the oracle EX gives a sufficient

presentation, we can easily solve the inductive inference problem by using a

simple method called enumerative method or generate and test. Hereafter we

assume the oracle EX gives a sufficient presentation. Such a simple method,

Izowesrer, does not work efficiently. If we have a binary relation on E: that is

reflected by h to the semantic relation 2, we can solve the problem more

efficiently using it.

Definition 2 3 Let 2 t. be an ordering of I, 2 be a partial ordering of D, and h: I
-. D be a mapping from E onto D. Then h is said to be an order homomorphism if

h(el) 2 h(e2) whenever el 2, e2.

Let the mapping h be an order homomorphis~n, and let e be the current
hypothesis in an inference process. If we know k (e) 2 h(x) for some negative

example -x, then we can neglect all expressions e9 such that e' 2, e. Because

h(e ')Z h (e) Z h (x) and Me') = dg contradict do&h(x). Further, if we know h . (e) xh (x)

for some positive exmple +x, then we need not examine any expression e' such

that e 2, e'. Hereafter we assume the mapping h is an order homomorphism with

respect to 2.

Defini-tion 2.4 A downward refinement is a finitely axion~atizable binary

relation p on I such that el p e2 implies h(el)2 h(e2). An upward refinement is a

finitely axiomatizable binary relation 7 on E such that el 7 e2 implies h(e2)Z h(el).

We denote the set (e' 1 e p e') by p(e) and (e9 I e' 7 e) by y(e). Similarly we denote the

set (e' f e p* e') by p*(e) and { e' I e9 r* e) by r*(e), where p" and r* are the reflexive

transitive closures of p and 7, respectively.

Definition 2.5 A downward rehrinement p is called cotnplete for e 6 E if h(p*(e)) =
(d I h(ef 2 d), An upward refinenlent r is called complete f ir eC I if h(r*(e)) = (d I
d l ,$(el). A refinement is called simply comnpkete if i t is complete for any

expression eC E,

Laird showed that an inductive inference problem can be solved whenever E is

recursively enumerable, the oracle EX gives sufficient examples, and a complete

refinement is available. As he pointed out, however, his method for general case

does not seem to be natural, since it obtains expressions by not only refining but

also enumerating. Me also showed that some conditions on refinement are useful

to make the inference rmethod more eficient.

When E has a top element eg such that h(eg)l h(e) for all e f E, any semantic

object d C D can be obtained by repeatedly refining eg downward using a complete

refinement p, and therefore we need not enumerates all expressions. Further, if

the refinement p is locally finite, that is, if p(e) is finite for any e f I, a simple

queuing mechanism suffices us to obtain all refined expressions. The following

procedure is given by Laird, Note that the existence of the top element eg in E and

a locally finite complete downward refinement p is used to simplify the inference

procedure. In the dual case, that is, in case of upward refinement, the similar

method is applicable. More detailed discussions are found in the literatures[fj, 61.

Procedure 1. (Inference by Downward Refinement with a Top Expression)

Input: A recursively enumerable set E of expressions,

A locally finite complete downward refinement p.

A top element eg f I.
An oracle ASK.

An oracle EX giving a sufficient presentation of do.

Output: A sequence of expressions H I , Hz, ... , such that Hi is correct for the first i

exarnples given by EX.

Method: begin

& +- ermptyqueue

S + ernptyset (holding the set of examples)

N t eo (Start with the top element)

do forever
begin

S +S U E X 0
while ASK(N, e) = 1 for some - e f S or

ASK(H, e) = 0 for some + e 5. 5 (13 is incorrect) do

begin
if ASX(H, e) = 1 for some - e C S and

ASK(H, e) = l. for all +- e f S then
Add p(m to the tai% of & (queuing refined expressions offl)

Remove the head element of $, and let it be El'

end
Output H

end
end.

3 Model Inference Using Bidirectional Refinements

Mere we introduce a method of model inference for logic programs using

bidirectional refinements. First we sketch the method in the context that

bidirectional refinements should naturally be needed.

3,1 Model Inference Based on Analogy

We start this section with overviewing Shapiro's model inference method MIS

[S, 91, The initial hypothesis adopted by MIS is a top element (a) which
represents a contradiction, mS refines the current hypothesis downrvard, that is,

enumerates logic programs in direction from general to specific. This feature

might be somewhat strange in some ease where we are inductively learning in a

common sense, as Pshizaka[$j also pointed out. Xshizaka proposed an inference

method which utilizes the notion of least generalization by Plotkin. As we have

seen in the previous section, LairdC5, 61 focused on refinement and introduced
some interesting refinements. Although he discussed not only downward

refinement but also upward refinement, any inference procedure presented by
him uses a refinement in one direction.

No matter which direction of refinements we use, i t is not natural to start an

inference with a program (13) or () as the initial hypothesis . In fact, to solve a

problem using programs we will first "cy to find the target program in the library,

and if we fail to find the exact program, then try to find a program analogous to

the target and modify i t . When we start with a program pg analogous to the

target, we do not know in which direction, downward or upward, refinement

should be applied to pg, and in some cases we can not reach any correct prograrn

by refining po in one direction. The method we will introduce here uses

refinements of both directions at a time to deal with such a initial hypothesis. We

can observe the difference between refiliemelzts in one direction and those in both

directions from the following two exmpfes of inferring a prog3ram to append two

lists.

Example 3.1 (Refinement in Dow~nward Direction)

Let take a prograrn (0 3 as the initial. hypothesis, and refine i t downward. The
following is a possible sequence of progrms from (El) Lo the target. To avoid

mbiguity we punctuate clauses in the set notation by semicolon.

(0

(append(X, Y, Z))

(append(X, Y , Z) ; append(EAIXi, Y, CnjZI))

(append(E1, Y , Z); append(EAIN, Y, [AIZl)]

(append(El, Y , Y); append(EA]Xl, Y, [AIZIl)
(append(E1, Y , Y) ; append(EAjN, Y, [AlZl)+append(X, Y , Z))

Example 3.2 (Refinement in Downward and Upward Directions)

Consider the following program to catenate terms as a program analogous to

the target.

(cat([], A, [All; cat([UIXl, Y, TUIZl)t-cat(X, Y, Z))
Let take the program obtained by replacing a predicate symbol 'kcat" by "append"

as the initial hypothesis. Then refine i t upward and then downward.

jappend(E1, A, [All; append([U$W, Y, TUiZl)+append(X, f7,Z))

(append(tl, A, B); append(LUfX1, Y, EU\Zl)+append(x, Y , Zl)

(append(E1, A, A); append([U f N , Y, [U]Zl)+append(X, Y, Z))
Thus rve can reach the target program by using reEnements of both directions.

3.2 Refinennents for Logic Programs

In the framework by Laird we should define a domain D of semantic objects, the

set E of expressions, and an order homomorphism h: E--6). Let E be a set of logic

p r o e m s , and D be the set of Nerbrand interpretations. Let h be a mapping such

that h(e) is the set of ground atoms satisfied by a logic progrm e , that is, the

minimal Herbrand model of e. We assume that the ordering of D is the ordinal set

inclusion. Note that G has a maximum element {a), whose semantics is the set of

all ground atoms, that is, the Herbrand base.

Definition 3.1 A most general term is a constant or a tern1 of the form Axl, x2, ... I

x,) and a most general atom is an atomic formula of the form p(x1, x2, ... , x,),

where f is an n-place function symbol, p is an n-place predicate symbol and xl,

x2, ... , xn are mutually diMkrent variable symbols.

Now we define a downward refinement and an upward refinement for logic

programs, whicfi are essentially the restrictions of Laird's refinements for more

general class of logic programs. I t should be noted that our class of logic programs

is closed under the refinements defined below.

Definition 3.2 Let P = (ei I i = I, ... , n 3 be a logic progrm, Then p(P) is the set of

logic programs obtained by one of the following operations. For each operation i),

pi(P) denotes the set of logic programs obtained by the operation i).
1) Delete a clause ci .
23 Add the resolvent of ci and cj (i and j are possibly the same) to P.

3) Unify two variables in e;, and add the result to P.

4) Substitute a most general term for a variable in ci , and add the result to P.
5) If a clause ci has a head then append a most general atom to the body,

otherwise append it as the head.

Example 3.1 Let P = b(X, Y)c-q(W; qifiZ))+r(Z)). Then p(P), we have just

defined, contains the folloviing prograrzls.

1) brx , y)+q (rn~
2) b(X, Y)t-q(m; q(fbZS)+r(Z); p(flA), B)t-r(A))
3) (p (X , Y)+q(X); q(fiZ))+r(Z); p(A, A)+qiA3)

4) (p(X, Y I s g Q X) ; q(flZ))+riZ); q(Ag(A, Bl)t-p.{g(A, B3))

5) (plX, Y)+q(X); q(flZ))+r(Z); q(AA))c-r(A), p(B, el)

Theorem 1, p is a complete downward refix~ement for the set E of logic programs.

Proof. It is clear that p is a downward refinement, that is, Pz < p(P1) implies

h(P1) > h(P2).
We can easily prove the completeness of refinement p in a similar way to

Laird's downward refinement for clause-form sentences., So, here we only give a

brief sketch how a logic program equivalent to P2 car1 be obtained by refining a

logic progrm P i , when assuming h(P1) > fe(Ps).

If Pl is inconsistent, then we can get empty clause by using p2 repeatedly.

Since p*({U)) contains any program, we have Pz f p*(P1). Therefore we assume

the consistency of Pl without loss of generality, L e e 1 be a consistent program,

P2 = (ci 1 i = l , ... , n), and h(P1) 2 h(P2), Then clearly h(P1) 3 h((ci)) for any

i = l , ... , n, If we can show P I U (e l) < p*(P1), then we can also show PlCdPz C
p*(P1) inductively, by deleting all clauses in PI from PlUP2 we can find P2 in

p*(P1). Therefore i t is suficient for us to show PlhJ (el f p"(P1) for any clause c

such that h(P1) > h({c)) and c is not a tautology.

Let e = p(x)+ql(%), qz(23, ... , q,(2), where 2 denotes all variables in e, Then

Let 3 be Skolem constants corresponding to 32 and substitute 2 by B. The resulted

formula is

Since we assume h(P1) 2 h((c)), there exists a derivatio~z of the empty clause Cl

from PI and --e[SJi, that is, from PI U(+p(s); ql(S).t-; qz(s)+-; ... ; q , (~) +) , Consider

the resolution proof tree, as in Fig.1, whose nodes are labeled by clauses. If a

clause c3 is derived from c l and ez in a derivation, then corresponding nodes N1,

N z and N3 are labeled by e l , e2 and e3, respectively, and Na and WI2 are children of

N3. The label of every leaf is a clause in F f u(+~(s); q1(3+-; q2(s)+; ... ; q,(s)c-).

The root is labeled by the empty clause i? . We call such a label of node N an r-

clause and denote it by r(N).

Based on the resolution proof tree, we construct a refinement path from PI to

PICd(c), First we label each node by an additional clause called x-clause. The x-

clause of node N, denoted by x(N) , is defined inductively from leaves to the root.

a)If N is a leaf, then x(N)[SI = r(1""VV).

b)If exactly one child node N1 of N is a leaf such that r(N1) f --e[Sj, then

x(N)[s] =B[x(rVz)], where PVz is another child of N and 8 Is the unifier used to

resolve r(N1) and r(N2).

c) If no child of N has any clause in -431 as its r-clause, then x(N)[s] is the

resolvent of x(Nl)[S] and x(Nz)[s] using the same aton1 and unification as in the

derivation of r(N) from r(N1) and r(M2).

d) If both of the children of N are labeled by r-clauses from --e[S], then r (N)

should be the empty clause , i t contradicts the assumption that c is consistent.
Therefore we can ignore this case.

In Fig2 x-clauses of the tree in Fig.1 are illustrated, where underlined clauses

are from -c and marked clauses by b) and c) are defined by the respective rule.

Fig. 1. A Resolution Proof Tree

We can easily observe that each x-clause is obtained by using p, the x-clause of

the soot node is a subclause of c, and therefore the program PIU(c) is constructed

by the refinement, For example, for the logic prograrn PI = (el: p(fTX))t-q(dY); c2:

q(fTY))+; c3: s(fiZ))+p(Z), q(fTZ1)) and the prograna clause c = r(fTflU))>t-q(U),

s(U, V) in Fig.1 and Fig.2, the refinement p3 can add

then p2 may add the resolvent of x l and cl

3~2 = r(fifTET)))+q(U), q(flAU))),

and the resolvent of x2 and c2

x3 = r(flAU))l+q(Ud,

p5 can add a clause

x4 = r (f l f l tl)))+q(U), s(U, V) = c,

Fig. 2, X-clauses of a Resolution Proof Tree

which is the result of appending a x~ost general atom s(U, Vb to the body of xs.

Thus we can get a program (el, cz, c3, xl, xg, xg, xq=c) in p*(Pa). Since we can

delete any clause by pl , finally we have the logic progrm {el, ezl eg, e).

Definition 3.3 Let P = f ci 1 i = I, ... , n) be a logic program. Then r(P) is the set of

logic programs obtained by one of the following operations.

I) Add a ground clause to P .
2) Let ci = A +Al, As, ... , A,. Select an atom B arbitrarily, and replace ci by

two clauses

A+Al,Az, ... ,A,,B and
Bc-A1,Az, .,. ,An. (anti-resolution)

3) Replace some occurrences of a variable in ei by a new variable.

(anti-unification)

4) Replace some occurrences of a most general term t in ei such that no variable
in t occurs oGher than in t by a new variable. (anti-substitution)

5) If a clause ei has a body then remove an atom from the body, otherwise

remove the head (the result of removing head is the empty clause) .

Example 3.2 Let P = (p (X , Y)+q(X); q(f[Z))cr(flZ))). Then r(P) contains the

following programs.

1) @(X, Y)+q(X); q(ll[Z))+r(fiZl); ~(a)*r(ll[a>),p(flAb))))

2) (p(X, Y)+q(X); q(AZ))+r(AZ)), r(fla)); r(jTa))+s(fiZ)))

3) (p(X, Y)+q(U); q(fTZ))+r(fiZ))) (Note that the first occurrence of X is not

replaced.)

4) (p(X, Y)+q(m; qgAZ))+r(u3)
5) e;lix, r>+; q(flz>>+r(AZS))

We can easily show the completeness of y also in a similar way to Laird.

Theorem 2. y is a complete upward refinement for the set E of logic programs.

3.3 Inkrenee Procedures

Now we present our inference procedure using two refinements p and 7 . In the

procedure, we use a dovetailing tecl~nique to refine progrms where p(P, n) and

r(P, n) denote the programs obtained right; aRer the n-%b computation step of p(P)

and r (P) , respectively for a progrm P and an positive integer n. Note that p(P, n)

and y(P, n) may not be any progrm for a particular n.

Procedure 2. (Model Inference Using Bidirectional Refinements)

Input: A logic program PO C sE.
An oracle ASK.

An oracle EIX giving a suficient presentation of the target do.

Output: A sequence of logic programs 191, Hz, ... , such that Hi is correct for the

first i exmples given by EX.
Method: begin

$: = emptyqueue

15 : = emptyset

H : = pe,

do forever

begin

S : = S U E X o
while ASK(N, el = 0 for sorne -+ e C I or

ASK(H, e) = l for some - e f E do

begin

if ASK(N, e) = 0 for some + e C E: then
Add [hu', H , 11 to & (Dovetail upward refinement)

if ASKIN, e) = 1 for some - e C E then

Add [W, 13, I] to $ (Dovetail downward refinement)

H : = NEXT(]

end

output H
end

end

where NEXT() is:

repeat

Remove the head elernent of &, and let i t be [w, P, n]

Add [w, B, n + 1] to $ (to continue the dovetailing)

if w ='u9 then

NEXT : = r(P, n)

else
ATEXT : = p(P, n)

until NEXT has a value.

We can easily show that the inference procedure above correctiy infers the

target program.

Theorem 3, Procedure 2 identifies do in the limit.

Dovetailing in Procedure 2 seems to make the inference process ineficient. To

sinlplify the procedure we need some restrictions on refinements. As we have

seen in Section 2, when the refinement is locally finite the dovetailing mechanism

can be replaced by a simple queuing one. Using one of the upward and downward

refinenlents, we need the connpleteness of the refinennenf; to gualantee the

proceduer correctly infers. On the contrast, using bidirectional refinements at a

time, we need not the completeness of the both refinements, From our

observation the following theorem is obvious.

Theorem 4, Procedure 2 identifies do in the limit if the downward refinement p

is complete and the upward refinement 7 is reachable to the top elenlent (U).

Our downward refinement p is locally finite since E contains a t most finitely

many function syrmbols and predicate sydols . On the other hand, our upward

refinement is not locally finite under the assumption, Because the number of

ground clauses to be added by 7.1 is infinite and the nunlber of atoms we can select

in ~2 is also infinite. Since we apply upward reEnement to a progrm P only

when P can not explain some positive example, the ground clause to be added

might be one of such examples. Even if we always select a most. general atom in

anti-resolution, the atom can be refined to any atom by downward refinement.

Thus we have a modified upward refinement.

Definition 3,4 Let p = { ci I i = 1, ... , n) be a logic program, and S be the set of

exmples given by EX so far. Then f (p) is the set of logic programs obtained by

one of the following operations.

1) Add a ground atom. e such that -!- e C S and ASK@, e) = 0 top .
2) Let ci = A t A 1 , A2, ... , A,,, Select a most general atom B arbitrarily, and

replace ci by two clauses

A+Al,R2, ... ,A,,, B and

B+-A1, A2, ... An. (anti-resolution)
3) Replace some occurrences of a variable in by a new variable,

(anti-unification)

4) Replace some occurrences sf a most general term t in ci sueh that no variable

in t occurs other than in t by a new variable. (anti-substitution)

5) If a clause ci has a body then renlove an atom from the body, otherwise

remove the head (the result of renloving head is the empty clause) .

Theorem 5. 7 is a locally finite (but not completed upward refinement. 7 is
reachable to (E l).

NOW we have a simplified model inference procedure corresponding to

Procedure 1 in sectioll 2,

Procedure 3. (Model Inkrenee Using Locally Finite Bidirectional Refinenlents)

Input: A logic program po C I.

An oracle ASK.
An oracle EX giving a sufEcient presentation of the target do.

Output: A sequence of logic psogrms H I , H2, ... , sueh that Hi is correct for the

Erst i exmples given by EX.
Method: begin

& : = emptyqueue

S : = emptyset

N:= po
do forever
begin

S : = S U E X O

while ASK(H, e) = O for some + e C E or
ASK(W, e) = 1 for some -e < E do

begin
if A%K(H, e) = 0 for some + e < E then

Add ?(%I) to the tail of $
if ASK(H, e) = 1 for some - e C E then

Add p(Ma to the tail of $
Remove the l~ead elemenbof &, and let i t be H

end
Output 13-

end.

4 Concfuding Remarks

We have discussed the method of model inference using bidirectional

refinements. By the method we can identify a target program from an initial

progrm analogous to the target, However, we have not yet an essential problem

on what criteria we should select an analogous program to the target. Although

we improve the efficiency by restricting refinements to be locally finete, further

studies should be needed to apply our method to prac.tical problems.

References
[I] Blum, L., Blum, M.: Toward a Mathematical Theory of Inductive Inference,

Inf, & Contr. vo1.28,125 - 155,1975.

[Z] Gold, E.M.: Language Identification in the Limit, Inf. & Contr. vol.10, 447 -

474,1967.

[3] IIaraguchi, M.: Towards a Mathematical Theory of Analogy, Bull. Inf. &

Cybern., vo1,21,29 - 56,1985,

143 Ishizaka, H,: Model Inkrenee Incorporating Generalization, Proc. Symp.
Software Sci. Engineering, Kyoto, 1986.

[53 Laird, P,D.: Inductive Inference by Refinement, YALEU / D 6 5 / TR - 376,
1986.

[6] Laird, P.D.: Learning From Good Data and Bad, YALEU / DCS / TR - 551,

1987.

[7j Lloyd, J,W.: Foundations of Logic Programming, Springer - Verlag, 1984.

181 Shapiro, E,Y,: Irlductive Inference of Theories From Facts, YALEU / DCS /
TR -192,1981.

[9] Shapiro, E.Y.: Algorithmic Program Debugging, 1M4T Press, 1982.

