SN KREZZ2MTIER Y R b

Kyushu University Institutional Repository

The Lexicographically First Topologicai Order
Problem is NLOG-Complete

Shoudai, Takayoshi

Department of Mathematics, Kyushu University

https://hdl. handle.net/2324/3114

HhRIE#R : RIFIS Technical Report. 8, 1988-12-26. Research Institute of Fundamental Information
Science, Kyushu University
N—=2 3

HEFIBAMR

RIFIS-TR-CS-8

RIFIS Technical Report

The Lexicographically First Topological Order Problem
is NLOG-Complete

Takayoshi Shoudai

December 26, 1988
(Revised June 30, 1989)

Research Institute of Fundamental Information Science
Kyushu University 33

Fukuoka 812, Japan
E-mail: shoudai@rifis1.sci.kyushu-u.junet Phone: 092(641)1101 Ext.4484

THE LEXICOGRAPHICALLY FIRST
TOPOLOGICAL ORDER PROBLEM IS
NLOG-COMPLETE

Takayoshi SHOUDAI
Department of Mathematics, Kyushu University 33
Fukuoka 812, Japan

Abstract

We show that the lexicographically first topological order problem is NLOG-
complete. The algorithm presented here uses the result that NLOG is closed under
complementation.

Keywords: Computational complexity, topological sort, NLOG-complete

1. Introduction

The topological sorting problem is, given a directed acyclic graph G = (V, E), to find
a total ordering of its vertices such that if (v, w) is an edge then v is ordered before w.
It has important applications for analyzing programs and arranging the words in the
glossary [5]. Moreover, it is used in designing many efficient sequential algorithms, for
example, the maximum flow problem [12].

Some techniques for sorting a directed acyclic graph topologically have been devel-
oped. The algorithm by Knuth [5] runs in time O(|E|). This algorithm is essential to
the lexicographically first topological order. Tarjan [12] also devised an O(|E|) time
algorithm by employing the depth-first search method. Dekel, Nassimi and Sahni [3]
showed a parallel algorithm using the parallel matrix multiplication technique. Ruzzo
also devised a simple N L*-algorithm as is stated in [2]. Hence this problem is in NCZ2.
However, any completeness result does not seem to be known as to the exact complexity

of topological sorting algorithms.

In this paper, we will consider the lexicographically first topological order, abbrevi-
ated to the If topological order. Immerman [4] and Szelepcsényi [11] showed that N LOG
is closed under complementation. By using this result, we can give an N LOG-algorithm
deciding this topological order. It should be noted that the “lexicographically first” prop-
erty often makes some problems P-complete [1},[2],[6]-[10]. But the topological sorting
with this property remains in N LOG.

2. Main result

Let G = (V, E) be a directed acyclic graph, where |V| = n and |E| = m, and we assume
that a linear order is given to V. We use “<” io represent this order. The topological
order of G is the sequence vy, vy, -+, v, of vertices such that if ¢ < j then there is no
path from v; to v;. The If topological order of G is the lexicographically first sequence
with respect to < such that it is a topological order of G. We use u <;; v to represent
that « is ordered before v (u is located to the left of v} in the If topological order. We

consider the following problem in the same way as Reif [10].

L¥FTOP-ORDER
INsTANCE: A directed acyclic graph G = (V| F) with a linear order on V, and two
distinguished vertices s and t.

QUESTION: Is s <35 ¢ 7

We can define the lexicographically first topological sorting algorithm as a special
version of the one by Knuth [5]. The Knuth’s algorithm works by repeatedly deleting
a vertex of in-degree zero. It generates the I topological order if the smallest vertex of
in-degree zero is always deleted. Thus, we can say that LFTOP-ORDER is to determine
the order generated by the Knuth’s algorithm.

The main result in this paper is the following theorem.

Theorem 2.1. LFTOP-ORDER is log space complete for NLOG.

This theorem follows from the N LOG-hardness and N LOG-algorithm.

2.1. NLOG-hardness

For u,v € V, we denote u —* v (resp. u —7 v) if there is a path (resp. of length greater

than zero) from u to v.

Lemma 2.2. For any u,v € V, if u <j; v, then either (1) u =% v or (2) there exists a

vertex w such that u <;; w, w =" v and u < w.

Proof. Suppose u <j; v and u %1 v. Let w be the smallest vertex with respect to
<5 such that u <;; w, w =»* v. Then w # u and the order made by moving w just to
the left of u is also a topological order. Therefore u < w since <jf is the If topological

order.O

Lemma 2.3. LFTOP-ORDER is log space hard for NLOG.

Proof. We will give a reduction from the monotone graph accessibility problem (MGAP)
to LFTOP-ORDER. It is known that MGAP is N LOG-complete and this is described as
follows: Given a directed acyclic graph G and vertices s and £, then determine whether
t is reachable from s. For an instance (G, s,t) of MGAP, we assign a linear order to
the vertices so that s is the largest vertex with respect to this order. If s —»% ¢, s must
be ordered before ¢ in any topological order. Conversely, if s <;; ¢, Lemma 2.1 implies
s —7 t since s is the largest vertex. It is clear that this reduction is computable in log

space.O

2.2. NLOG-algorithm

The class N LOG contains the complement of MGAP (co-MGAP) since it is closed under
complementation [4,11]. We use the MGAP and its complement to see reachabilities
between vertices.

For u € V, R(u) denotes the set {v € V]|v —* u}. We assume that s A+ t, ¢t 5% s
and R(s) N R(t) # ¢ since in other cases the order between s and ¢ is easily determined

in NLOG. We consider a sequence ug, Uy, * -+, U, of vertices defined as follows:
u; = maxR(s)N R(t),
u; = max{v € R(s) N R(t)|ui-1 —»F v} (i > 2),

where max returns the largest vertex with respect to <. The vertex u, is defined to be

the first vertex such that {v € R(s) N R(t)|u, =1 v} = ¢.

Lemma 2.4. The procedure Lftop_Order solves LFTOP-ORDER.

procedure Lftop.Order{s,t)

begin
U:=V;
while true do
begin
v, := max{R(s) — R(#)}) N U,
v; := max(R(t) — R(s)) N U;
if R(s)NR(:)NU # ¢ then
begin
u:=max R(s) N R(t)NT,
U:={veViu-tu}
if u < v, or u < v; then break
end
else
break
end;
if v, < v; then accept else reject
end.

Proof. After the kth iteration of the while loop, the variable u is set to u. We use v, 4,
s to denote the values v, v, just after the kth iteration. After at most p+ 1 iterations,
the while loop breaks.

Fact 1. For any v € R{s) N R(%), if ug <5 v, then up =1 v (1< k < p).

The proof is by induction on k. In the case of & = 1, the proof is similar to the case
k > 2 excluding the induction step. Suppose & > 2. Unless uz —7% v, by Lemma 2.2
there exists w such that u; <;; w, w —»* v and u; < w. This implies ux_; <y w and
w € R(s) N R{#). Thus, by the induction hypothesis, ux—; —% w. This contradicts the
definition of uy.

Note that Fact 1 implies that if u, <;; v then v & R(s) N R(¢). The following fact

can also be shown in a similar way.

Fact 2. Suppose that the kth iteration of while loop does not break (1 < & < p).
For any v € (R(s) — R(t)) U (R(t) — R(s)), if up <i5 v, then ux —+ v.
Fact 3. Suppose that the kth iteration of while loop breaks (1 < k < p+1). If

Usk < Ugk, then

max{v € R(s) = ROl <is v} = o,
max{v € R(t) — R(s)|u, <i5 v} = vep.

We only give a proof for the case of 2 < k < p. Since the (k — 1)st iteration does
not break, v, = max{v € R(s) — R(t)|ur—1 <;z v} by Fact 2. Therefore, max{v €
R(s) — R(t)|up <1 v} X vsk. In a similar way, max{v € R(t) — R(s)|u, <15 v} R vp. If
Ve <if Up, there exists w such that v, <;y w, w =" u, and v, < w since vei A" u,.
Then, up—1 —7F v x implies up_1 <;y w. Since w € R(s) N R(t), by Fact 1, up—1 =% w.
This contradicts the definition of vy since ux < vy < w.

Suppose that the kth iteration of while loop breaks and v, < v;x at that time.
Then, by Fact 3, u, <iy vex. If vip <i5 s, there exists w such that v, <;y w, w —* s and
vir < w. Then w € R(s) — R(t) by u, <;y w. Thus, w < v,; by Fact 3. It contradicts
the assumption v, < v¢ . Therefore, s <;; vy ;. This implies s <;; . In a similar way,

if vg < Vs, then t <5 5.0

This implies the following lemma.
Lemma 2.5. LFTOP-ORDER is in NLOG.

Proof. It is not difficult to see that the procedure Lftop_Order can be simulated in

N LOG since the reachability between vertices is computed in N LOG by enumerating
all vertices and employing the MGAP and co-MGAP. O

3. Concluding Remarks

The following topological sorting algorithms are also known.
Tarjan [12]: We assume an adjacency list which is ordered lexicographically. The
depth-first search is executed to make a forest. Then we order the vertices in decreasing

order as they are popped up.

Dekel, Nassimi and Sahni [3]: We assume an adjacency matrix. By matrix mul-
tiplications, we can compute the length of the longest path from any vertex with no
predecessors to each vertex. Then vertices are sorted in nondecreasing order of their
lengths.

Ruzzo (Cook [2]): We compute the transitive closure of an adjacency matrix. This
gives the number of predecessors of each vertex by summing the columns. Then we sort
vertices by these numbers.

These algorithms generate distinct topological sorted orders and each of them is
different from the If topological order.

Generally the problem TOP-ORDER(A) is defined as follows: Given a directed
acyclic graph G = (V, E) and two distinguished vertices s and ¢, determine whether s
is ordered before ¢ in the order generated by a given topological sorting algorithm A.
We can show that the problems for the above three algorithms are all N LOG-complete.
The proofs are similar to that of N LOG-completeness of LFTOP-ORDER. But it is not
known whether all possible TOP-ORDER(A) problems are at least NLOG-hard. It is

an interesting open question to determine the inherent complexity of topological sorting.

References

[1] R. Anderson and E.-W. Mayr, Parallelism and the maximal path problem, Inform.
Process. Lett. 24 (1987) 121-126.

[2] S.A. Cook, A taxonomy of problems with fast parallel algorithms, Inform. Contr.
64 (1985) 2-22.

[3] E. Dekel, D. Nassimi and S. Sahni, Parallel matrix and graph algorithms, STAM J.
Comput. 10 (4) (1981) 657-675.

[4] N. Immerman, Nondeterministic space is closed under complementation, SIAM J.

Comput. 17 (5) (1988) 935-938.

[5] D. Knuth, “The Art of Computer Programming,” Vol.1, Addison-Wesley, Reading,
Mass. (1968).

[6] M. Luby, A simple parallel algorithm for the maximal independent set problem,
Proc. 17th ACM Symp. Theory of Comput. (1985) 1-10.

[7] S. Miyano, The lexicographically first maximal subgraph problems: P-completeness
and NC algorithms, Proc. 13th ICALP (Lecture Notes in Computer Science 267)
(1987) 425-434.

[8] S. Miyano. A parallelizable lexicographically first maximal edge-induced subgraph
problem, Inform. Process. Lett. 27 (1988) 75-78.

9] S. Miyano. AZ-complete lexicographically first maximal subgraph problems; Proc.
2 8 8
18th MFCS (Lecture Notes in Computer Science 317) (1988) 454-462.

[10] J.H. Reif, Depth-first search is inherently sequential, Inform. Process. Lett. 20
(1985) 229-234.

[11] R. Szelepcsényi, The method of forcing for nondeterministic automata, Bulletin of

the EATCS 33 (1987) 96-100.

[12] R.E. Tarjan, “Data Structures and Network Algorithms,” CBMS-NSF Regional
Conference Series in Applied Mathematics 44, STAM, Philadelphia, Pennsylvania
(1983).

