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A REASONING SYSTEM USING INDUCTIVE 

 INFERENCE OF ANALOGICAL UNION

         By 

Tetsuhiro MIYAHARA*

                     Abstract 

   Analogical reasoning derives a new fact based on the analogous 
facts previously known. Inductive inference is a process of gaining 
a general rule from examples. We propose a new reasoning system 
using inductive inference and analogical reasoning, which is applicable 
to intellectual information processing and we characterize its power. 
Given an enumeration of paired examples, this system inductively infers 
a program representing the paring and constructs an analogical union. It 
reasons by analogy new facts in the limit, i. e., reasons them correctly 
from some time on, by using a deducibility of them from the analog
ical union.

1. Introduction 

   Analogical reasoning is one which derives a new fact based on the analogous facts 

previously known. Of many researches on analogical reasoning, Haraguchi and Arika
wa's theory [1, 2, 3] is effective. According to this theory, analogical reasoning finds 

an analogy or a similarity between some objects and predicts a new fact by transferring 

facts and knowledges in one object to another object. The reasoning system ARTS 
based on this theory reasons by analogy, not using an analogy given a priori but cal

culating an analogy when given an unknown fact which may be true. In order to 

reduce the computational complexity, the analogy the current ARTS system admits is 

confined. Given the descriptions of two worlds and an unknown fact, it determines 

whether the fact holds or not based on an analogy and answers it. 

   Although an automatic analogical reasoning described above is very useful, whether 

one identifies or not an object in one world with an object in another world heavily 
depends on time, place and his subjectivity. Thus the system which infers an analogy, 

given examples of pairs of similar and unsimilar objects by a user, and reasons based 
on the analogy is also useful. Since the system reasons given neither an analogy a 

priori nor no analogy, it is realistic. It infers an analogy by using inductive inference 
which can gain a general rule from examples. 

   In order to make the framework of the system mentioned above, in Section 2 we 

define Uparing by extending the notion of paring [2] and show that the relation be

tween analogical reasoning and deduction also holds under the extension. In Section 3, 
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we propose a new reasoning system which receives examples of corresponding terms 

and inductively infers the program representing Uparing and, using the above relation , 

correctly reasons in the limit, i. e., correctly reasons from some time on.

2. Analogical Reasoning using Uparing 

    First we give the notion of logic programs [4] . Let a, bi (0i n) be an atom. A 
rule or a definite clause is a formula of the form 

a—b1,...,bn• 

A logic program (program, for short) is a finite set of rules. Let S be a program. 
U(S), B(S) and M(S) denote the Herbrand universe of S, the Herbrand base of S and 
the least Herbrand model for S, respectively . 

   Second we summarize the points of the Haraguchi and Arikawa's theory . Let Si 
and S2 be programs. A paring ¢ is a finite subset of U(S1) X U(S2). The relation 0+ 
of terms is defined to be the smallest one satisfying the following conditions : 

   (1) ¢ c ¢+, 
   (2) For any function symbol f appearing in both S1 and S2, 

<ti, ti> E ¢+ (1 i n) <f (t1, ... ,t,), J (tl, ... , tn)> E 0+ 

Terms t and t' such that <t, t'> E ¢+ are conceived to be corresponding ones. Haraguchi 
and Arikawa [2] show that the Proposition 1 and Theorem 1 hold when we substitute 

¢+ defined above for the Uparing ¢ in Definitions from 2 to 5. Furthermore they [1] 
have implemented a reasoning system ARTS which detects a paring ¢ such that ¢+ is 
a one to one relation, and simultaneously reasons a new fact by analogy based on ¢. 

   Here we consider a new reasoning system stated in Section 1. Given an enumera
tion of the corresponding elements in ¢ c U(S1) X U(S2), it inductively infers the expres
sion of ¢, i. e., the program for the predicate representing the correspondence. In order 
to make the framework of this system, we extend the definitions appearing in [2] by 
substituting Uparing for ¢+. 

   DEFINITION 1. A Uparing is a subset of U(S1) X U(S2). 
   DEFINITION 2. Let t; E U(S1) and t; E U(S2) for j (1_< j <_ n). Let ¢ be a Uparing, 

a E M(S1) and a' E M(S2). Then a and a' is identified by ¢, denoted by a¢a', if for 
some predicate symbol p 

a=p(t1, .•• , tn), a'=p(ti, ... ,t,,) and <t;, t;>E¢ (1< j<n). 

   DEFINITION 3. Let ¢ be a Uparing and IigB(Si). Let R=a<–b1, ••• ,b, and R'= 
• • • , bn be rules containing no variables. Then R' is a (¢, Ii, I2)analogue of R if 

b;~I1, b;~I2(1 j<_n), a¢a', b;¢b;(1j<n). 

   DEFINITION 4. Mi(*) is defined as follows : 

Mi(*)=UnAL(n), 

M,(0)=11(Si),
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 Mi(n  +1)  =  faEB(S,)  Rz(n)'v,)Mi(n),,JSiHa}, 

Ri(n)= {R'=a' 4-bf, ••• , bn I there exists a ground instance R of a rule of 
S;(j:i) such that R' is a (0, M;(n), Mi(n))analogue of R} . 

We call a E llli(*) a fact reasoned by analogy based on a Uparing 0. The following 

proposition asserts that this definition is admissible. 
   PROPOSITION 1. Mi(*) is an Herbrand model for Si (i =1, 2). 

   PROOF. A proof similar to that of Proposition 2.2 [2] holds. E 
   We define an analogical union based on a paring extended above. Let be a 

predicate symbol which never appears in S1 nor S2. A program S such that M(S)= 
{ stit I <s, t> E 0 } is a program for Uparing ¢. Suppose a = p(t1 i • • • , tn) be an atom. 
We denote pi(t1, ••• , tn) by (a)1, where pi is a new predicate symbol with a suffix i. 
We define copy(Si) as follows : 

copy(Si)=1(a)1 F(b1)i, ••• , (bn)1 I a E-b1i .•  

Let W1, • • • , 'n, 171, • • • , Vn be variables never appearing in S1 nor S2. The set tran(Si) 
which consists of rules transforming the rules in S;(j i) to those in Si based on ¢ is 
defined as follows : 

                    tran(S1)=
T{ p1(T471, ... , TWn)~_...                                    VVi^'tl,                               •••V~n'"tn,Vl'~'S1,•••Vk"..Sk, 

                                                                ~7 q2(S1,..., Sk),gr7l1, •••,Vk), •••                                    

I p(t1, ••• , tn) E— ••• , g(sl, •.. , Sk), ••• 
                       is a rule in S2 with a none-empty body} , 

tran(S2)= {p2(171, ... , W n) F- • • • 
                                                                                                  •.• 

, 

                              /t71/~tn^~~ln,S1.V1,...,Sk~~rk,                                    g1(s1, ••• , Sk), g2(VV1,..
/.T'k), ••• p(tl, ••• ,tn)••• , g(sl, •.• , Si), ••• 

                       is a rule in Si with a none-empty body} 

DEFINITION 5. Let Si and S2 be programs, ¢ be a Uparing and P be a program 
for 0. Then the analogical union of S1 and S2 based on a program P for a Uparing 

0, denoted by 51P52i is 

copy(S1)Ucopy(S2)t-tran(S1)',Jtran(S2)' )P. 

We have the following results analogous to the one of [2] under the extension of the 
notion of paring. Thus an analogical reasoning based on Uparing ¢ is characterized 
as a deduction from the analogical union, if a program for ¢ is known in a sense. 

   THEOREM 1. Let a(t1i ••• , tn) be an atom and P be a program for a Uparing 0. 
Then the following two conditions are equivalent: 

   (1) a(t1, ••• , tn) E: Mi(*) 
    (2) S1PS2Hai(ti, ••• , tn) 

   In order to prove this theorem we need a proposition. 
   PROPOSITION 2. [4] Let P be a program and I be an Herbrand interpretation of P.
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 Let mapping T(P) : 2B(P)-2B(P) is defined as follows: 

T(P)(I)={AE-13(P) A—A1i ••• , An is a ground instance of a rule in P and 

 { A1i • • • , An}  c I } . Then the following three conditions are equivalent: 

   (1) I is a medel for P. 

   (2) T (P)(I) c I . 

   (3) T(P)({C})(I)_I for any rule C in P. 

    PROOF OF THEOREM 1. First we show that (2) implies (1). It suffices to prove 
that M(S1PS2) Ma*)UM (*)UM(P), where M{(n)= { ai(t1 i • • • , tn) I a(ti, • • • , tn) E Mi(n)} 
and n is a natural number or *. Since M(S1PS2) is the least Herbrand model for 

S1PS2, it suffices to prove that 11/1i(*)UiVIz(*)UM(P) is a model for S1PS2. Let M'(*) 

denote lh(*)UMZ(*)uill(P). By Proposition 2, it suffices to prove that 

T(P)({C})(M'(*))cwl'(*) for any rule C in S1PS2. 

We assume, for simplicity, that each rule in P, has at most one literal in the body. 

We have three cases. 

   (a) C in copy(Si). 
By Proposition 1, we have T (P)({ C })(AI {(*)) c wI {(*). Since T (P)({ C })(M{(*)) = 

T (P)({ C })(M'(*)), T (P)({ C })(M'(*)) 1VI'(*) for any rule C in copy (Si) . Similarly, it 
follows hat T (P)({ C })(M'(*)) AI'(*) for any rule C in copy(S2). 

   (b) C in tran(Si). 
Suppose that C E tran(S1) has a form : 

C: p1(W1, ...,Wn)~ 

W1^'t1, •.• , VVn "tn V1 s1, ••• , Vm^ sm, g2(s1, •.• , Sm), q1( V1, ••• , Vm) 

We show that T (P)({ C })(MMl'(*)) C M'(*). From the definition of analogical union , the 
rule p(t1i ••• , t,)f—q(s1, ••• , s„m) is in S2. 

   Put A E T (P)({ C })(M'(*)). Thus there exists a substitution 0 such that 

A=p1(W10, ••• , yVnB), 

{W16-~t16, ... , WVne—tne, Vie—s1e, ..• , Vme^ Sme, g2(S1e ••• , Sme), g1(Vle, ••• , Vme)} 

EM'(*). 

       Clearly, 

{VV1e^-'tie, ... , VVne "tne, V10^-s1e, ..• , Vpme^-sm,e} . (P), 

g2(s10, ••• , sme)EM(*), g1(Vle, ••• , Vme)EMa*). 

Hence, there exists a natural number N such that 

g2(s1e, ••• , sme)EM (N) and g1(V1e, ••• , Vme)EM{(N). 

So R1(N) has a rule p(W1e, ••• , V.0)—q( V10, ••• , Vme). Thus p(W10, ••• , Wne)E 
*11(N-I-1). Hence A=p1(W1e, ••• , IVne)Ellll(N+1) 1V11(*) M'(*). Thus we have shown 

that T (P)({ C })(1/P(*)) 1V1'(*) for any rule C in tran(S1). Similarly, it follows that 

T(P)({ C })(M'(*)) c M'(*) for any rule C in tran(S2).
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   (c) C in P. 
Clearly,  T(P)({C})(M(P))L.11(P) for any rule C in M(P). Since T(P)({C})(M(P))= 

T (P)({ C })(M'(*)), it follows that T (P)({ C })(11-1'(*)) c M'(x) for any rule C in P. Thus 

we have shown that (2) implies (1). 
   Next we show that (1) implies (2). It suffices to prove that 

M,(x)=U'noM,(n)C111(S,PS2), for i=1, 2, 
where 

_MM(S1PS2),={a(t1i , tn) I ai(t1, , tn)EM(S1PS2)} • 

We prove that Mi(n)CM(S1PS2)i for all n>_0 and i=1, 2, by induction on n. Suppose 

first than n=0. We have Mi(0)=M(Si) c M(S1PS2)i for i=1, 2. Next suppose that 

Mi(n)LM(S1PS2), holds for 1=1, 2 and some n>0. We prove that M2(nI1)~M(S1PS2)2 

holds. By the definition, *I2(n+1)= 11(R2(n)uM2(n)US2). It suffices to prove that 
M(S1PS2)2 is a model for R2(n)U11/12(n)US2. So we show that T(P)({C})(M(S1PS2)2)C 

M(S1PS2)2 for any rule C in R2(n)UM2(n)US2. We consider three cases. 

   (a) C E R2(n). 
For simplicity, we assume that C has a form p(s')E—q(t'). By the definition of R2(n), 

there exist a rule C1: p(s)—q(t) in S1 and a substitution 0 such that q(t0)EM1(n), 

q(t')EM2(n), s8--,s' and t9—t'. Since p(s') is a ground atom, T(P)({C})(M(S1PS2)2C {p(s')}. 
From the definition, S1PS2 has a rule C2 : p2(147)4 -s'W, t— V, q1(t), q2(V), where the 

variables W and V never appear in s nor t. Let Q = 9 U { WF--s', V÷-41. . Thus we have 

sc W6=s0 s'EI11(S1PS2), 

to Vo eM(S1PS2). 

Furthermore, by the induction hypothesis, we have 

g1(tcr)=g1(t9) Mi(n) C AI(S1PS2) , 

                   q2(V(1)==g2(t') 11I “n)CiVI(S1PS2) • 

Since C2eS1PS2i we have p2(Wa)=p2(s')EM(S1PS2). Thus we have T(P)({C})(M(S1PS2)2) 
C M(S1PS2)2• 

   (b) C 1112(n). 
By the fact that C is a ground atom and the induction hypothesis, T (P)({ C })(M(S1PS2)2) 

 {C} C]J2(n)CM(S1PS2)2. 

   (c) C S2. 
Since M(S2) c M(S1PS2)2, the results holds. 

   This shows that 1112(n+1)CM(S1PS2)2. Similarly, it follows that LI1(n+1)CM(S1PS2)1• 

Thus we have shown that (1) implies (2). ^

3. A Reasoning System using Inductive Inference of Analogial Union 

   Now consider the following programs : 

Si={like(tom„ fruit(apple)), 

            like(X, juice(Y)) 4—like(X, fruit(Y))} , 

         S2= {like(jerry, whole(orange))} .
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The current ARTS system partially computes a paring 

0={<juice(apple), juice(orange)>, <tom, jerry>, <fruit;apple', uhole orange)>} 

and reasons backward a new fact 

                        like(jerry, juice(orange)) 

based on the following basic schema : 

                            like(X, juice( Y))— like' X, fruit( Y))  
                          like(tom, juice(apple))*like(tom, fruit(apple))  

like(jerry, whole(orange)) like(jerry, juice(orange)) — like(jerry, whole(orange))  
like(jerry, juice(orange)) 

where the upper real line, the broken line and the lower real line denote an instantia
tion, a rule transformation based on ¢ and modus ponens, respectively. 

   Suppose that apple, orange, fruit(X) and whole(X) denote apple, orange, a fruit of 
X and a whole X, respectively. Some identify apple with orange since they are fruits, 
and some not since they are different fruits. In this case we cannot decide which way 
of thinking is true. One may analogically reason based on each way of thinking. 

   Now we propose an algorithm MA. Given the examples by a user which are 

paired facts about two objects with signs of whether they are analogous or not, it 
inductively infers a Upairing intended by the user. Therefore it analogically reasons 
a new fact by deducing the fact from the analogical union constructed by the Upairing. 

   First we give some necessary definitions and results of inductive inference, espe
cially model inference for logic program [5, 6]. Let L be a first order language. 
Given examples of an unknown model AI, a model inference algorithm IA infers a pro

gram P such that M is the least Herbrand model of P. An example given to IA is a 
pair <a, V>, called a fact of Al, where a is a ground atom of L and V is a truth 
value of a with respect to Al (i. e., V=true if arM, V=false otherwise). An enumera
tion of a model M is an infinite sequence of facts in which every fact of M appears 
at least once. An output of IA is a program and called a conjecture. A model in
ference algorithm IA is said to identify II/ in the limit if IA, given any enumeration 
of M, outputs a same program P from some time on and Al is the least Herbrand 
model of P. 

   Next we give the concept of heasiness in order to characterize the power of a 
model inference algorithm. Let lz be a recursive function, T be a program and a be 
an atom. We write T H if a is deducible from T in n steps. Let a1, a2, • • • be a 
fixed effective enumeration of the all ground atoms of L. A program T is h-easy if 
min { j T H;an} <h(n) holds for all except a finite number of n>0 such that TI—an. 

                                                                    An Herbrand model Al is 1z-easy if there exists an h-easy program T such that M(T) 
=M. 

   Shapiro gives an enumerative model inference algorithm and characterizes its power 

[5, 6].
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Let h be a recursive function and T1,  T2,  •  •  • be a fixed effective enumeration of all 

programs in L. 
Sfaise:={^}, Strte:—{ }, k=1. 
repeat 

   read the next fact Fn=<a, V>. 

Sv:=SVU{a}. 

   while there exist a E S f a t se such that T k I— a 

        or there exist ajEStrue such that Tk I~k(.)a, do 

        k :=k+1. 
   output Tk. 

forever

                An Enumerative Model Inference Algorithm 

   PROPOSITION 3. [5] 

   (1) Let h be a recursive function, M be an h-easy Herbrand model of L. Then an 
enumerative model inference algorithm identifies M in the limit. 

   (2) Let I be an enumerative model inference algorithm. Then there exists a recursive 
function h uniform in I such that if I identifies an Herbrand model M then M is h-easy. 

   Let S1 and S2 be programs, and 0 be a Uparing. We give an algorithm MA, 

proposed in Section 1, which receives examples of corresponding terms and inductively 
infers a program representing the correspondence, and reasons by analogy using a 
deducibility from the analogical union. Algorithm MA receives as an input an enumera
tion <s1tit1, V1>, <S2"42, V2>, • • • of { stit I <s, t> ¢ } and calculates a conjecture for the 

program of 0, by using an enumerative model inference algorithm, and outpus con
jectures P1, P2, . When the algorithm is asked at point n whether a ground atom 
aEB(S1) is a fact reasoned by a analogy based on 0, it will check the following 
deducibility holds or not : 

copy(S1)Ucopy(S2)Utran(S1)'Utran(S2)UPn I—(a)Z 

and if it confirms the above deducibility it say that a is a fact reasoned by analogy. 
   Taking Theorem 1 into consideration, we may define the correctness of algorithm 

MA as follows : Algorithm MA based on 0 correctly reasons in the limit if the model 
inference algorithm incorporated in MA identifies a model {s-,4 I <s, t> ¢ } in the limit. 

   Let h be a recursive function. A Uparing 0 is h-easy if there exists an h-easy 
Herbrand model for 0. 

   In this framework, the correctness of MA and the characterization of it's power 
are reduced to those of 0 by a model inference algorithm. 

   THEOREM 2. 

   (1) Let h be a recursive function, 0 be an h-sasy Upairing. Then algorithm MA 
correctly reasons in the limit. 

   (2) Let 0 be a Uparing. There exists a recursive function h uniform in MA such 
that if MA correctly reasons in the limit based on 0 then 0 is h-easy. 

   PROOF OF THEOREM 2. The results follow from Proposition 3 and the definition 
of the correctly reasoning in the limit. ^
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   We think MA is realizable by adopting Shapiro's MIS as the model inference 

algorithm.

4. Concluding Remarks 

   We have proposed a reasoning system MA using inductive inference of analogical 

union and characterized its power. MA is a simple algorithm constructed by serially 

connecting two algorithms of a model inference and an analogical reasoning. Moreover 

it is powerful since it needs to receive infinitely many examples from a theoretical 

point of view. Results in Section 3 say that even such powerful MA can analogically 
reason only between two worlds which have the similar structures whose correspondences 

can be represented by h-easy Herbrand model. In this sense the results show a limita
tion of the power of an analogical reasoning system by a computer. 

   We need to extend a current ARTS system and construct an algorithm which, 

given a ground atom, backward and interactively finds an analogy intended by a user 
and reasons based on the analogy. Such algorithm is applicable to a transference of 
knowledges between two worlds and conjectured to be as powerful as MA.
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