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Abstract

Learning by erasing means the process of eliminating potential hypotheses

from further consideration thereby converging to the least hypothesis never

eliminated and this one must be a solution to the actual learning problem.

The present paper deals with learnability by erasing of indexed families L

of languages from both positive data as well as positive and negative data.

This refers to the following scenario. A family L of target languages and a

hypothesis space for it are speci�ed. The learner is fed eventually all positive

examples (all labeled examples) of an unknown target language L chosen from

L. The target language L is learned by erasing if the learner erases some set of

possible hypotheses and the least hypothesis never erased correctly describes L.

The capabilities of learning by erasing are investigated in dependence on the

requirement of what sets of hypotheses have to be or may be, erased, and in

dependence of the choice of the hypothesis space.

Class preserving learning by erasing (L has to be learned w.r.t. some suitably

chosen enumeration of all and only the languages from L), class comprising

learning by erasing (L has to be learned w.r.t. some hypothesis space containing

at least all the languages from L), and absolute learning by erasing (L has to

be learned w.r.t. all class preserving hypothesis spaces for L) are distinguished.

For all these models of learning by erasing necessary and su�cient condi-

tions for learnability are presented. A complete picture of all separations and

coincidences of the learning by erasing models is derived. Learning by erasing

is compared with standard models of language learning such as learning in the

limit, �nite learning and learning without overgeneralization. The exact loca-

tion of these types within the hierarchy of the learning by erasing models is

established.



1. Introduction

Learning by erasing means the process of eliminating potential hypotheses from

further consideration thereby converging to a hypothesis which will never be elimi-

nated and which has to be a correct solution to the actual learning problem.

This approach is motivated by similarities to both human learning or, more general,

human problem solving as well as automated problem solving. Actually, in solving a

problem wemostly �nd out several "non-solutions" to that problem �rst, contradicting

the data we have or explaining them in another unsatisfying way. Of course, we then

will exclude these non-solutions from our further consideration and keep only a more

or less explicitly given remaining set of potential solutions. Often, at any time of

the solving process we have an actual "favored candidate" among all the remaining

candidates for a solution which, though, up to now cannot be proved to be really a

solution and which also may change from time to time. Then at least the following can

happen. Eventually we �nd a solution to the problem, can even prove its correctness

and hence successfully stop the solving process. Or, our "favored candidate" will be

stable from some point on, it is really a solution, but we are not absolutely sure of

that. The latter case is a version of successful learning in the limit, which is what we

do in building theories or, even more real-world, in writing computer programs.

In our approach of learning by erasing we can model both situations of being

successful above. However, our main intention is a rigorous study of learning by

erasing in the limit. In particular, we are mainly interested in characterizing and

comparing the general capabilities of such learners, i.e., learners that achieve their

goal by erasing non-appropriate hypotheses.

A special case of our approach, the so-called co-learning, was introduced in Frei-

valds, Karpinski and Smith (1994), and then further studied in Freivalds, Gobleja,

Karpinski and Smith (1994) for learning of recursively enumerable classes of recursive

functions. In that case the learner has to eliminate all hypotheses but one and this

one has to be correct. This approach was then used by Kummer (1995) in order to

show that a recursively enumerable class of recursive functions is co-learnable with

respect to all of its numberings i� all of these numberings are equivalent (i.e., inter-

compilable), thus giving a learning-theoretic solution to a longstanding problem of

recursion-theoretic numbering theory.

We relax the all-but-one approach by giving the learner more freedom on which

sets are allowed to erase eventually. We consider the following possibilities:

� e-ARB - an arbitrary set of hypotheses may be erased,

� e-MIN - exactly all hypotheses less than the least correct one have to be erased,

� e-SUB - only incorrect hypotheses may be erased,

� e-EQ - exactly all incorrect hypotheses have to be erased,

� e-SUPER - all incorrect hypotheses have to be erased and an arbitrary set of

correct hypotheses may be erased, too,

� e-ALL - all but one hypotheses have to be erased.
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Our objects to be learned are indexed families of languages, i.e., recursively enumer-

able classes of uniformly recursive languages. We consider both modes of information

presentation established in language learning, text (positive data, only) and informant

(positive and negative data). And we study class preserving learning (the spaces of

hypotheses exactly enumerate the language family to be learned), class comprising

learning (the spaces of hypotheses enumerate a possibly proper superset of the family

to be learned) and absolute learning (the families have to be learned with respect

to all hypothesis spaces enumerating them exactly). Note that the ALL-case, more

exactly, co-learning of indexed families of languages from text, was already studied in

Freivalds and Zeugmann (1995).

Our results can be classi�ed along the lines of characterizations, comparisons inside,

and comparisons with known types of language learning.

Characterizations. For all types of learning by erasing we present characteri-

zations, i.e., conditions that are both necessary and su�cient for learnability in the

corresponding sense. Mostly these characterizations are stated in terms being in-

dependent from learning theory. In several cases the corresponding condition is a

purely structural one, namely that the language family may not contain any language

together with a proper sublanguage. In other cases, for example for e-SUB both

in the class preserving and the class comprising case, the characterization comes to

the "granularity" of deriving necessary and su�cient learnability conditions for any

given pair of a language family and a hypothesis space. Such granularity results were

already derived in language learning theory (cf., e.g., Angluin (1980), Lange and Zeug-

mann (1992), Kapur and Bilardi (1995), Zeugmann, Lange and Kapur (1995), and

Baliga, Case and Jain (1996)). Surprisingly, our characterizations do work without

the explicit use of so-called "tell-tales" which were commonly used in all previous

characterizations in language learning. Even more surprisingly, up to now no such

granularity results are known in Gold's (1967) paradigm of learning recursive func-

tions. There the basic structure of most of the characterizations is the following.

Given a class U of recursive functions and some learning type LT ; then U 2 LT i�

there is a suitable space of hypotheses such that ... (cf. Wiehagen (1978)). Note that

also some characterizations in language learning have this "there is" avor (cf. Jain

and Sharma (1994)).

Comparisons inside. We derive a complete picture containing all separations and

coincidences of the types of learning by erasing de�ned. Fortunately, this picture is of

a pretty regular structure and not as sophisticated as sometimes in inductive inference.

Several of the separations and coincidences follow from the characterizations above.

Comparisons with known types of language learning. We compare the

types of language learning by erasing with well-known "standard" types of learning

indexed language families such as learning in the limit, �nite learning and conservative

learning (or, equivalently, learning without overgeneralization (cf. Lange and Zeug-

mann (1993b, 1993c)). We present the exact location of these established learning

types in the hierarchy of the types of language learning by erasing.

The paper is organized as follows. Section 2 presents notations and de�nitions.

The announced hierarchies for learning by erasing from positive data are established

in Section 3, and the subsections therein. Class preserving learning by erasing is

studied in Subsection 3.1, while the Subsections 3.2 and 3.3 deal with class comprising
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and absolute learning by erasing, respectively. Section 4 studies learning by erasing

from informant. The characterization theorems are established in Section 5. Finally,

in Section 6 we discuss the results obtained and outline open problems. All references

are given in Section 7.

2. Notations and De�nitions

Unspeci�ed notations follow Rogers (1967). Let IN = f0; 1; 2; :::g be the set of

natural numbers. We set IN

+

= IN n f0g. By h�; �i: IN� IN! IN we denote Cantor's

pairing function, i.e., hx; yi = ((x+y)

2

+3x+y)=2 for all x; y 2 IN. We use P

n

and

R

n

to denote the set of all n-ary partial recursive and total recursive functions over

IN, respectively. The class of all f0; 1g valued functions f 2 R

n

is denoted by R

n

0;1

.

For n = 1 we omit the upper index, i.e., we set P = P

1

, R = R

1

, and R

0;1

= R

1

0;1

.

Every function  2 P

2

is called a numbering. Moreover, let  2 P

2

, then we

write  

j

instead of �x (j; x). Let '

0

; '

1

; '

2

; : : : denote any �xed G�odel number-

ing of P, and let �

0

;�

1

;�

2

; : : : be any associated complexity measure (cf. Blum

(1967)). Furthermore, let  2 R

2

0;1

, then by L( 

j

) we denote the language gener-

ated or described by  

j

, i.e., L( 

j

) = fx  

j

(x) = 1; x 2 INg, and by co-L( 

j

)

its complement, i.e., IN n L( 

j

). Moreover, we call L = (L( 

j

))

j2IN

an indexed

family (cf. Angluin (1980)). For the sake of presentation, we restrict ourselves to

consider exclusively indexed families of non-empty languages. An indexed family

is said to be inclusion-free i� L 6�

^

L for all languages L;

^

L 2 range(L). Let

L be an indexed family. Every numbering  2 R

2

0;1

is called hypothesis space.

A hypothesis space  is said to be class comprising for an indexed family L i�

range(L) � fL( 

j

) j 2 INg. Furthermore, we call a hypothesis space  2 R

2

0;1

class preserving for L i� range(L) = fL( 

j

) j 2 INg.

Let L be any indexed family, let L 2 range(L), and let  be any class comprising

hypothesis space for L. Then we set min

 

(L) = minfj L( 

j

) = Lg.

Let L be a language and let t = s

0

; s

1

; s

2

; : : : be an in�nite sequence of natural

numbers such that content(t) = fs

k

k 2 INg = L. Then t is said to be a text for

L or, synonymously, a positive presentation. By text(L) we denote the set of all

positive presentations of L. Moreover, let t be a text, and let y be a number. Then

t

y

denotes the initial segment of t of length y + 1, i.e., t

y

= s

0

; : : : ; s

y

. Finally, t

+

y

denotes the content of t

y

, i.e., t

+

y

= fs

z

z � yg.

Next, we introduce the notion of the canonical text that turned out to be helpful

in proving some characterizations. Let L be any non-empty recursive language, and

let 0; 1; 2; : : : be the ordered text of IN. The canonical text of L is obtained as follows.

Test sequentially whether z 2 L for z = 0; 1; 2; : : : until the �rst z is found such that

z 2 L. Since L 6= ; there must be at least one z ful�lling the test. Set t

0

= z. We

proceed inductively. For all x 2 IN we de�ne:

t

x+1

=

(

t

x

; z + x+ 1; if z + x+ 1 2 L;

t

x

; n; otherwise; where n is the last element in t

x

:

As in Gold (1967), we de�ne an inductive inference machine (abbr. IIM) to be

an algorithmic device which works as follows: The IIM takes as its input incrementally
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increasing initial segments of a text and it either requests the next input, or it �rst

outputs a hypothesis, i.e., a number, and then it requests the next input.

We interpret the hypotheses output by an IIM with respect to some suitably chosen

hypothesis space  2 R

2

0;1

. When an IIM outputs a number j, we interpret it to mean

that the machine is hypothesizing the language L( 

j

).

Furthermore, we de�ne an erasing learning machine (abbr. ELM) to be an

algorithmic device working as follows: The ELM takes as its input incrementally

increasing initial segments of a text (as an IIM does) and then it either requests the

next input, or it �rst outputs a number, and then it requests the next input.

However, there is a major di�erence in the semantics of the output of an IIM

and an ELM, respectively. Let  2 R

2

0;1

be any hypothesis space. Suppose an

ELM M has been successively fed an initial segment t

y

of a text t, and it has output

numbers j

0

; : : : ; j

z

. Then we interpret j = min(INnfj

0

; : : : ; j

z

g) asM 's actual guess.

Intuitively, if an ELM outputs a number j, then it de�nitely deletes j from its list of

potential hypotheses.

Let M be an IIM or an ELM, let t be a text, and y 2 IN. Then we use M(t

y

) to

denote the last number that has been output byM when successively fed t

y

. We de�ne

convergence of IIMs as usual. Let t be a text, and let M be an IIM. The sequence

(M(t

y

))

y2IN

is said to converge to a number j i� either (M(t

y

))

y2IN

is in�nite and all

but �nitely many terms of it are equal to j, or (M (t

y

))

y2IN

is non-empty and �nite,

and its last term is j.

An ELM M is said to stabilize to a number j on a text t i� its sequence of actual

guesses converges, i.e., j = min(IN n fM(t

y

) y 2 INg).

Now we are ready to de�ne learning and learning by erasing.

De�nition 1. (Gold, 1967) Let L be an indexed family, let L be a language,

and let  2 R

2

0;1

be a hypothesis space. An IIM M CLIM{identi�es L from

text with respect to  i� for every text t for L, there exists a j 2 IN such that the

sequence (M(t

y

))

y2IN

converges to j and L = L( 

j

).

Furthermore, M CLIM{identi�es L with respect to  i�, for each L 2 range(L),

M CLIM{identi�es L with respect to  .

Finally, let CLIM denote the collection of all indexed families L for which there

are an IIM M and a hypothesis space  such that M CLIM{identi�es L with respect

to  .

Since, by the de�nition of convergence, only �nitely many data of L were seen by

the IIM upto the (unknown) point of convergence, whenever an IIM identi�es the

language L, some form of learning must have taken place. For this reason, hereinafter

the terms infer, learn, and identify are used interchangeably.

In De�nition 1, LIM stands for \limit." Furthermore, the pre�x C is used to

indicate class comprising learning, i.e., the fact that L may be learned with respect

to some class comprising hypothesis space  for L. The restriction of CLIM to class

preserving hypothesis spaces is denoted by LIM and referred to as class preserving

inference. Moreover, we use the pre�x A to express the fact that an indexed family L

may be inferred with respect to all class preserving hypothesis spaces for L, and we

refer to this learning model as to absolute learning. We adopt this convention in the
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de�nitions of the learning types below.

The following proposition clari�es the relations between absolute, class preserving

and class comprising learning in the limit.

Proposition 1. (Lange and Zeugmann, 1993c)

ALIM = LIM = CLIM

Note that, in general, it is not decidable whether or not an IIM M has already

converged on a text t for the target language L. With the next de�nition, we consider

a special case where it has to be decidable whether or not an IIM has successfully

�nished the learning task.

De�nition 2. (Gold, 1967; Trakhtenbrot and Barzdin, 1970) Let L be an

indexed family, let L be a language, and let  2 R

2

0;1

be a hypothesis space. An IIM

M CFIN{identi�es L from text with respect to  i� for every text t for L,

there exists a j 2 IN with L = L( 

j

) such that M, when successively fed t, outputs the

single hypothesis j, and stops thereafter.

Furthermore, M CFIN{identi�es L with respect to  i�, for each L 2 range(L),

M CFIN{identi�es L with respect to  .

The resulting learning type is denoted by CFIN .

The following proposition states that, if an indexed family L can be CFIN{learned

with respect to some hypothesis space  for it, then it can be �nitely inferred with

respect to every class preserving hypothesis space for L.

Proposition 2. (Zeugmann, Lange and Kapur, 1995)

AFIN = FIN = CFIN

Now, we de�ne conservative IIMs. Intuitively, conservative IIMs maintain their

actual hypothesis at least as long as they have received data that \provably misclas-

sify" it. Hence, whenever a conservative IIM performs a mind change it is because it

has perceived a clear contradiction between its hypothesis and the actual input.

De�nition 3. (Angluin, 1980b) Let L be an indexed family, let L be a language,

and let  2 R

2

0;1

be a hypothesis space. An IIM M CCONSV{identi�es L from

text with respect to  i�

(1) M CLIM{identi�es L with respect to  ,

(2) for all texts t 2 text(L) and for all y; k 2 IN, if M(t

y

) 6= M(t

y+k

) then t

+

y+k

6�

L( 

M(t

y

)

).

Finally, M CCONSV {identi�es L with respect to  i�, for each L 2 range(L),

M CCONSV {identi�es L with respect to  .

The resulting collection of sets CCONSV is de�ned analogously as above.

The following proposition shows that conservative learning is sensitive to the par-

ticular choice of the hypothesis space.

Proposition 3. (Lange and Zeugmann, 1993b)

ACONSV � CONSV � CCONSV � ALIM

Next, we de�ne learning by erasing.
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De�nition 4. Let L be an indexed family, let L be a language, and let  2 R

2

0;1

be

a hypothesis space. An ELM M e-CARB{identi�es L from text with respect

to  i� for every text t for L, there exists a j 2 IN with L = L( 

j

) such that M on

t stabilizes to j.

Furthermore, M e-CARB{identi�es L with respect to  i�, for each L 2 range(L),

M e-CARB{identi�es L with respect to  .

Finally, let e-CARB denote the collection of all indexed families L for which there

are an ELM M and a hypothesis space  such that M e-CARB{identi�es L with

respect to  .

De�nition 5. Let L be an indexed family, let L be a language, and let  2 R

2

0;1

be a hypothesis space. An ELM M is said to

(A) e-CSUB{identify L from text with respect to  

(B) e-CEQ{identify L from text with respect to  

(C) e-CSUPER{identify L from text with respect to  

(D) e-CALL{identify L from text with respect to  

(E) e-CMIN{identify L from text with respect to  

i�

M e-CARB{identi�es L from text with respect to  and, moreover, the following

conditions are satis�ed

(A) fM(t

y

) y 2 INg � fj L( 

j

) 6= L; j 2 INg, i.e., M is only allowed to erase

hypotheses that are incorrect for L;

(B) fM(t

y

) y 2 INg = fj L( 

j

) 6= L; j 2 INg, i.e., M has to erase exactly all

hypotheses that are incorrect for L;

(C) fM(t

y

) y 2 INg � fj L( 

j

) 6= L; j 2 INg, i.e., M has to erase all hypotheses

that are incorrect for L but it may additionally erase correct hypotheses for L;

(D) card(IN n fM (t

y

) y 2 INg) = 1, i.e., M has to erase all but one hypothesis;

(E) fM(t

y

) y 2 INg = fj 2 IN j < min

 

(L)g, i.e., M has to erase exactly all

hypotheses prior to the least correct index for L.

We denote by e-CSUB , e-CEQ, e-CSUPER, e-CALL, and e-CMIN the collection

of all those indexed families L for which there are a hypothesis space  and an ELMM

inferring every language of it in the sense of e-CSUB , e-CEQ , e-CSUPER, e-CALL,

and e-CMIN with respect to  , respectively.

All the types above have in common that at any step of the learning process the

\favored candidate" will always be the least hypothesis not yet eliminated. This may

seem somewhat arbitrary, but in our opinion it is justi�ed by the following observa-

tions. First, by the principle of Occam's razor simple hypotheses should be \favored."

Second, in case that even in the limit \many" hypotheses remain uncancelled, we get a

distinguished �nal hypothesis, just the least uncancelled one, and thus one can decide

from outside whether or not the learning process was successful. And third, more
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formally, in case the learning machine eventually �nds a provably correct hypothesis,

then it can eliminate all the other hypotheses up to that one (or even all but that

one) thereby making that hypothesis the least uncancelled one.

Note that e-ALL coincides with co-learning from positive data as de�ned in Frei-

valds and Zeugmann (1995). Thus, all our de�nitions may be regarded as natural

variations of this learning type.

As already mentioned in the Introduction, Freivalds, Karpinski and Smith (1994)

recently studied co-learnability of recursive functions. On the other hand, in in-

ductive inference functions and languages are usually very di�erent from each other

(cf., e.g., Osherson, Stob and Weinstein (1986) and the references therein). Hence, it

is only natural to ask whether or not there are major di�erences between the learn-

ability by erasing of recursive functions and recursive languages, too. In this paper,

we provide both similarities and distinctions. However, the overall goal is much far-

reaching. In particular, we are mainly interested in the general learning capabilities

of learners that achieve their learning goal by erasing non-appropriate hypotheses.

3. Learning from Text

In this section, we compare the learning capabilities of all learning by erasing mod-

els from positive data to one another as well as to �nite inference, learning in the limit

and conservative identi�cation from text. Moreover, we analyze the power of learning

by erasing in dependence on the set of admissible hypothesis spaces. Subsection 3.1 is

dealing with class preserving learning while Subsections 3.2 and 3.3 are dealing with

class comprising and absolute learning, respectively.

3.1. Class Preserving Learning by Erasing

We start our investigations by considering class preserving hypothesis spaces. Our

goal is to obtain a complete picture of the learning capabilities of all learning by erasing

models. Moreover, we establish lower and upper bounds for the learning by erasing

models by comparing them with �nite inference, learning in the limit and conservative

identi�cation. Our �rst theorem actually points to similarities and di�erences of the

learning by erasing models de�ned above.

Theorem 1.

(1) FIN � e-EQ � e-SUB � CONSV ,

(2) For all LT 2 fARB ; SUPER; ALLg, e-LT = LIM .

Proof. First, we show Assertion (1).

Claim A. FIN � e-EQ .

Let L be any indexed family. Hence, there is a class preserving hypothesis space

 2 R

2

0;1

for L having a decidable equality problem, i.e., there is a p 2 R

2

0;1

such that,

for all j; k 2 IN, p(j; k) = 1 i�  

j

=  

k

(cf., e.g. Lange, Nessel and Wiehagen (1996)

for a detailed discussion). By Proposition 2 there exists an IIM M �nitely inferring

L with respect to  . The desired ELM

^

M works with respect to  , and is de�ned
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as follows. Let L 2 range(L), t 2 text(L), and let y 2 IN. On input t

y

, the ELM

^

M

simulates M on input t

y

. Now, two cases are possible. First, M outputs nothing and

request the next input. In this case

^

M requests the next input, too, and makes no

output. Second, M outputs a hypothesis j and stops. Due to the de�nition of FIN

we have L = L( 

j

). Then

^

M outputs, one at a time, all natural numbers k with

p(j; k) = 0. Clearly,

^

M erases all hypotheses that are incorrect for L, and hence it

indeed e-EQ{infers L.

In order to separate FIN and e-EQ consider the indexed family L = (L

j

)

j2IN

with

L

j

= IN n fjg for all j 2 IN. Since L =2 FIN (cf. Freivalds and Zeugmann (1995)),

it remains to verify that L 2 e-EQ . For that purpose, select the hypothesis space

 2 R

2

0;1

with L( 

j

) = L

j

for all j 2 IN. The wanted ELMM can be de�ned as follows.

Let L 2 range(L), let t = s

0

; s

1

; s

2

; : : : be any text for L, and let y 2 IN. On input t

y

,

M simply outputs the index s

y

. By de�nition, s

y

=2 L( 

s

y

), but s

y

2 L. Therefore,M

erases only hypotheses that are incorrect for L. Finally, since L = IN n fjg for some

j 2 IN, M outputs all natural numbers but j, and therefore it learns L as required.

Claim B. e-EQ � e-SUB .

Since e-EQ � e-SUB (cf. De�nition 5), it su�ces to show that e-SUB ne-EQ 6= ;.

For all j 2 IN, let L

j

= f0; : : : ; jg, and set L = (L

j

)

j2IN

.

First, we verify that L 2 e-SUB . Choose the hypothesis space  2 R

2

0;1

with

L( 

j

) = L

j

for all j 2 IN. The wanted ELM M can be de�ned as follows. Let

L 2 range(L), let t = s

0

; s

1

; s

2

; : : : be any text for L, and let y 2 IN. We distinguish

the cases s

y

= 0 and s

y

6= 0. If s

y

= 0, then M outputs nothing, and requests the

next input. Otherwise, M outputs the hypothesis s

y

� 1.

Clearly, if L = L

 

0

then M never makes an output, and thus, it stabilizes to 0.

Now, suppose that L = L( 

j+1

) for some j 2 IN. Since L is �nite, there is a least

z 2 IN such that L = t

+

z

. Hence, after having successively read t

z

, the ELM M

has output all numbers from f0; : : : ; jg, and the least non-erased hypothesis is j + 1.

Finally, since t

+

z

= t

+

z+y

for all y 2 IN, all remaining outputs belong to f0; : : : ; jg,

too. Consequently, M stabilizes to j + 1. Since all erased hypotheses are incorrect,

M e-SUB{identi�es L.

It remains to show that L =2 e-EQ . Suppose the converse, i.e., there are a class

preserving hypothesis space  2 R

2

0;1

for L and an ELM M witnessing L 2 e-EQ

with respect to  . Consider M when fed the text t = 0; 0; 0; : : : for L

0

. Since M

has to e-EQ{identify L

0

from t, it is requested to output all numbers j > 0 with

L 6= L( 

j

). Let j be M 's �rst output made on t

y

for some y 2 IN. Furthermore,

L( 

j

) 2 range(L), and hence L

0

� L( 

j

). Consequently, t

y

may be extended to a

text

^

t for L( 

j

). Since M , when fed

^

t, outputs a hypothesis that is correct for L( 

j

),

it fails to e-EQ{learn L( 

j

), a contradiction.

Claim C. e-SUB � CONSV .

Let L

0

= IN and for all j 2 IN, let L

j+1

= fjg as well as L = (L

j

)

j2IN

. Then,

L 2 CONSV n e-SUB . Obviously, L 2 CONSV . Suppose L 2 e-SUB . Thus, there

are a class preserving hypothesis space  and an ELM M witnessing L 2 e-SUB

with respect to  . Let k = min

 

(L

0

); since range(L) is in�nite, there must be an

L 2 range(L) such that min

 

(L) > k. By construction, L � L

0

. Hence, when

9



successively fed the text t for L the ELM M has to output k eventually, say on t

y

.

But now, one may again extend t

y

to a text for L( 

k

) on whichM outputs the correct

guess k, a contradiction.

It remains to prove e-SUB � CONSV . Let L 2 e-SUB with respect to some class

preserving hypothesis space  . Then, for all L 2 range(L), and all j 2 IN,

j < min

 

(L) implies L 6� L( 

j

) (+)

For seeing this, suppose the converse, i.e., there are a language L 2 range(L) and an

index j < min

 

(L) such that L � L( 

j

). When successively fed any text t 2 text(L)

the ELM has to output j, say on t

y

. Since L � L( 

j

), this initial segment may be

extended to a text for L( 

j

) on whichM outputs the correct guess j, a contradiction.

Now, let L 2 range(L), t 2 text(L), and let x 2 IN. The desired conservative IIM

works with respect to  and is de�ned as follows.

IIM M: \On input t

x

determine the least j with t

+

x

� L( 

j

). Output j."

By construction, if M(t

x

) 6=M(t

x+z

) for some z 2 IN, then t

+

x+z

6� L( 

M(t

x

)

); thus M

is conservative. Let k = min

 

(L). Hence, M 's unbounded search always terminates,

andM outputs in every stage a hypothesis. Moreover, by (+) we have L n L( 

j

) 6= ;

for all j < k. Consequently, every index j < k must be abandoned eventually. Thus,

M converges to k. This proves Claim C.

Next, we show Assertion (2). By de�nition, e-ALL � e-SUPER � e-ARB . Since

LIM � e-ALL (cf. Freivalds and Zeugmann (1995)) it su�ces to show e-ARB � LIM .

Claim D. Let L be an indexed family, and let  2 R

2

0;1

be any class comprising

hypothesis space for L. Then, L 2 e-CARB with respect to  implies L 2 CLIM with

respect to  .

Let M be an ELM witnessing L 2 e-CARB with respect to  . We de�ne the

desired IIM

^

M as follows. Let L 2 range(L), t 2 text(L), and let y 2 IN.

^

M simulates

M on input t

y

, it always outputs the least  -number not yet de�nitely deleted byM ,

and requests the next input. Obviously,

^

M CLIM {learns L with respect to  . Since

Claim D especially holds for any class preserving hypothesis space, Assertion (2)

follows. q.e.d.

Theorem 1 and Proposition 3 together allow the following corollary summarizing

the inclusions and equalities known so far.

Corollary 2. e-EQ � e-SUB � e-ALL = e-SUPER = e-ARB .

Proposition 1 and Claim D above directly allows the following corollary.

Corollary 3. For all LT 2 fSUPER; ALL; ARBg, e-LT = e-CLT = LIM .

In the next subsection, we study the relations between class preserving and class

comprising learning for the remaining learning types.

3.2. Class Comprising Learning by Erasing

Taking Corollary 3 into account, it remains to investigate the learning power of

e-CSUB and e-CEQ . The following theorem provides the desired complete picture.

10



Theorem 4.

(1) e-EQ = e-CEQ ,

(2) e-SUB � e-CSUB � LIM ,

(3) e-CSUB # CCONSV .

Proof. First, we verify Assertion (1). Since e-EQ � e-CEQ , it su�ces to show that

e-CEQ � e-EQ . The following claim provides general insight into the topological

structure of the e-CEQ{identi�able indexed families.

Claim A. Let L be an indexed family. If L 2 e-CEQ, then L is inclusion-free.

Let L be any indexed family, and let M be any ELM witnessing L 2 e-CEQ with

respect to some class comprising hypothesis space  . Suppose to the contrary that

there are L;

^

L 2 range(L) with L �

^

L. Let t 2 text(L); since M e-CEQ{learns

L from t, M has to delete sometimes a  {index for

^

L, i.e., there is a least y 2 IN

such that M(t

y

) = j and L( 

j

) =

^

L. Because of L �

^

L, t

y

can be extended to a

text

^

t 2 text(

^

L). Moreover,

^

L 2 range(L). Thus M must e-CEQ{indentify

^

L from

^

t. However, M , when fed the initial segment

^

t

y

, outputs a correct  {index for

^

L, a

contradiction, and therefore Claim A follows.

Now we are ready to �nish the proof of Assertion (1).

Claim B. Let L be an inclusion-free indexed family. Then L 2 e-EQ.

Let L be any inclusion-free indexed family. Choose any class preserving hypothesis

space  2 R

2

0;1

for L, and de�ne the desired ELM M as follows. Let L 2 range(L),

t 2 text(L), and let x 2 IN.

ELM M: \On input t

x

proceed as follows:

If x = 0, then set Alive

0

= IN, output nothing and request the next input.

Otherwise, test for all k 2 Alive

x�1

with k � x whether or not t

+

x

6� L( 

k

). If

there is at least one index passing this test, output the minimal one, say

^

k, and

set Alive

x

= Alive

x�1

n f

^

kg.

Otherwise, set Alive

x

= Alive

x�1

output nothing and request the next input."

By construction, M never outputs a correct  {index for L. It remains to show that

M eventually deletes all indices k with L( 

k

) 6= L. This can be seen as follows.

Let x 2 IN and let k be the least  {index in the set of all remaining candidate

hypotheses Alive

x

that meets L( 

k

) 6= L. Since L is inclusion-free, we have L n

L( 

k

) 6= ;. Thus, there has to be a least y 2 IN such that t

+

y

6� L( 

k

). Now

let z = maxfx + 1; yg. Since t

+

y

� t

+

z

, we may conclude that t

+

z

6� L( 

k

), too.

Consequently,M (t

z

) = k, and therefore k =2 Alive

z+r

for all r 2 IN. Finally, by simply

iterating this argumentation it follows that M eventually outputs all  {indices k that

are incorrect for L. Hence, M e-EQ{identi�es L.

Putting Claim A and B together we immediately obtain e-CEQ � e-EQ . This

�nishes the proof of Assertion (1).

We continue in showing Assertions (2) and (3).

11



Claim C. CONSV n e-CSUB 6= ;.

After a bit of reection one easily veri�es that the indexed family L used in the

proof of Theorem 1, Claim C separates CONSV and e-CSUB , too.

Since CONSV � CCONSV � LIM (cf. Proposition 3), we obtain CCONSV n

e-CSUB 6= ; and LIM ne-CSUB 6= ;. By de�nition, any ELM that e-CSUB{identi�es

an indexed family L with respect to a hypothesis space  witnesses L 2 e-CARB with

respect to  as well. Since, additionally, e-CARB = LIM (cf. Corollary 3), we may

conclude that e-CSUB � LIM . The following claim provides us the remaining part

of Assertions (2) and (3).

Claim D. e-CSUB n CCONSV 6= ;.

First, we de�ne the desired indexed family L witnessing the claimed separation.

For the sake of presentation, we describe L as a family of languages over the alphabet

� = fa; b; cg.

For all k 2 IN, we set L

hk;0i

= fa

k

b

n

n 2 INg. Note that a

0

= " by convention,

where " denotes the empty word. For all k 2 IN and all j > 0, we distinguish the

following cases:

Case 1. : �

k

(k) � j

Then we set L

hk;ji

= L

hk;0i

.

Case 2. �

k

(k) � j

We distinguish the following subcases.

Subcase 2.1. �

k

(k) < j � 2�

k

(k)

We set L

hk;ji

= fa

k

b

m

m � j � �

k

(k)g.

Subcase 2.2. j > 2�

k

(k)

Then we set L

hk;ji

= L

hk;0i

.

Finally, let L = (L

hk;ji

)

k;j2IN

. Since L =2 CCONSV (cf. Lange and Zeugmann (1993a),

Theorem 1), it su�ces to show that L 2 e-CSUB .

The desired ELMM works with respect to the following class comprising hypothe-

sis space H = (H

hk;ji

)

k;j2IN

. For all j; k 2 IN, we set:

H

hk;ji

=

�

L

hk;ji

[ fa

k

c

�

k

(k)

g; if : �

k

(k) � j;

L

hk;ji

; otherwise:

Note that L

hk;ji

[ fa

k

c

�

k

(k)

g equals L

hk;ji

, if '

k

(k) is unde�ned. By de�nition, H

serves as an class comprising hypothesis space for L. We continue in de�ning the

desired ELM M . Let L 2 range(L), let t 2 text(L), and let x 2 IN.

ELM M: \On input t

x

do the following:

Determine the unique k 2 IN such that t

+

x

� fa

k

b

n

n 2 INg. Test whether or

not �

k

(k) � x. If not, goto (�). Otherwise, goto (�).

(�) If x < hk; 0i, then output x. Otherwise, output hk; 0i � 1. Request the

next input.

(�) Let z = M(t

x�1

). Fix j = maxfm a

k

b

m

2 t

+

x

g, and test whether or not

j � �

k

(k). In case it is, goto (�1). Else, goto (�2).

12



(�1) If z+1 < hk; j+�

k

(k)i, output z+1. Otherwise, output z, and request

the next input.

(�2) If z + 1 < hk; 2�

k

(k) + 1i, output z + 1. Otherwise, output z, and

request the next input."

Let L = L

hk;ji

for some k; j 2 IN. In order to verifyM 's correctness we distinguish

the following cases.

Case 1. '

k

(k) is unde�ned.

Hence, L = L

hk;ji

= H

hk;ji

for all j 2 IN. By construction, M outputs all and only

the numbers z with z < hk; 0i. Let ẑ = hm;ni be any of these indices. By de�nition

of Cantors pairing function, ẑ = hm;ni < hk; 0i implies m 6= k. Thus, M deletes

exclusively indices z meeting H

z

6= L, and we are done.

Case 2. '

k

(k) is de�ned.

Let y 2 IN such that �

k

(k) = y. We distinguish the following subcases.

Subcase 2.1. L is �nite.

By de�nition of L, there has to be a j � y such that L = L

hk;y+ji

. Moreover by

H's de�nition, L = H

hk;y+ji

. Since L is �nite, there has to be a least x > y such

that t

+

x

= L. By construction, M , when successively fed t

x+hk;y+ji

, outputs all indices

z < hk; y + ji, and it never erases any index exceeding hk; y + ji � 1.

It remains to show that H

z

6= L for all z < hk; y + ji. This can be seen as

follows. Assume any ẑ = hm;ni with ẑ < hk; y + ji. Clearly, m 6= k immediately

implies H

hm;ni

6= L for all n 2 IN. Now, suppose that m equals k, i.e., ẑ = hk; ni.

By de�nition of Cantors pairing function, hk; ni < hk; y + ji results in n < y + j.

Since '

k

(k) is de�ned, we know that H

hk;ni

=2 range(L) for all n < y. Finally, let

j � 1, and let n 2 fy; : : : ; y + j � 1g. Thus, H

hk;ni

= L

hk;ni

. By de�nition of L,

L

hk;ni

� L

hk;y+ji

= L, and thus H

hk;ni

6= L. Hence, we are done.

Subcase 2.2. L is in�nite.

Hence, L = L

hk;0i

= H

hk;2y+1i

. Since L is in�nite and '

k

(k) is de�ned, there

has to be a least x 2 IN such that both x � y and maxfm a

k

b

m

2 t

+

x

g > y are

ful�lled. Again, by construction, M has deleted all indices z with z < hk; 2y + 1i,

when successively fed t

x+hk;2y+1i

. Furthermore,M is never outputting any other index.

As above, it remains to show that H

z

6= L for all z < hk; 2y + 1i. However,

H

hk;y+ri

is �nite for all r with 0 � r � y. Therefore, the idea that has been successful

used in handling the above subcase applies mutatis mutandis to verify that, for all

z < hk; 2y + 1i, H

z

does not equal L.

To sum up, M e-CSUB{learns L, and therefore M witnesses L 2 e-CSUB with

respect to H.

Clearly, Assertion (3) follows immediately by Claim C and Claim D. Finally, since

e-SUB � e-CSUB and e-SUB � CONSV (cf. Theorem 1), we obtain e-SUB �

e-CSUB via Claim D. Thus Assertions (2) and (3) are proved. q.e.d.

A closer look at the proof of Claim C in the latter theorem clari�es that every

inclusion-free indexed family is e-EQ{identi�able with respect to every class preserv-

ing hypothesis space. Consequently, by Assertion (1) of Theorem 4 we immediately

13



arrive at the following corollary.

Corollary 5. e-AEQ = e-EQ = e-CEQ.

3.3. Absolute Learning by Erasing

Within this subsection, we study the power as well as the limitations of absolute

learning for the remaining learning models.

Theorem 6.

(1) For all LT 2 fARB ; SUB ; SUPERg, e-ALT = e-EQ ,

(2) FIN � e-AALL � e-EQ .

Proof. First, we prove Assertion (1). By De�nitions 4 and 5 one immediately

obtains e-AEQ � e-ASUB � e-AARB as well as e-AEQ � e-ASUPER � e-AARB .

Since e-AEQ = e-EQ (cf. Corollary 5), it su�ces to show that e-AARB � e-EQ .

This can be done as follows.

Claim A. Let L be an indexed family. If L 2 e-AARB, then L is inclusion-free.

Suppose the converse, i.e., L 2 e-AARB , but L is not inclusion-free. Hence, there

are L;

^

L 2 range(L) with L �

^

L. Now, choose any class preserving hypothesis space

 for L such that L( 

0

) =

^

L and L( 

j

) 6=

^

L, for all j > 0. Clearly, such hypothesis

space always exists.

By assumption, L 2 e-AARB , and therefore there is an ELM M which e-ARB{

identi�es L with respect to  . Now, let t be any text for L. SinceM e-ARB{identi�es

L from t, there has to be an x 2 IN such thatM(t

x

) = 0. Otherwise,M would stabilize

on t to 0, but L( 

0

) 6= L. Now, �x the least x with M(t

x

) = 0, and choose any text

^

t

for

^

L � L that has the initial segment t

x

. However,M , when successively fed

^

t, deletes

the one and only  {index for

^

L. Thus, M does not stabilize on

^

t to a correct guess

for

^

L. Since

^

L 2 range(L), this contradicts our assumption that M e-ARB{identi�es

L with respect to  , and Claim A follows.

Within the proof of Theorem 4 (cf. Claim B) we have already shown that every

inclusion-free indexed family belongs to e-EQ . Hence, e-AARB � e-EQ , and Asser-

tion (1) follows.

Next, we prove Assertion (2). Since FIN � e-AALL (cf. Freivalds and Zeugmann

(1995), Theorems 1 and 13), it remains to show that e-AALL � e-EQ . Clearly,

e-AALL � e-AARB . Combining this with e-AARB = e-EQ (cf. Assertion (1)), we

immediately see that the only missing part is the separation of e-EQ and e-AALL.

Claim C. e-EQ n e-AALL 6= ;.

We de�ne the desired indexed family L as follows. For all k 2 IN, let L

2k

=

f2

k

; 2

k+�

k

(k)

+ 1g and L

2k+1

= f2

k

; 2

k+�

k

(k)

+ 3g. After a bit of reection one easily

veri�es that L is indeed an indexed family. Moreover, L is inclusion-free, and therefore

L 2 e-EQ (cf. Theorem 4, Claim B).

Next, let us verify that L =2 e-AALL. For that purpose, we choose the hypothesis

space  with L( 

k

) = L

k

, for all k 2 IN, and show that L =2 e-ALL with respect to  .
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Since the halting problem is undecidable, the latter statement follows by contraposi-

tion of the following lemma.

Lemma. If there exists an ELM M which e-ALL{identi�es L with respect to  ,

then one can e�ectively construct an Algorithm A deciding for all k 2 IN whether or

not '

k

(k) converges.

Let M be any ELM that witnesses L 2 e-ALL with respect to  . We de�ne the

desired algorithm A. On input k 2 IN, execute the following instructions:

(A1) For x = 0; 1; 2; : : : generate successively the text t = 2

k

; 2

k

; 2

k

; : : : until (�1)

or (�2) happens.

(�1) �

k

(k) = x has been veri�ed.

(�2) M(t

x

) = 2k or M(t

x

) = 2k + 1 has been observed.

(A2) In case (�1) happens �rst, output `'

k

(k) converges' and stop.

Otherwise output `'

k

(k) diverges' and stop.

Obviously, Instructions (A1) and (A2) are e�ectively executable. Next, we argue that

A has to terminate for all k 2 IN. Clearly, if '

k

(k) is de�ned, then there is some

x 2 IN with x = �

k

(k), and A stops. Now, suppose that '

k

(k) is unde�ned. Then t

is a text for the language L = f2

k

g 2 L. By assumption, M e-ALL{identi�es L when

fed t. Hence, M has eventually to delete all but one  {index, and (�2) must happen.

Thus, A terminates for all k 2 IN.

Finally, we verify A's correctness. Clearly, if A outputs `'

k

(k) converges', then

(�1) has happened. Thus, �

k

(k) = x for some x 2 IN, and hence '

k

(k) is de�ned.

Now, suppose that A outputs `'

k

(k) diverges,' but '

k

(k) is de�ned. Let y 2 IN be

such that y = �

k

(k). Without loss of generality, we may, additionally, assume that

M, when fed t

x

for some x < y, was striking o� the  {index 2k, i.e., M(t

x

) = 2k.

By de�nition of  , we know that L

2k

= f2

k

; 2

k+y

+ 1g. Moreover, 2k is the one and

only  {index that is correct for L

2k

. Clearly, that immediately implies that M cannot

e-ALL{identify L

2k

when fed L

2k

's text

^

t = t

x

�2

k+y

+1; 2

k+y

+1; : : :, a contradiction.

Consequently, A solves the halting problem, and the lemma follows. Hence, As-

sertion (2) is proved. q.e.d.

The following corollary summarizes the results obtained.

Corollary 7.

(1) For all LT 2 fARB ; SUPER; ALLg, e-ALT � e-LT = e-CLT ,

(2) e-ASUB � e-SUB � e-CSUB .

Figure 1 displays the achieved separations and coincidences of the learning by eras-

ing models and the ordinary learning types de�ned. Each learning type is represented

as a vertex in a directed graph. A directed edge (or path) from vertex A to vertex B

indicates that A is a proper subset of B, and no edge (or path) between these vertices

imply that A and B are incomparable. Finally, LT stands for ARB, SUB, EQ and

SUPER, respectively.
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Figure 1. Learning by erasing versus ordinary inference

4. Learning from Informant

In this section we study learning by erasing from both positive and negative data.

Thus, we have to introduce some more notations and de�nitions. Let L be a language,

and let i = (s

0

; b

0

); (s

1

; b

1

); : : : be an in�nite sequence of elements of IN�f+;�g such

that content(i) = fs

k

k 2 INg = IN, i

+

= fs

k

(s

k

; b

k

) = (s

k

;+); k 2 INg =

L and i

�

= fs

k

(s

k

; b

k

) = (s

k

;�); k 2 INg = co-L. Then we refer to i as an

informant. If L is classi�ed via an informant then we also say that L is represented

by positive and negative data. By info(L) we denote the set of all informants

for L. We use i

x

to denote the initial segment of i of length x + 1, and de�ne i

+

x

=

fs

k

(s

k

;+) 2 i; k � xg and i

�

x

= fs

k

(s

k

;�) 2 i; k � xg. Furthermore, CLIM:INF

and FIN:INF are de�ned analogously as in De�nitions 1 and 2, respectively by

replacing everywhere text by informant. Finally, we extend all de�nitions of learning

by erasing in the same way, and denote the resulting learning types by e-CLT :INF

for all LT 2 fARB ; SUB ; EQ ; SUPER; MINg.

Freivalds, Karpinski and Smith (1994) originally introduced the learning types

e-ALL:INF and implicitely e-AALL:INF , and referred to them as to co{learning

(abbr. co-FIN ). Furthermore, they considered the co{learnability of arbitrary recur-

sively enumerable classes of total recursive functions. This contrasts our scenario,

since we exclusively study the learnability of f0; 1g valued functions. Nevertheless,

their results easily translate into our setting. The following proposition displays the

results obtained.
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Proposition 4. (Freivalds, Karpinski and Smith, 1994)

FIN :INF � e-AALL:INF � e-ALL:INF = LIM :INF

Taking into account that CLIM :INF = ALIM :INF , one easily veri�es e-ALL:INF

= e-CALL:INF . Moreover, Freivalds, Gobleja et al. (1994) could improve Propo-

sition 4 to FIN :INF � co-FIN by using a deep result by Selivanov (1976). Note,

however, that the separating function class is not f0; 1g valued. The latter result

directly raises two questions. First, which indexed families belong to e-AALL:INF ,

and second, whether or not e-AALL:INF n FIN :INF 6= ;, too.

The �rst question has been completely answered by Kummer (1995) as the next

proposition shows.

Proposition 5. (Kummer, 1995)

Let L be any indexed family. Then L 2 e-AALL:INF if and only if every class

preserving hypothesis space for L has a recursive equality problem.

Moreover, Kummer (1995) proved that every indexed family L 2 e-AALL:INF

must be discrete. An indexed family L = (L( 

j

))

j2IN

is said to be discrete i� for

every k 2 IN, there is a �nite function �

k

�  

k

such that for all j 2 IN, if �

k

�  

j

then  

k

=  

j

. We refer to �

k

as to a separating function for  

k

. An indexed

family L = (L( 

j

))

j2IN

is said to be e�ectively discrete if there exists an algorithm

computing for every k 2 IN a separating function �

k

for  

k

.

Our next theorem completely answers the second question posed above. Again,

the proof is based on the Selivanov's (1976) result already used by Freivalds, Gobleja

et al. (1994).

Theorem 8. e-AALL n FIN :INF 6= ;.

Proof. Selivanov (1976) showed that there is a recursively enumerable class U

se

of

total recursive functions ful�lling the following requirements:

(1) every numbering � 2 R

2

for U

se

has a recursive equivalence problem,

(2) U

se

is not e�ectively discrete.

Since U

se

is not f0; 1g valued, some transformation of it is in order. Using U

se

we

de�ne an indexed family L

se

that is well-suited to separate e-AALL and FIN :INF .

Let � 2 R

2

be any numbering for U

se

. For all j; x; y 2 IN we set:

 

j

(hx; yi) =

�

1; if �

j

(x) = y;

0; otherwise:

Finally, set L

se

= (L( 

j

))

j2IN

. Clearly, L

se

is an indexed family.

Claim A. L

se

2 e-AALL.

Applying our characterization of e-AALL (cf. Theorem 18) it su�ces to show that

L

se

is inclusion-free and, furthermore, every class preserving hypothesis space for L

se

has a recursive equality problem.

This can be veri�ed as follows. Let j 2 IN. Since � is a numbering of total recursive

functions, we may easily conclude that, for every x 2 IN, there is exactly one y 2 IN

with hx; yi 2 L( 

j

). Thus, one immediately sees that L

se

is inclusion-free.
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Now, assume any class preserving hypothesis space

^

 for L

se

. For all j; x 2 IN,

set �̂(j; x) = y, where y is the uniquely determined number with hx; yi 2 L(

^

 

j

).

Obviously, �̂ 2 R

2

. Since

^

 is class preserving for L

se

, �̂ is a numbering for U

se

.

Clearly, �̂

j

= �̂

k

implies L(

^

 

j

) = L(

^

 

k

). By Property (1) �̂ has a recursive equality

problem, and thus we are done.

Claim B. L

se

62 FIN :INF .

Suppose the converse, i.e., L

se

2 FIN :INF . Since �nite inference is invariant

with respect to choice of the hypothesis space (cf. Lange and Zeugmann (1994)), we

may assume that there is an IIM M witnessing L

se

2 FIN :INF with respect to the

hypothesis space  de�ned above.

GivenM , we de�ne an algorithmA that assigns to every �

k

a separating function �

k

.

A is de�ned as follows. On input k 2 IN, execute the following instructions:

(A1) For z = 0; 1; 2; : : : generate successively the lexicographically ordered infor-

mant i

k

for L( 

k

) until M outputs a guess, say on input i

k

ẑ

.

(A2) Set �

k

= f(x; �

k

(x)) x � ẑg, and stop.

Since M FIN :INF{identi�es L

se

, we may conclude that Instruction (A1) termi-

nates for every k 2 IN, and thus A is recursive. It su�ce to show that, for all j 2 IN,

�

k

� �

j

implies �

k

= �

j

.

Suppose any j 2 IN with �

k

� �

j

. Clearly, �

k

(x) = �

j

(x) for all x � ẑ, and

therefore  

k

(hx; yi) =  

k

(hx; yi) for all y 2 IN and all x � ẑ. Thus, i

k

ẑ

is an initial

segment of the lexicographically ordered informant i

j

for L( 

j

). By De�nition 2 M ,

when successively fed i

k

and i

z

, respectively, is only allowed to generate a single, but

correct hypothesis. SinceM , when fed i

k

ẑ

= i

j

ẑ

, has ouput its one and only hypothesis,

we obtain M(i

k

ẑ

) =M (i

j

ẑ

), and hence L( 

k

) = L( 

j

). Consequently, �

k

= �

j

, too.

Thus, U

se

is e�ectively discrete, a contradiction. q.e.d.

Thus, it remains to clarify the relations with respect to inclusion between the

remaining learning by erasing models. This is done by the following theorem.

Theorem 9. For all LT 2 fARB ; SUB ; EQ; SUPER; MINg we have

e-ALT :INF = e-LT :INF = e-CLT :INF = LIM :INF .

Proof. First, we prove that every indexed family belongs to e-AEQ :INF and

e-AMIN :INF , respectively.

Claim A. L 2 e-AEQ :INF for every indexed family L.

Let  2 R

2

0;1

be any class preserving hypothesis space for L. The desired ELM M

can be de�ned as follows. Let L 2 range(L), let i 2 info(L), and let x 2 IN.

ELM M: \On input i

x

proceed as follows:

If x = 0, then set Alive

0

= IN, output nothing and request the next input.

Otherwise, test for all k 2 Alive

x�1

with k � x, whether or not i

+

x

6� L( 

k

)

or i

�

x

6� co-L( 

k

). If there is at least one index passing this test, output the

minimal one, say

^

k, update Alive

x

= Alive

x�1

nf

^

kg, and request the next input.

Otherwise, set Alive

x

= Alive

x�1

output nothing and request the next input."
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By construction, M never outputs a correct  {index for L. It remains to argue, that

M eventually deletes all indices k with L( 

k

) 6= L. This can be shown similarly as

in the proof of Theorem 4, Claim B. Note that L( 

k

) 6= L implies i

+

x

6� L( 

k

) and

i

�

x

6� co-L( 

k

), respectively, for almost all x 2 IN. We omit the details.

Claim B. L 2 e-AMIN :INF for every indexed family L.

Let  2 R

2

0;1

be any class preserving hypothesis space for L. The desired ELM M

can be de�ned as follows. Let L 2 range(L), let i 2 info(L), and let x 2 IN. Initialize

Guess

0

= 0. On input i

x

M behaves as follows. Let k = Guess

x�1

. If i

+

x

� L( 

k

) and

i

�

x

� co-L( 

k

), it outputs nothing, sets Guess

x

= Guess

x�1

, and requests the next

input. Otherwise, it updates Guess

x

= k + 1, and outputs k.

One directly veri�es that M exactly outputs all and only the indices j less than

the least  {index for L. We omit the details.

By de�nition, e-AEQ :INF � e-ALT :INF for all LT 2 fARB ; SUB ; SUPERg,

and thus, by Claim A, every indexed family is contained in e-ALT :INF , too. On

the other hand, every indexed family belongs to LIM :INF (cf. Gold (1967)). Finally,

taking into account that e-ALT :INF � e-LT :INF � e-CLT :INF for any learning

type LT 2 fARB ; SUB ; EQ ; SUPER; MIN g the theorem directly follows. q.e.d.

So far we have studied separately learning from text and learning from informant.

Now we focus our attention to another interesting aspect, namely the interplay be-

tween information presentation and learnability constraints. The �rst known result

along this line of research relates �nite learning from informant to conservative infer-

ence from text.

Proposition 6. (Lange and Zeugmann, 1993a)

FIN :INF � CONSV .

Since FIN :INF � e-AALL:INF , the question arises whether or not Proposition 6

generalizes to e-AALL:INF � CONSV or at least to e-AALL:INF � LIM .

Our next result establishes a nice consequence of Kummer's (1995) characterization

of e-AALL:INF . We prove that discreteness implies LIM-learnability from text.

Theorem 10. Let L be any indexed family. If L is discrete, then L 2 LIM .

Proof. Let L be an indexed family that is discrete, and let  be any class pre-

serving hypothesis space for L having a recursive equality problem. Note that such

a hypothesis space always exists as shown in Lange, Nessel and Wiehagen (1996) (cf.

proof of Theorem 1). Based on  , we assign to every L( 

j

) a recursively enumerable

set T

j

, a so-called \tell{tale," that satis�es the following requirements:

(1) T

j

� L( 

j

),

(2) T

j

is �nite,

(3) for all k 2 IN, T

j

� L( 

k

) implies L( 

k

) 6� L( 

j

).

Thus, applying Angluin's characterization of LIM (cf. Angluin (1980), Theorem 1)

we may conclude that L is LIM{identi�able with respect to  .
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It remains to construct the sets T

j

. For all j 2 IN, we set T

j

=

S

z2IN

T

(z)

j

, and

de�ne the corresponding subsets T

(z)

j

as follows. Let j; z 2 IN, we set:

T

(z)

j

=

�

;; if  

j

=  

k

;

fx x � n; x 2 L( 

j

)g; otherwise; where n = minfx  

j

(x) 6=  

z

(x)g:

Since  is a hypothesis space that has a recursive equality problem, one easily

veri�es that T

(z)

j

is �nite and recursive. By de�nition T

(z)

j

� L( 

j

) and therefore T

j

is a recursively enumerable subset of L( 

j

).

Next, we verify (2). Let j 2 IN be arbitrarily �xed. Since L is discrete and  

is class preserving for L, there has to be a separating function �

j

for L( 

j

). Let

n̂ = max(Arg(�

j

)). Hence, T

(z)

j

� fx x � n̂; x 2 L( 

j

)g for all z 2 IN, and thus T

j

is indeed �nite.

Finally, we show (3). Suppose the converse, i.e., there are j; k 2 IN such that

T

j

� L( 

k

) and L( 

k

) � L( 

j

). Clearly,  

j

6=  

k

. Let n

k

= minfx  

j

(x) 6=  

k

(x)g.

Since L( 

k

) � L( 

j

), we obtain n

k

=2 L( 

k

) and n

k

2 L( 

j

). By T

(k)

j

's de�nition

n

k

2 T

(k)

j

, and therefore n

k

2 T

j

, too. However, n

k

=2 L( 

k

), and thus T

j

6� L( 

k

), a

contradiction. q.e.d.

Corollary 11. e-AALL:INF � LIM .

Proof. Let L 2 e-AALL:INF . Hence, L is discrete (cf. Kummer (1995), Theorem 10

and Fact 5). Thus, L 2 LIM follows by Theorem 10. On the other hand, let L

fin

denote the indexed family canonically enumerating all �nite sets of natural numbers.

Obviously, L

fin

is not discrete, and thus, L

fin

=2 e-AALL:INF . Finally, L

fin

2 LIM ,

and the corollary follows. q.e.d.

By Corollary 3 we may easily conclude:

Corollary 12. For all LT 2 fARB ; SUPER; ALLg, e-AALL:INF � e-LT .

The following theorem enables us to clarify the relation between the remaining

models of learning by erasing from text and informant, respectively.

Theorem 13.

(1) FIN :INF n e-CSUB 6= ;,

(2) e-EQ n e-AALL:INF 6= ;.

Proof. For verifying Assertion (1) recall the de�nition of the indexed family L =

(L

j

)

j2IN

used in the proof of Theorem 1, i.e., L

0

= IN and L

j+1

= fjg. Obviously, L is

FIN :INF{identi�able, and since L =2 e-CSUB (cf. Theorem 4, Claim C), Assertion (1)

follows.

Next, we show Assertion (2). For that purpose, we choose the indexed family L

introduced in the proof of Theorem 6, Claim C, i.e., L

2k

= f2

k

; 2

k+�

k

(k)

+ 1g and

L

2k+1

= f2

k

; 2

k+�

k

(k)

+ 3g for all k 2 IN. We already know that L 2 e-EQ .

It remains to show that L =2 e-AALL:INF . Let  be the hypothesis space de�ned

by L( 

k

) = L

k

for all k 2 IN. We show L =2 e-AALL:INF by reducing the halting
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problem to L 2 e-AALL:INF . If L 2 e-AALL:INF with respect to  would hold,

then, by Proposition 5,  has a recursive equality problem. Consequently, '

k

(k) is

de�ned i� L

2k

6= L

2k+1

, and the halting problem would be recursive. Hence, L =2

e-AALL:INF . q.e.d.

Taking into account that LIM � LIM :INF (cf. Gold (1967)), we directly arrive at

the following corollary displaying the consequences of the latter theorem.

Corollary 14. For all LT 2 fARB ; SUB ; EQ ; SUPER; ALLg and for all

� 2 f A; "; Cg, we have e-�LT � e-�LT :INF .

Putting Theorem 13 together with Corollary 5 we can easily conclude:

Corollary 15.

(1) e-AEQ # e-AALL:INF ,

(2) e-SUB # e-AALL:INF ,

(3) e-CSUB # e-AALL:INF ,

(4) e-AALL # FIN :INF .

Figure 2 summarizes the estabilshed relations of learning by erasing from text and

informant, respectively. The semantics of Figure 2 is analogous to that of Figure 1.

Again LT stands for ARB , SUPER, SUB and EQ , respectively.
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Figure 2. Relations between learning by erasing from text and informant
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5. Characterizations

In this section we present characterizations of all the learning by erasing models.

These characterizations may help to gain a better understanding of what the de�ned

learning models have in common and what their di�erences are. Our �rst result

characterizes e-ARB ; e-EQ ; e-SUB and e-SUPERg in purely topological terms.

Theorem 16. Let L be any indexed family. L 2 e-EQ if and only if L is

inclusion-free.

Proof. Necessity: Let L 2 e-EQ . Hence, L 2 e-CEQ , and therefore L is inclusion-

free (cf. Theorem 4, Claim A).

Su�ciency: This part has been already shown within the proof of Theorem 4 (cf.

Claim B), and the theorem follows. q.e.d.

Taking Corollary 5 and Theorem 6, Assertion (1) into consideration we may easily

conclude:

Corollary 17. Let LT 2 fARB ; SUB ; EQ ; SUPERg, and let L be an indexed

family. L 2 e-ALT if and only if C is inclusion-free.

For characterizing e-AALL we had to combine the topological approach with the

numbering theoretical one used by Kummer (1995).

Theorem 18. Let L be any indexed family. L 2 e-AALL if and only if

(1) L is inclusion-free, and

(2) every class preserving hypothesis space for L has a recursive equality problem.

Proof. Necessity: Let L 2 e-AALL. By de�nition L 2 e-AARB , and thus L is

inclusion-free (cf. Corollary 17). On the other hand, e-AALL � e-AALL:INF . Hence,

by Proposition 5 we obtain that every class preserving hypothesis space for L has a

recursive equality problem.

Su�ciency: Let L be any inclusion-free indexed family, and let  be any class

preserving hypothesis space for L having a recursive equality problem. Thus, there is

a p 2 R

2

0;1

such that for all j; k 2 IN, p(j; k) = 1 i�  

j

=  

k

. We design an ELM M

witnessing L 2 e-ALL with respect to  . Let L 2 range(L), t 2 text(L), and x 2 IN.

ELM M: \On input t

x

proceed as follows:

If x = 0, then set ToErase

0

= ;, output nothing and request the next input.

Otherwise, test whether or not ToErase

x�1

= ;.

In case it is, execute Instruction (A1). Otherwise, goto (A2).

(A1) Determine the least index k with t

+

x

� L( 

k

), and �x z = maxfx; kg. Set

ToErase

x

= fj j � z; t

+

x

6� L( 

j

)g [ fj k < j � z; p(k; j) = 1g. Output

nothing, and request the next input.

(A2) Determine j = min(ToErase

x�1

). Update ToErase

x

= ToErase

x�1

n fjg,

output j, and request the next input."
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Since t 2 text(L) for some L 2 range(L), the unbounded search performed within

Instruction (A1) terminates for every x 2 IN, and thus, M is an ELM. Let

^

k =

min

 

(L). We show that M eventually outputs all natural numbers but

^

k.

Claim A.

^

k =2 ToErase

x

for all x 2 IN.

Suppose the converse. Hence, there exists a least x 2 IN such that

^

k 2 ToErase

x

.

By de�nition,M includes

^

k into ToErase

x

i� either t

+

x

6� L( 

^

k

) or an index k <

^

k has

been found that meets p(k;

^

k) = 1. Since L( 

^

k

) = L, t

+

x

6� L( 

^

k

) cannot be observed.

Moreover, p(k;

^

k) = 1 implies L( 

k

) = L contradicting that

^

k is the least  {index for

L. The claim follows.

Since M is exclusively outputting numbers j 2 ToErase

x

for some x 2 IN, the

index

^

k is never deleted. It remains to show that M eventually outputs all  {indices

that are di�erent from

^

k.

Claim B. M, when successively fed t, outputs all k 2 IN n f

^

kg.

We distinguish the following cases.

Case 1. L( 

k

) 6= L.

Since  is class preserving and L is inclusion-free, we know that L n L( 

k

) 6= ;.

Because of t 2 text(L), there must be a minimal y such that t

+

y+`

6� L( 

k

) for all

` 2 IN. Thus, if ToErase

y�1

= ; then k 2 ToErase

y

. Otherwise, there must be an

r 2 IN such that k 2 ToErase

y+r

. Consequently, k is output eventually.

Case 2. L( 

k

) = L.

Since

^

k is the least  {index of L, the inclusion-freeness of L implies L( 

^

k

)nL( 

j

) 6=

; for all j <

^

k. Hence, there exists a y 2 IN such that t

+

y

6� L( 

j

) for all j <

^

k.

Therefore, for all x � y the unbounded search in Instruction (A1) terminates at

^

k.

Moreover, since L( 

k

) = L we have p(

^

k; k) = 1. Consequently, there must be an

x � maxfy; kg such that k 2 ToErase

x

. Consequently, k is again eventually output.

Thus, Claim B follows, and the theorem is proved. q.e.d.

Next, we characterize e-CSUB and e-SUB . Now we derive necessary and su�-

cient conditions for any given pair of an indexed family and a hypothesis space for

it. Again, the characterization is mainly based on the topological properties of the

relevant hypothesis spaces. However, we had to add a recursive component to these

topological properties. Within the next de�nition we provide the necessary framework

for establishing the desired characterization theorems.

De�nition 6. Let L be any indexed family, let L 2 range(L), and let  be any

class comprising hypothesis space for L. Then we set:

(1) Bad (L;  ) = fj L � L( 

j

); and j < min

 

(L) for some L 2 range(L)g,

(2) Comp(L;  ) = fj L( 

j

) =2 range(L)g.

Theorem 19. Let L be an indexed family. L 2 e-CSUB if and only if there are

a class comprising hypothesis space  for L and a recursively enumerable set W such

that Bad(L;  ) � W � Comp(L;  ).

Proof. Necessity: Let L 2 e-CSUB . Hence, there are a class comprising hypothesis

space

^

 for L and an ELM

^

M that witnesses L 2 e-CSUB with respect to

^

 .
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Next, we use M to de�ne f 2 P such that W = range(f). For every k 2 IN, let t

k

denote the canonical text for the language L( 

k

). For every k; x 2 IN, we set:

f (hk; xi) =

�

M(t

k

x

); if content(t

k

x

) � L( 

M(t

k

x

)

);

not de�ned; otherwise:

Using the convention that, if M on input t

k

x

does not output any hypothesis then

f(hk; xi) is also not de�ned, we obviously have f 2 P . It remains to show that

Bad(L;  ) � W � Comp(L;  ).

Claim A. W � Comp(L;  ).

If W = ;, we are done. Now, let z = f (hk; xi) for some k; x 2 IN. By de�nition

of f , we have M(t

k

x

) = z and content(t

k

x

) � L( 

z

). Suppose, L( 

z

) 2 range(L).

Since content(t

k

x

) � L( 

z

), t

k

x

is an initial segment of some text

^

t for L( 

z

). Thus M ,

when fed the text

^

t for L( 

z

) 2 range(L), outputs the correct  {index z for L( 

z

).

This contradicts our assumption that M e-CSUB{infers L with respect to  . Thus,

Claim A follows.

Claim B. Bad(L;  ) � W .

Suppose the converse, i.e., there is a z 2 Bad(L;  ) nW . Hence, z < min

 

(L) for

some L 2 range(L) with L � L( 

z

). We distinguish the following cases.

Case 1. L( 

z

) 2 range(L)

Consider M when fed any text t for L. Because of z < min

 

(L), M eventually

outputs z, say on input t

x

, since otherwise it would stabilize on t to some z

0

� z with

L( 

z

0

) 6= L. However, since L � L( 

z

), the initial segment t

x

may be extended to a

text for L( 

z

) on whichM outputs z. This is a contradiction toM e-CSUB{identi�es

L with respect to  .

Case 2. L( 

z

) =2 range(L)

Let k be any  {index for L. Consider M when fed the canonical text t

k

for L.

SinceM e-CSUB{identi�es L from text, M must stabilize on t

k

to min

 

(L). Because

of z < min

 

(L), there has to be an x 2 IN with M(t

k

x

) = z. Thus, f(hk; xi) = z, and

hence z 2 W , again a contradiction.

Claim B follows, and we are done.

Su�ciency: Let L be any indexed family, let  be a class comprising hypothesis

space for L, and let W be a recursively enumerable set with Bad (L;  ) � W �

Comp(L;  ). Let ` 2 IN be such that W = range('

`

), and let W

z

be the elements of

W , if any, enumerated after z steps of computation of '

`

. We de�ne an ELM M that

witnesses L 2 e-CSUB with respect to  . So, let L 2 range(L), t 2 text(L), and let

x 2 IN.

ELM M: \On input t

x

proceed as follows:

If x = 0, initialize ToErase

0

= ;. Output nothing and request the next input.

Otherwise, test whether or not ToErase

x�1

= ;. In case it is, goto (A1). Oth-

erwise, goto (A2).

(A1) Determine the least index k that satis�es both t

+

x

� L( 

k

) and k =2 W

x

.

Update ToErase

x

= fj j < kg, output nothing, and request the next

input.
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(A2) Determine j = min(ToErase

x�1

). Update ToErase

x

= ToErase

x�1

n fjg,

output j, and request the next input."

Let

^

k = min

 

(L). Clearly,

^

k =2 W and t

+

x

� L( 

^

k

) for all x 2 IN. Hence, the

unbounded search performed within Instruction (A1) terminates for all x 2 IN. Fur-

thermore, the same arguments imply that M never outputs

^

k.

It remains to show thatM outputs all numbers k <

^

k. This can be done inductively.

Let 0 < k <

^

k, and suppose that y has been selected in a way such that M has been

already output all j < k when fed t

y

. We distinguish the following cases.

Case 1. L n L( 

k

) 6= 0.

Hence, there is a least x > y such that t

+

x

6� L( 

k

). By M 's de�nition there has

to be a z � x such that M , when fed t

z

, starts the execution of Instruction (A1), and

includes k into ToErase

z

. Hence, M eventually outputs k.

Case 2. L � L( 

k

).

Now, we may conclude that k 2 Bad(L;  ), and therefore k 2 W , too. Conse-

quently, there is some x 2 IN such that k 2 W

x

. Now, select z � maxfy; xg in a

way such thatM , when fed t

z

, executes Instruction (A1). Consequently, k appears in

ToErase

z

, and will therefore be output in some subsequent step.

Clearly, the above argumentation applies mutatis mutandis to handle the induction

base, i.e., the k = 0 case. Hence,M stabilizes on t to the least  {index

^

k for L, thereby

outputting only indices k <

^

k. q.e.d.

Theorem 20. Let L be any indexed family. L 2 e-SUB if and only if there is a

class preserving hypothesis space  for L such that Bad(L;  ) = ;.

Proof. Necessity: Let L be any e-SUB{learnable indexed family. Thus, there are

an ELM M and a class preserving hypothesis space  for L such that M e-SUB{

infers L with respect to  . Suppose, Bad(L;  ) 6= ;. Hence, there exist a language

L 2 L and an index j < min

 

(L) such that L � L( 

j

). Now, when fed any text

t 2 text(L), M has to output j sometime, say on t

x

. Again, t

x

can be extended to

a text

^

t 2 text(L( 

j

)) on which M also outputs j and hence a correct number for

L( 

j

), a contradiction.

Su�ciency: Let L be any indexed family possessing a class preserving hypothesis

space  with Bad(L;  ) = ;. Then L can be e-SUB{inferred with respect to  by an

ELMM working as follows. Let L 2 L, t 2 text(L), and let x 2 IN. Initialize S

0

= ;.

On input t

x

M behaves as follows. It searches the least k such that t

+

x

� L( 

k

).

Then, it computes E = f1; : : : ; k�1gnS

x�1

. If E 6= ;, it outputs j = minE, updates

S

x

= S

x�1

[ fjg, and requests the next input. Otherwise, it outputs nothing, sets

S

x

= S

x�1

, and requests the next input.

One directly veri�es that M exactly outputs the indices j < min

 

(L). q.e.d.

A closer look at the characterizations above shows that the ELMs constructed in

the su�ciency part share a nice property. Namely, given any text t for any languages L

in the target class, the ELMs precisely erase all hypotheses less than the least correct

one for L. Using this insight, we directly obtain all the remaining characterizations

for learning by erasing.
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Theorem 21. For all � 2 f"; A; Cg, e-�MIN = e-�SUB.

Proof. By de�nition, e-�MIN � e-�SUB for all � 2 f"; A; Cg. Furthermore,

e-SUB � e-MIN and e-CSUB � e-MIN has been shown within the proof of the

su�ciency part of Theorems 20 and 19, respectively.

It remains to verify that e-ASUB � e-AMIN . However, this inclusion follows

immediately from the proof of the necessity part in Theorem 20. q.e.d.

To sum up, since e-EQ = e-ASUB = e-AMIN , we obtain the missing characteri-

zations for the learning types e-AMIN , e-MIN and e-CMIN by Theorems 16, 20 and

19, respectively.

6. Conclusions and Open Problems

Di�erent models of learning by erasing have been de�ned, and the learning power of

all the resulting learning types has been related to one another as well as to learning

in the limit, conservative identi�cation, and �nite inference. As it turned out, all

but the e-EQ learning model are sensitive with respect to the particular choice of

the hypothesis space, thus nicely contrasting learning in the limit and �nite learning.

Moreover, the learning power of the e-SUB model is even very dependent on the set

of admissible hypothesis spaces.

A further interesting aspect is provided by Theorem 1, Corollaries 2 and 7. That

is, these results show that the process of elimination cannot be restricted to incorrect

hypotheses for achieving its whole learning power. On the other hand, all learning by

erasing models that are allowed to erase correct hypotheses, too, are as powerful as

learning in the limit provided the hypothesis space is appropriately chosen (cf. Theo-

rem 1). Consequently, in order to decide whether or not a particular indexed family

can be e-LT -learned, LT 2 fARB ; SUPER; ALLg, one can apply any of the known

criteria for LIM -inferability (cf., e.g., Angluin (1980), Sato and Umayahara (1992)).

These di�erences almost vanish if absolute learning is considered. Now, we have a

somehow opposite e�ect. Erasing all but one guess turns out to be most restrictive

with respect to the resulting learning capabilities.

The phenomena described above �nd their natural explanation in our character-

ization theorems. All models e-ALT of absolute learning by erasing are constraint

by the topological properties of the indexed families to be learned, i.e., they must be

inclusion-free (LT 2 fARB ; SUB ; EQ ; SUPER; ALLg), and in case of e-AALL,

additionally, all hypothesis spaces must be equivalent with respect to reducibility, i.e.,

they must have a recursive equality problem.

Moreover, in Section 4 we studied the problem whether or not information pre-

sentation may be traded versus learnability. The results obtained put the strength

of e-AALL:INF learning into the right perspective as displayed in Figure 2, pp. 21.

However, it remained open whether or not e-AALL:INF � LIM can be strength-

ened to e-AALL:INF � CCONSV . Note that Theorem 10 cannot be sharpened to

discreteness implies conservative learnability, since the index family L de�ned in the

proof of Theorem 4, Claim D is discrete but L =2 CCONSV (cf. Lange and Zeugmann

(1993a)).
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Finally, we want to point to a further possible line of research. In our opinion, it

may also be su�ciently interesting to investigate the complexity of learning by erasing.

This includes the comparison of the complexity of both the di�erent models of learning

by erasing as well as of learning by erasing with standard learning. As a result of the

�rst type we have the following comparison of the complexity of hypothesis spaces for

e-ALL-learning and e-ARB -learning. That is, there is an in�nite indexed family L

such that:

(1) for every  2 R

2

0;1

such that L 2 e-ALL with respect to  all but one language

L 2 range(L) must have in�nitely many  -numbers,

(2) there exists  2 R

2

0;1

such that L 2 e-ARB with respect to  and every language

from L has exactly one  -number.

This can be easily veri�ed using the indexed family L de�ned in the proof of Theo-

rem 1, Claim B, thus Property (2) follows. Property (1) is an immediate consequence

of Theorem 9 in Freivalds and Zeugmann (1995).
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