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Abstract

The present paper deals with the best-case, worst-case and average-case be-

havior of Lange and Wiehagen's (1991) pattern language learning algorithm with

respect to its total learning time. Pattern languages have been introduced by An-

gluin (1980) and are de�ned as follows:

Let A = f0; 1; ::g be any non{empty �nite alphabet containing at least two

elements. Furthermore, let X = fx

i

i 2 INg be an in�nite set of variables such

that A \X = ;. Patterns are non{empty strings from A [X . L(�), the language

generated by pattern � is the set of strings which can be obtained by substituting

non{null strings from A

�

for the variables of the pattern �.

Lange and Wiehagen's (1991) algorithm learns the class of all pattern languages

from text in the limit. We analyze this algorithm with respect to its total learning

time behavior, i.e., the overall time taken by the algorithm until convergence. For

every pattern � containing k di�erent variables it is shown that the total learning

time is O(log

jAj

(jAj+k)j�j

2

) in the best-case and unbounded in the worst-case. Fur-

thermore, we estimate the expectation of the total learning time. In particular, it is

shown that Lange and Wiehagen's algorithm possesses an expected total learning

time of O(2

k

k

2

jAjj�j

2

log

jAj

(kjAj)) with respect to the uniform distribution.

1. Introduction

The setting we want to deal with is the average-case analysis of pattern language

learning algorithms. The pattern languages have been introduced by Angluin [1]. More-

over, Angluin [1] also proved that the class of all pattern languages is learnable in the limit

from positive data. Subsequently, Shinohara [17] dealt with polynomial time learnability

of subclasses of pattern languages. Nix [14] outlined interesting applications of pattern

inference algorithms. Recently, the pattern languages again attracted a lot of attention.

Marron [13] studied their learnability from a single example and from queries. Lange and

Wiehagen [9] presented the �rst algorithm that iteratively learns all pattern languages.

1



Wiehagen and Zeugmann [19] dealt with consistent versus inconsistent pattern language

learning algorithms. Furthermore, Lange and Zeugmann [10] as well as Zeugmann, Lange

and Kapur [20] investigated the learnability of pattern languages under monotonicity con-

straints and with respect to set of allowed hypothesis spaces. Moreover, Kearns and Pitt

[7], Ko, Marron and Tzeng [8] and Schapire [16] intensively studied the learnability of

pattern languages in the PAC{learning model; thus, Schapire [16] proved that the class

PAT of all pattern languages is not PAC-learnable unless P

=poly

= NP

=poly

. Jiang et

al. [6] proved that inclusion for pattern languages is undecidable. The latter result has

some implications to the learnability of all the pattern languages, too. This continu-

ous interest in the pattern languages motivated us to initialize the analysis of pattern

language learning algorithms with respect to their average case behavior. The present

paper deals with the algorithm proposed by Lange and Wiehagen [9]. In particular, their

algorithm learns the whole class of all pattern languages from positive data. Lange and

Wiehagen [9] showed that their algorithm has polynomial update time. However, our

goal is more ambitious. We analyze the best-case, worst-case and average-case complex-

ity of this algorithm with respect to the total learning time. The total learning time is

the sum of all update times taken by the algorithm until successful learning. In particu-

lar, we show that the average-case complexity of Lange and Wiehagen's [9] algorithm is

O(2

k

k

2

jAjj�j

2

log

jAj

(kjAj)) with respect to the uniform distribution.

2. Preliminaries

Let IN = f0; 1; 2; :::g be the set of all natural numbers, and let IN

+

= IN n f0g. For

all real numbers x we de�ne bxc, the oor function, to be the greatest integer less than

or equal to x.

Following Angluin [1] we de�ne patterns and pattern languages as follows. Let

A = f0; 1; ::g be any non-empty �nite alphabet containing at least two elements. By

A

�

we denote the free monoid over A (cf. Hopcroft and Ullman [5]). The set of all

�nite non-null strings of symbols from A is denoted by A

+

, i.e., A

+

= A

�

n f�g, where

� denotes the empty string. By jAj we denote the cardinality of A. Furthermore, let

X = fx

i

i 2 INg be an in�nite set of variables such that A \ X = ;. Patterns are

non-empty strings from A [ X, e.g., 01; 0x

0

111; 1x

0

x

0

0x

1

x

2

are patterns. The length

of a string w and of a pattern � is denoted by jwj and j�j, respectively. A pattern � is

in canonical form provided that if k is the number of di�erent variables in � then the

variables occurring in � are precisely x

0

; :::; x

k�1

. Moreover, for every j with 0 � j < k�1,

the leftmost occurrence of x

j

in p is left to the leftmost occurrence of x

j+1

in �. The

examples given above are patterns in canonical form. In the sequel we assume, without

loss of generality, that all patterns are in canonical form. By Pat we denote the set

of all patterns in canonical form. Let � 2 Pat , 1 � i � j�j; we use �(i) to denote

the i-th symbol in �. If �(i) 2 A, then we refer to �(i) as to a constant; otherwise

�(i) 2 X, and we refer to �(i) as to a variable. By #var(�) we denote the number of

di�erent variables occurring in �, and by #

x

i

(�) we denote the number of occurrences of

variable x

i

in �. If #var(�) = k, then we refer to � as a k-variable pattern. Let k 2 IN,

by Pat

k

we denote the set of all k-variable patterns. Furthermore, let � 2 Pat

k

, and

let u

0

; :::; u

k�1

2 A

+

; then we denote by �[x

0

: u

0

; :::; x

k�1

: u

k�1

] the string w 2 A

+

obtained by substituting u

j

for each occurrence of x

j

, j = 0; :::; k � 1, in the pattern �.

The tuple (u

0

; :::; u

k�1

) is called substitution. Furthermore, if ju

0

j = ::: = ju

k�1

j = 1,
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then we refer to (u

0

; :::; u

k�1

) as to a shortest substitution. Now, let � 2 Pat

k

, and let

S = f(u

0

; :::; u

k�1

) u

j

2 A

+

; j = 0; :::; k � 1g be any �nite set of substitutions. Then

we set S(�) = f�[x

0

: u

0

; :::; x

k�1

: u

k�1

] (u

0

; :::; u

k�1

) 2 Sg, i.e., S(�) is the set of all

strings obtained from pattern � by applying all the substitutions from S to it. For every

� 2 Pat

k

we de�ne the language generated by pattern � by L(�) = f�[x

0

: u

0

; :::; x

k�1

:

u

k�1

] u

0

; :::; u

k�1

2 A

+

g. By PAT

k

we denote the set of all k-variable pattern languages.

Finally, PAT =

S

k2IN

PAT

k

denotes the set of all pattern languages over A. Note that

for every L 2 PAT there is precisely one pattern � 2 Pat such that L = L(�) (cf. Angluin

[1]).

In order to deal with the learnability of pattern languages we have to specify from

what information the learning algorithms should do their task. Following Gold [3] we

may distinguish between learning from text and from informant. However, the pattern

languages are a famous example for a non-trivial class of languages that can be learned

from text. Therefore, we consider in this paper learning from text, only. Formally, let

L � A

�

; then every mapping t from IN onto L is called a text for L. By Text(L) we

denote the set of all texts for L. Furthermore, for every n 2 IN we set t

n

= t(0); : : : ; t(n),

and we refer to t

n

as to the initial segment of t of length n+ 1.

Intuitively, a text for L generates the language L without any information concern-

ing the complement of L. Note that we allow a text to be non-e�ective.

As in Gold [3], we de�ne an inductive inference machine (abbr. IIM) to be an

algorithmic device which works as follows: The IIM takes as its input larger and larger

initial segments of a text t and on every input it �rst outputs a hypothesis, i.e., a pattern,

and then it requests the next input. Now we are ready to de�ne learnability of pattern

languages in the limit.

DEFINITION 1

PAT is called learnable in the limit from text (abbr. PAT 2 LIM) i� there is an

IIM M such that for every L 2 PAT and every t 2 Text(L),

(1) for all n 2 IN, M(t

n

) is de�ned,

(2) there is a pattern � 2 Pat such that L(�) = L and for almost all n 2 IN, M(t

n

) = �.

Whenever one deals with the average case analysis of algorithms one has to consider

probability distributions over the relevant input domain. For learning from text, we have

the following scenario. Every string of a particular pattern language is generated by a

substitution. Therefore, it is convenient to consider probability distributions over the

set of all possible substitutions. That is, if � 2 Pat

k

, then it su�ces to consider any

probability distribution D over A

+

� :::�A

+

| {z }

k�times

. For (u

0

; :::; u

k�1

) 2 A

+

� ::: � A

+

we

denote by D(u

0

; :::; u

k�1

) the probability that variable x

0

is substituted by u

0

, variable

x

1

is substituted by u

1

, � � �, and variable x

k�1

is substituted by u

k�1

. Moreover, in

order to arrive at admissible information sequences, i.e., texts, we restrict ourselves to

distributions D such that D(u

0

; :::; u

k�1

) > 0 for every (u

0

; :::; u

k�1

) 2 A

+

� :::�A

+

. We

refer to any such distribution as to an admissible distribution for PAT

k

.

In particular, we mainly consider a special class of admissible distributions, i.e.,

product distributions. Let k 2 IN

+

, then the class of all product distributions for Pat

k

is

de�ned as follows. For each variable x

j

, 0 � j � k�1, we assume an arbitrary probability
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distributionD

j

overA

+

on substitution strings. Then we callD = D

0

�� � ��D

k�1

product

distribution over A

+

� ::: �A

+

, i.e., D(u

0

; :::; u

k�1

) =

Q

k�1

j=0

D

j

(u

j

). Moreover, we call a

product distribution regular if D

0

= � � � = D

k�1

. As a special case of a regular product

distribution we mainly consider the uniform distribution overA

+

, i.e., D

j

(u) = 1=(2�jAj)

`

for all j 2 f0; � � � k�1g and all strings u 2 A

+

with juj = `. Furthermore, with respect to

potential applications it is also reasonable to consider length biased uniform distributions

over A

+

de�ned as follows. Again, all strings of length `, ` 2 IN

+

, are de�ned to be

equally likely but the \weight" factor for the length ` is not necessarily 1=2

`

. Instead,

we allow any sequence (�

`

)

`2IN

+

satisfying �

`

> 0 for all ` 2 IN

+

, and

P

`�1

�

`

= 1 as

\weight" factors.

Additionally, we assume familiarity with discrete probability theory. For the sake

of completeness we recall some fundamental notions that are extensively used throughout

the paper. Let X be any random variable that takes natural numbers as its values. Then

it is often very convenient to study its probability generating function (abbr. pgf) G

X

which is de�ned as follows:

G

X

(z) =

X

`�1

Pr(X = `)z

`

(1)

Then, the expectation and variance of X can be computed as follows:

E(X) = G

0

X

(1) (2)

V (X) = G

00

X

(1) +G

0

X

(1)�G

0

X

(1)

2

(3)

Furthermore, if X is any random variable that takes only nonnegative integer values, we

can decompose its pgf into a sum of conditional pgf's with respect to any other random

variable Y as follows (cf. Graham, Knuth, Patashnik [4]):

G

X

(z) =

X

y2rg(Y )

Pr(Y = y)g

Xjy

(z) (4)

Here rg(Y ) denotes the range of Y , and g

Xjy

is the pgf for the random variable Xjy,

i.e., X under the knowledge that Y = y. Hence g

X jy

just describes all the probabilities

Pr(X = x jY = y), x 2 rg(X). For any further information concerning random variables

and their probability generating functions the reader is referred to Graham, Knuth and

Patashnik [4].

Finally, our main goal consists in analyzing the average-case behavior of Lange and

Wiehagen's pattern language learning algorithm with respect to its total learning time.

Following Daley and Smith [2] we de�ne the total learning time as follows. Let M be any

IIM that learns all the pattern languages. Then, for every L 2 PAT and t 2 Text(L), let

Conv(M; t) =

df

the least number m such that for all n � m; M(t

n

) = M(t

m

)

denote the stage of convergence of M on d. Moreover, by T

M

(t

n

) we denote the time

to compute M(t

n

). Finally, the total learning time taken by the IIM M on successive

input d is de�ned as TT (L; t) =

df

P

Conv(M;t)

n=0

T

M

(t

n

). Assuming any �xed probability

distribution D as described above, we aim to evaluate the expectation of TT (L; t) with

respect to D which we refer to as total average learning time.

Looking at the latter de�nition it is obvious that we have to carefully analyze

the criterion of convergence of the learning algorithm we are going to consider. This is
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best done by studying the best-case as well as the worst-case behavior of the algorithm.

Subsequently, our strategy to determine the total average learning time is as follows.

First, we present a theorem that allows us to estimate the total average learning time

in terms of the expected stage of convergence (cf. Theorem 8). Next, we mainly reduce

the estimation of the expected stage of convergence to the estimation of the expected

number of examples that are necessary to ful�l the criterion of convergence and a term

involving the average input length until convergence (cf. Theorem 9). Then, we derive

general formulae to determine the average input length. Finally, we evaluate the resulting

formulae for the uniform distribution and and estimate E(TT (L; t)) (cf. Theorem 11).

The model of computation as well as the representation of patterns we assume

is the same as in Angluin [1]. In particular, we assume a random access machine that

performs a reasonable menu of operations each in unit time on registers of length O(log n)

bits, where n is the input length.

3. Lange and Wiehagen's Algorithm

In this section we analyze the pattern language learning algorithm by Lange and

Wiehagen [9] (abbr. LWA) with respect to its worst-case and best-case behavior. For the

sake of presentation, let us �rst recall the LWA. The main operation executed by the

algorithm is the union of a pattern and a string de�ned as follows:

Let � 2 Pat ; w 2 A

+

with j�j = jwj. The union of � and w, denoted by � [ w, is

the following pattern q. For i = 1; : : : ; j�j, let

q(i) =

8

>

>

>

<

>

>

>

:

�(i); if �(i) = w(i)

x

j

; if �(i) 6= w(i) & 9k < i :

[q(k) = x

j

; w(k) = w(i); �(k) = �(i)]

x

j+1

; otherwise where j = #var(q(1):::q(i� 1))

Then, the IIMM realizing the LWA can be de�ned as follows. Let � 2 Pat , and let

t = w

0

; w

1

; w

2

; ::: be any text for L(�). Let " denote the empty string, and set h

�1

= ".

Then,

M(h

�1

; w

0

) =M ("; w

0

) = w

0

;

and for all n � 1,

M(h

n�1

; w

n

) = h

n

=

8

>

<

>

:

h

n�1

; if jh

n�1

j < jw

n

j

w

n

; if jh

n�1

j > jw

n

j

h

n�1

[ w

n

; if jh

n�1

j = jw

n

j

Note that the LWA exclusively uses its last guess h

n�1

and the new string w

n

for computing its actual hypothesis h

n

. Algorithms behaving thus are called iterative.

Iterative learning algorithms are of special interest with respect to potential applications,

since they allow incremental learning, and they are clearly more e�cient with respect to

space than arbitrary IIMs. However, note that in general iterative learning constitutes a

severe restriction of the learning power (cf. Lange and Zeugmann [10]).
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Moreover, as pointed out by Lange and Wiehagen [9], their algorithm outputs

exclusively canonical patterns. In the following subsections, we mainly study the time

complexity of the LWA.

3.1. BEST-CASE AND WORST-CASE ANALYSIS OF THE LWA

As already mentioned, we have to analyze the criterion of convergence for the

LWA. We assume input/output operations to be performed in unit time. Due to the

choice of our model of computation, the comparison of jh

n�1

j and jw

n

j can be performed

in time O(minfjh

n�1

j; jw

n

jg). Moreover, it is convenient to perform the desired analysis

in dependence on the number of di�erent variables the target pattern � possesses. If this

number is zero, then everything is trivial, i.e., the LWA immediately converges. Therefore,

in the following let k 2 IN

+

, and let � 2 Pat

k

. Taking into account that jwj � j�j for

every w 2 L(�), it is obvious that the LWA can only converge if it has been fed su�ciently

many strings from L(�) having minimal length. Furthermore, as closer look to the LWA

immediately shows, after having seen one string from L(�) having minimal length the

LWA exclusively uses shortest strings from L(�) to possibly change its actual hypothesis.

Therefore, let

L(�)

min

= fw w 2 L(�); jwj = j�jg:

As pointed out by Marron [13] (cf. Lemma 2.1., pp. 348) k + 1 examples from L(�)

min

are su�cient to achieve convergence, e.g., one may take �[x

0

: 0; : : : ; x

k�1

: 0], �[x

0

:

1; x

1

: 0; : : : ; x

k�1

: 0], �[x

0

: 0; x

1

: 1; x

2

: 0; : : : ; x

k�1

: 0],..,�[x

0

: 0; x

1

: 0; : : : ; x

k�1

: 1].

However, this bound is by no means the best possible one as we shall show. For that

purpose, �rst we make the following observation.

LEMMA 1

Let k 2 IN

+

, and let � 2 Pat

k

. Then we have:

Every string from L(�)

min

is uniquely generated by a shortest substitution.

Proof

Let w

1

; w

2

2 L(�)

min

, and let �u

1

= (u

1

0

; : : : ; u

1

k�1

) as well as �u

2

= (u

2

0

; : : : ; u

2

k�1

)

such that w

1

= �[x

0

: u

1

0

; : : : ; x

k�1

: u

1

k�1

] and w

2

= �[x

0

: u

2

0

; : : : ; x

k�1

: u

2

k�1

]. Now,

it su�ces to show that w

1

= w

2

implies �u

1

= �u

2

. Suppose the converse, i.e., �u

1

6= �u

2

.

Then there exists a j 2 f0; : : : ; k � 1g such that u

1

j

6= u

2

j

. Let ` 2 f1; : : : ; j�jg be the

least number such that �(`) = x

j

. Since ju

1

0

j = � � � = ju

1

k�1

j = ju

2

0

j = � � � = ju

2

k�1

j = 1,

we directly obtain w

1

(`) = u

1

j

as well as w

2

(`) = u

2

j

. Hence, we have w

1

(`) 6= w

2

(`), a

contradiction. 2

Next, we introduce the notion of a good sample.

DEFINITION 2

Let k 2 IN

+

, let � 2 Pat

k

, and let S = fw

0

; : : : ; w

m�1

g � L(�)

min

. S is said to be

a good sample of size m if the LWA, when successively fed w

0

; : : : ; w

m�1

converges to �.

Clearly, the latter de�nition requires some justi�cation, since the notion of a good

6



sample of sizem may depend on the order in which the strings w

0

; : : : ; w

m�1

are presented

to the learner. However, it does not, since the LWA possesses another favorable property,

i.e., it is set-driven (cf. Theorem 2 below). Set-drivenness is de�ned as follows (cf. Wexler

and Culicover [18]).

DEFINITION 3

An IIM is said to be set-driven with respect to PAT i� its output depends only

on the range of its input; that is, i� M (t

x

) = M(

^

t

y

) for all x; y 2 IN, all texts t;

^

t 2

S

L2range(PAT)

Text(L) provided t

+

x

=

^

t

+

y

.

Note that in general one cannot expect to learn set-drivenly. For more information

concerning this subject the reader is referred to Lange and Zeugmann [12]. Now we are

ready to present the announced theorem.

THEOREM 2

The LWA is set-driven with respect to PAT.

Proof

Let �

1

; �

2

2 Pat , let t 2 Text(L(�

1

));

^

t 2 Text(L(�

2

)), and let x; y 2 IN such that

t

+

x

=

^

t

+

y

. We have to show that the IIM M realizing the LWA, when successively fed t

x

and

^

t

y

, respectively, outputs the same hypothesis, say �.

Let ` = minfjwj w 2 t

+

x

g. Because of t

+

x

=

^

t

+

y

, we get ` = minfjwj w 2

^

t

+

y

g, too.

Taking M 's de�nition into account, it obviously su�ces to consider M 's behavior when

successively fed � = w

0

; : : : ; w

m

, and �̂ = ŵ

0

; : : : ; ŵ

n

, respectively, where w

j

, 0 � j � m

and ŵ

j

, 0 � j � n, are all strings of length ` enumerated in t

x

and

^

t

y

, respectively.

Moreover, it is not hard to see that � and �̂ can be assumed to be repetition free, too,

i.e., m = n. Note that range(�) = range(�̂), since t

+

x

=

^

t

+

y

.

Now, assume that � and �̂ are output byM when successively fed � and �̂, respec-

tively. Then, obviously we have j�j = j�̂j. Furthermore, let i 2 f1; : : : ; j�jg be the least

~{ such that �(~{) 6= �̂(~{).

Case 1. �(i) 2 A

By the transitivity of the equality relation we may conclude that �(i) 2 A can

happen if and only if �(i) = w

j

(i) for all j = 0; : : : ;m. However, if �(i) 6= �̂(i) then there

must be a string ŵ 2 range(�̂) such that ŵ(i) 6= �(i). Consequently, ŵ(i) 6= w

j

(i) for all

j = 0; : : : ; m. But this is a contradiction to range(�) = range(�̂).

Hence, we already know that �(i) = �̂(i) provided i is such that �(i) 2 A or

�̂(i) 2 A, since the same argument applies to �̂.

Case 2. �(i) 2 X

Taking the latter remark into account we directly get �̂(i) 2 X, too. Hence,

�(i) 6= �̂(i) implies that there are x

j

, x

n

such that �(i) = x

j

and �̂(i) = x

n

. Without

loss of generality, we may assume j < n. Then there exists a position p < i such

that �̂(p) = x

j

, since the LWA exclusively outputs canonical patterns. Therefore, by

the choice of i we can conclude �(p) = x

j

, too. Furthermore, let �

0

; : : : ; �

n

be the

sequence of hypotheses produced by the LWA when successively fed �. Then we denote

7



by r the least ~r 2 f0; : : : ; ng such that �

~r�1

(p) 6= x

j

and �

~r

(p) = x

j

. Consequently,

�

r

(i) = x

j

, too. This is an immediate consequence of the de�nition of the union operation,

since it directly shows that variables distinguished ones remain distinguished. Thus, we

immediately obtain w

r+1

(p) = w

r+1

(i),...,w

n

(p) = w

n

(i), since otherwise �(p) 6= �(i).

Hence, it remains to consider w

0

; : : : ; w

r

.

Case 2.1. �

r�1

(p) = a 2 A

In this case we can further conclude that w

0

(p) = : : : w

r�1

(p) = a. Moreover,

we also have �

r�1

(i) = b 2 A, since otherwise �

r

(p) 6= �

r

(i). Consequently, w

0

(i) =

: : : w

r�1

(i) = b. Moreover, w

r

(p) 6= a and w

r

(i) 6= b, since �

r

(p) 2 X. On the other hand,

�

r

(p) = �

r

(i), and thus a = b. To see this, suppose the converse, i.e., a 6= b. As we

have seen w

r

(p); w

r

(i) =2 fa; bg. But then �

r

(p) 6= �

r

(i), by the de�nition of the union

operation. Finally, a = b immediately implies w

r

(p) = w

r

(i) 6= a, since otherwise again

�

r

(p) 6= �

r

(i). This proves w(p) = w(i) for all w 2 range(�). Now, an easy inductive

argument directly yields �̂(p) = �̂(i), a contradiction.

Case 2.2. �

r�1

(p) = x̂ 2 X

Again, one easily veri�es �

r�1

(i) = x̂. Analogously as above one can go back to

the �rst hypothesis r

0

< r that contains for the �rst time at position p the variable

x̂. Therefore, the same arguments apply. In case �

r

0

(p) 2 A we are done as above.

Otherwise, we iterate the argument mutatis mutandis. Since �

0

(p) 2 A, the modi�ed

Subcase 2.1. must eventually happen. 2

The proof of the latter theorem directly implies the following corollary.

COROLLARY 3

Let k 2 IN

+

, let � 2 Pat

k

be arbitrarily �xed, and let S � L(�)

min

be any good

sample of size m. Furthermore, let t 2 Text(L(�) and x 2 IN such that S � range(t

x

).

Then the LWA converges to � when successively fed t

x

.

Next, we present a lemma that helps to keep the subsequent proofs technically

simpler.

LEMMA 4

Let k 2 IN

+

, let � 2 Pat

k

be arbitrarily �xed, and let � = x

0

: : : x

k�1

. Moreover, let

S = f(u

0

; : : : ; u

k�1

) u

i

2 A; i = 0; : : : ; k� 1g be any set of shortest substitutions. Then

we have:

The LWA converges on S(�) to � if and only if it converges on S(�) to �.

Proof

First of all note that any set S of shortest substitutions contains at most jAj

k

many

elements, i.e., S is �nite. Moreover, by Lemma 1 we additionally know that jSj = jS(�)j

for every � 2 Pat

k

. Furthermore, it is easy to see that S(�) = S. By Theorem 2 we

know that the LWA is set-driven. Hence, the union operation de�ned above canonically

extends to sets of strings. Now, assume [S = �. We have to show that [S(�) = �.

Let �̂ = [S(�); then j�̂j = j�j, since S is a set of shortest substitutions. Suppose there

8



exists an n 2 f1; : : : ; j�jg such that �̂(n) 6= �(n). Let i be the least number n satisfying

�̂(n) 6= �(n). Taking into account that w(i) = �(i) for all w 2 S(�) provided �(i)

is a constant, by the de�nition of the union operation we may directly conclude that

�̂(n) 6= �(n) can only happen if �(i) 62 A.

Claim 1. �̂(i) 62 A

Suppose the converse, i.e., �̂(i) = a 2 A. By the de�nition of the union operation

this can happen if and only if a = �[x

0

: u

0

; : : : ; x

k�1

: u

k�1

](i) for all substitutions

(u

0

; : : : ; u

k�1

) 2 S. Furthermore, since �(i) 2 X, say �(i) = x

j

for some j 2 f0; : : : ; k �

1g, we may immediately conclude that u

j

= a for all substitutions (u

0

; : : : ; u

k�1

) 2 S.

Thus, [S(j) = a in accordance with the de�nition of the union operation; a contradiction

to [S = �. This proves Claim 1.

Consequently, �̂(i) 2 X, too. Moreover, by Lemma 2 of Lange and Wiehagen [9],

we furthermore know that

(�) �̂ is a canonical pattern, and

(�) #var(�̂) < #var(�).

Let �̂(i) = x

m

and �(i) = x

j

. Then, (�) and (�) imply m < j, since � is also

a canonical pattern. Moreover, there must be an ` < i such that �̂(`) = x

m

, too.

Furthermore, since i is the least number n satisfying �̂(n) 6= �(n), we additionally have

�(`) = x

m

. Again, taking the de�nition of the union operation into account, one can

easily prove that u

m

= u

j

for all substitutions (u

0

; : : : ; u

k�1

) 2 S. However, this would

directly imply [S(m) = [S(j); a contradiction to [S = �.

The converse direction can be proved mutatis mutandis, and is thus omitted. 2

By the latter lemma, whenever dealing with the number of strings from L(�)

min

,

� 2 Pat

k

, that are necessary and su�cient, respectively, for the LWA to converge, it

su�ces to consider exclusively the pattern � = x

0

: : : x

k�1

. With the next theorem we

establish a lower bound for the number of examples uniformly having shortest length

needed by the LWA in order to converge. Note that this number exclusively depends on

k, the number of di�erent variables occurring in the target pattern � as well as on the

alphabet size jAj.

THEOREM 5

Let k 2 N

+

, let � 2 Pat

k

, and let jAj � 2. Then, at least blog

jAj

(jAj+ k � 1)c+ 1

examples from L(�)

min

are necessary in order to achieve convergence of the LWA.

Proof

By Lemma 4 it su�ces to consider the target pattern � = x

0

: : : x

k�1

, only. Now,

given m shortest substitutions (u

1

0

; : : : ; u

1

k�1

); : : : ; (u

m

0

; : : : ; u

m

k�1

), we may write them in

9



a table having m rows and k columns as follows:

x

0

: : : x

k�1

1 u

1

0

: : : u

1

k�1

2 u

2

0

: : : u

2

k�1

� � : : : �

� � : : : �

� � : : : �

m u

m

0

: : : u

m

k�1

As the proof of Lemma 4 shows, in order to achieve convergence it is necessary that

all columns are pairwise di�erent and that there is no constant column, i.e., no column

j such that u

1

j

= : : : = u

m

j

. Now, there are

N = (jAj

m

� jAj)(jAj

m

� (jAj+ 1)) � : : : � (jAj

m

� (jAj+ k � 1))

possibilities for k such columns of length m. Hence, the minimal m is determined by the

condition N 6= 0. This condition is equivalent to jAj

m

� (jAj + k � 1) > 0. Thus, we

obtainm > blog

jAj

(jAj+k�1)c. Consequently, at least blog

jAj

(jAj+k�1)c+1 examples

from L(�)

min

are necessary in order to achieve convergence of the LWA. 2

At this point, it is only natural to ask whether or not the bound established by

the latter theorem is tight. Moreover, the answer to this question is also of particular

importance for the average-case analysis to be performed later. The a�rmative answer

is provided by our next theorem.

THEOREM 6

Let k 2 N

+

, let � 2 Pat

k

, and let jAj � 2. Then, there always exists a set S of

blog

jAj

(jAj+ k � 1)c+ 1 examples from L(�)

min

such that [S = �.

Proof

Let k 2 N

+

, � 2 Pat

k

, and let jAj � 2. We have to construct a set S of blog

jAj

(jAj+

k � 1)c + 1 examples from L(�)

min

such that [S = �. Again, by Lemma 4 it su�ces

to construct a set S of shortest substitutions having cardinality blog

jAj

(jAj+ k � 1)c+1

such that [S = �

k

, where �

k

= x

0

: : : x

k�1

. Moreover, by Theorem 2 we are done, if we

could prove that the IIM realizing the LWA converges to �

k

when fed the examples of S

in a particular order.

Let n = jAj � 2, and let a

0

; : : : ; a

n�1

denote the elements ofA. Clearly, the hardest

cases occur for k = jAj

m

� jAj, m = 2; 3; : : :. Next, we inductively describe how the m

wanted examples can be constructed.

We start with m = 2. Hence, k = jAj

2

� jAj = jAj(jAj � 1). The �rst example

u

1

= (u

1

0

; : : : ; u

1

k�1

) is obtained by setting u

1

j

= a

jmodjAj

for j = 0; : : : ; k � 1. The

second example u

2

= (u

2

0

; : : : ; u

2

k�1

) is constructed as follows. We just take the jAj � 1

many cyclical shifts of a

0

; : : : ; a

n�1

that are di�erent from a

0

; : : : ; a

n�1

and write them

one behind the other, i.e., u

2

= (a

1

; : : : ; a

n�1

; a

0

; : : : ; a

n�1

; a

0

; : : : ; a

n�2

). Now, it is easy

to see that in the computation of u

1

[ u

2

always the \otherwise" case happens, i.e.,

u

1

[ u

2

= x

0

; :::; x

k�1

= �

k

(cf. Figure 1 for the A = f0; 1; 2; 3g case).
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u

1

0 1 2 3 0 1 2 3 0 1 2 3

u

2

1 2 3 0 2 3 0 1 3 0 1 2

u

1

[ u

2

x

0

x

1

x

2

x

3

x

4

x

5

x

6

x

7

x

8

x

9

x

10

x

11

Figure 1

We proceed inductively over m. Hence, we assume that for k = jAj

m

� jAj there

is a set S

m

= fu

1

; : : : ; u

m

g of m shortest substitutions such that [S = �

k

. Now, let

k

ind

= jAj

m+1

� jAj. The desired m + 1 examples are constructed as follows. First, we

take into account that jAj

m+1

� jAj = jAjjAj

m

� jAj = (jAj � 1)jAj

m

+ jAj

m

� jAj =

(jAj � 1)jAj

m

+ k. In order to simplify notation, we set ` = (jAj � 1)jAj

m

. The �rst

example v

1

is again de�ned to be v

1

j

= a

jmodjAj

for j = 0; : : : ; k

ind

� 1. However, for

the remaining m examples we clearly aim to apply the induction hypothesis. Therefore,

we distinguish between the �rst ` positions of the shortest substitutions to be de�ned

and the remaining k ones. The k rightmost positions of v

2

; : : : ; v

m+1

are de�ned to be

u

1

; : : : ; u

m

, respectively. Furthermore, the leftmost ` positions of v

2

; : : : ; v

m+1

are de�ned

as follows:

Observing that ` = (jAj � 1)jAjjAj

m�1

, we de�ne the leftmost jAj(jAj � 1) posi-

tions of v

2

to be the jAj � 1 many cyclical shifts of a

0

; : : : ; a

n�1

that are di�erent from

a

0

; : : : ; a

n�1

written one behind the other. Furthermore, the remaining positions are

just de�ned by repeating the this block of the leftmost jAj(jAj � 1) positions of v

2

just

jAj

m�1

� 1 many times. That is,

v

2

=

(a

1

; : : : ; a

n�1

; a

0

;

| {z }

the �rst

cyclical shift

; : : : ; a

n�1

; a

0

; : : : ; a

n�2

| {z }

the (jAj�1)th

cyclical shift

| {z }

the leftmost block of length jAj(jAj�1)

; a

1

; : : : ; a

n�1

; a

0

;

| {z }

the �rst

cyclical shift

; : : : ; a

n�1

; a

0

; : : : ; a

n�2

| {z }

the (jAj�1)th

cyclical shift

| {z }

the second block of length jAj(jAj�1)

;

; : : : ; a

1

; : : : ; a

n�1

; a

0

; : : : ; a

n�1

; a

0

; : : : ; a

n�2

;

| {z }

the jAj

m�1

th repetition

of the block of all cyclical shifts

u

1

0

; : : : ; u

1

k�1

| {z }

the k rightmost

positions

)

Next, we de�ne v

3

as follows. The leftmost jAj(jAj � 1) positions of v

3

are set to

be equal to a

0

, the next block of length jAj(jAj� 1) is set to be equal to a

1

, ..., the jAjth

block of length jAj(jAj � 1) is set to be equal to a

n�1

. This de�nes a block of length

(jAj�1)jAjjAj, i.e., if m = 2 we are done. If m > 2, we �ll the remaining `�(jAj�1)jAj

2

positions by just repeating this block jAj

m�2

� 1 times. That is, let z = jAj(jAj � 1),

then

v

3

=

(a

0

; : : : ; a

0

;

| {z }

the �rst

z positions

: : : ; a

n�1

; : : : ; a

n�1

;

| {z }

the jAjth block

of length z

| {z }

the �rst block of length (jAj�1)jAj

2

: : : ; a

0

; : : : ; a

0

; : : : ; a

n�1

; : : : ; a

n�1

;

| {z }

the jAj

m�2

block

of length (jAj�1)jAj

2

u

2

0

; : : : ; u

2

k�1

| {z }

the k rightmost

positions

))

Subsequently, v

4

; : : : ; v

m+1

are analogously de�ned as v

3

. The only di�erence

consists in augmenting the number of repetitions of a

0

; : : : ; a

n�2

, and a

n�1

, respectively,

each time by the factor A. Figure 2 displays the corresponding examples and hypotheses
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for the case A = f0; 1g, k = 30, and m = 5. The vertical line in the table at position

` = 16 has been drawn to clearly separate the recursively handled part.

v

1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

v

2

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1

�

1

x

0

x

1

x

0

x

1

x

0

x

1

x

0

x

1

x

0

x

1

x

0

x

1

x

0

x

1

x

0

x

1

0 1 0 1 0 1 0 1 0 1 0 1 0 1

v

3

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 1 0 1 0 1 0 0 1 0 1 0 1

�

2

x

0

x

1

x

2

x

3

x

0

x

1

x

2

x

3

x

0

x

1

x

2

x

3

x

0

x

1

x

2

x

3

x

5

x

6

x

5

x

6

x

5

x

6

x

5

x

6

0 1 0 1 0 1

v

4

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 1 0 1 0 0 1

�

3

x

0

x

1

x

2

x

3

x

4

x

5

x

6

x

7

x

0

x

1

x

2

x

3

x

4

x

5

x

6

x

7

x

8

x

9

x

10

x

11

x

8

x

9

x

10

x

11

x

12

x

13

x

12

x

13

0 1

v

5

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 1 0

�

4

x

0

x

1

x

2

x

3

x

4

x

5

x

6

x

7

x

8

x

9

x

10

x

11

x

12

x

13

x

14

x

15

x

16

x

17

x

18

x

19

x

20

x

21

x

22

x

23

x

24

x

25

x

26

x

27

x

28

x

29

Figure 2

Finally, in accordance with our construction it is easy to verify that the �rst two

examples force the LWA to introduce jAj(jAj� 1) variables. Subsequently, each example

augments the number of variables occurring in the ` leftmost positions by the factor jAj.

Moreover, by the de�nition of our examples, one easily veri�es that the variables intro-

duced in the k rightmost positions must have di�erent names than those ones introduced

in the ` leftmost positions. Hence, applying the induction hypothesis we are done. This

proves the theorem for the hardest cases.

The remaining cases are handled mutatis mutandis. Suppose jAj

m�1

� jAj < k <

jAj

m

�jAj. Then, we perform the same construction as in the k = jAj

m

�jAj case, except

that in the rightmost part of the examples the positions not needed are deleted. 2

Now we are ready to characterize the best-case and worst-case behavior of the

LWA. This is done by the next theorem.

THEOREM 7

Let k 2 N

+

, and let jAj � 2. Then we have:

(1) For every pattern � 2 Pat

k

the LWA needs in the best-case simultaneously total

learning time O(log

jAj

(jAj+ k)j�j

2

) and space O(j�j) in order to infer the language

L(�).

(2) Let f : IN! IN be any function. Then, for every pattern � 2 Pat

k

and every n 2 IN

there exists a text t 2 Text(L(�)) such that simultaneously TT (L(�); t) > f(n)

and the space needed by the LWA to learn the language L(�) exceeds f(n), i.e., the

worst-case total learning time and the space complexity of the LWA are unbounded.

Proof

As we have seen, at least blog

jAj

(jAj+k�1)c+1 examples are always necessary and

in the best case su�cient to learn every pattern � 2 Pat

k

. Hence, in the best-case the

LWA has to perform blog

jAj

(jAj+ k�1)c+1 union operations over strings from L(�)

min

.

Each of them costs at most O(j�j

2

) time. Therefore, for every text t 2 Text(L(�)) starting

12



with strings obtained by the substitutions presented in the proof of Theorem 6 we have

TT (L(�); t) = O(log

jAj

(jAj + k)j�j

2

). Moreover, the algorithm has to store exclusively

its last hypothesis and the new string fed in order to compute its actual guess. Thus, the

overall space complexity is O(j�j). This proves (1).

Let f : IN! IN be any arbitrarily �xed function. Then, for every text t 2 Text(L(�))

starting with a string w

0

2 L(�) such that jsj > f(n) we already exceed the space bound

f(n). Moreover, if t continues with a string w

1

satisfying jw

0

j = jw

1

j, then the LWA

has to compute w

0

[w

1

. Hence, this computation already exceeds the time bound f(n).

Consequently, TT (L(�); t) > f(n). 2

The latter theorem o�ers already some insight into the complexity behavior of the

LWA with respect to the total learning time and the amount of space needed by the LWA.

However, there is a giant gap between the best-case and worst-case behavior. Therefore,

it is of particular interest to analyze the average-case behavior of the LWA. This is done

in the next section.

4. Average-Case Analysis of the LWA

In this section we study the average case behavior of the LWA. Since we want

to compute the total average learning time, we start with a closer look at it. Let k 2

IN

+

, � 2 Pat

k

be any pattern, and let t = (w

n

)

n2IN

range over all randomly generated

texts with respect to some admissible distribution for Pat

k

. Then we want to compute

E(TT (L(�); (w

n

))). By de�nition, TT (L(�); (w

n

)) =

P

Conv(M;t)

n=0

T

M

(h

n�1

; w

n

), since the

LWA is iterative. However, the expectation of TT (L(�); (w

n

)) is not just the sum of

E(T

M

(h

n�1

; w

n

)), since Conv(M; t) is itself a random variable. Therefore, we �rst derive

a formula to estimate E(TT (L(�); (w

n

))). To simplify notation, we use C to denote the

random variable Conv(M; t). Clearly, C takes only natural numbers as its values.

THEOREM 8

Let k 2 IN

+

, let � 2 Pat

k

be any pattern, and let t = (w

n

)

n2IN

range over all

randomly generated texts with respect to some admissible distribution for Pat

k

. Then the

expectation of TT (L(�); (w

n

)) can be estimated as follows:

E(TT (L(�); (w

n

)) = O(E(C)(V (jw

0

j) + E

2

(jw

0

j)) (5)

Proof

For the sake of presentation, we set X = TT (L(�); (w

n

)). Next we apply Formula

(4) to deduce the pgf for X. Hence, we may write

G

X

(z) =

X

c�0

Pr(C = c) � g

X jc

(z)

where

g

X jc

(z) =

X

��0

Pr(X

jc

= �)z

�

=

X

��0

Pr(

c

X

n=0

T

M

(h

n�1

; w

n

) = �)z

�
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Moreover, in accordance with (2) we know that E(X) = G

0

X

(1). Furthermore,

G

0

X

(1) =

X

c�0

Pr(C = c) � g

0

X jc

(1)

Thus, we next compute g

0

Xjc

(1).

g

0

X jc

(z) =

X

��0

� � Pr(X

jc

= �)z

��1

and hence

g

0

X jc

(1) =

X

��0

� � Pr(X

jc

= �) =

X

��0

� � Pr(

c

X

n=0

T

M

(h

n�1

; w

n

) = �)

= E(

c

X

n=0

T

M

(h

n�1

; w

n

)) =

c

X

n=0

E(T

M

(h

n�1

; w

n

))

Now, putting it all together, we get:

E(X) = G

0

X

(1) =

X

c�0

Pr(C = c) � c �

1

c

c

X

n=0

E(T

M

(h

n�1

; w

n

))

� E(C) �max

c>0

f

1

c

c

X

n=0

E(T

M

(h

n�1

; w

n

))g

Next, we estimate the term max

c>0

f

1

c

P

c

n=0

E(T

M

(h

n�1

; w

n

))g. A closer look at

the LWA immediately shows that T

M

(h

�1

; w

0

) = jw

0

j, and furthermore T

M

(h

n�1

; w

n

) =

O(minfjh

n�1

j; jw

n

jg

2

) for all n > 0. Therefore, we can easily estimate

E(T

M

(h

n�1

; w

n

)) = O(E(jw

0

j

2

)) = O(V (jw

0

j) + E

2

(jw

0

j))

Using the latter estimate, we obviously have

max

c>0

f

1

c

c

X

n=0

E(T

M

(h

n�1

; w

n

))g = O(V (jw

0

j) + E

2

(jw

0

j))

and hence the theorem is proved. 2

Now, Theorem 8 tells us what we have to compute in order to estimate the total

average time. Namely, we have to determine E(C), i.e., the expectation of the stage of

convergence as well as E(jw

0

j) and V (jw

0

j). This is done distribution independent as

long as possible. Subsequently, we consider in particular the uniform distribution and

evaluate the derived terms.

In order to analyze E(jw

0

j) and V (jw

0

j), one can proceed as follows. Let u =

(u

0

; : : : ; u

k�1

) be any substitution. Because of j�[x

0

: u

0

; :::; x

k�1

: u

k�1

]j = j�j +

k�1

P

i=0

#

x

i

(�)(ju

i

j � 1) � j�j+ j�j

k�1

P

i=0

(ju

i

j � 1), we additionally have

E(j�[x

0

: u

0

; :::; x

k�1

: u

k�1

]j) � j�j+ j�jE(

k�1

X

i=0

(ju

i

j)� 1))

V (j�[x

0

: u

0

; :::; x

k�1

: u

k�1

]j) � j�j

2

V (

k�1

X

i=0

(ju

i

j � 1))

14



For the particular interesting case of product distributions the latter formulae further

simplify as follows.

E(j�[x

0

: u

0

; :::; x

k�1

: u

k�1

]j) � j�j+ j�j

k�1

X

i=0

(E(ju

i

j)� 1) (6)

V (j�[x

0

: u

0

; :::; x

k�1

: u

k�1

]j) � j�j

2

k�1

X

i=0

V (ju

i

j) (7)

Consequently, for the application of (6) and (7) it su�ces to study the pgfs G

ju

i

j

for the random variables ju

i

j ranging over all possible lengths. That is, we have to study

G

ju

i

j

(z) =

X

`�1

Pr(ju

i

j = `)z

`

(8)

However, this study requires additional assumptions concerning the relevant prob-

ability distributions. Therefore, we postpone this task until Subsection 4.2.

4.1. ESTIMATING E(C)

We continue with the estimation of E(C). By Theorem 5 we already know that

for every � 2 Pat

k

at least blog

jAj

(jAj+ k� 1)c+1 examples from L(�)

min

are necessary

in order to achieve convergence of the LWA. Furthermore, Theorem 6 shows that this

number is sometimes su�cient, too. On the other hand, one can construct samples

S � L(�)

min

of size jAj

k�1

that are not good. This can be seen as follows. By Lemma 4 it

su�ces to consider � = x

0

; : : : ; x

k�1

. As the proof of Theorem 5 shows, in order to achieve

convergence it is in particular necessary that the sample S of shortest substitutions does

not contain a constant column. However, we may �x the �rst component of all shortest

substitutions in S to be equal to a

0

. Since there are precisely A

k�1

shortest substitutions

for x

1

; : : : ; x

k�1

, the resulting sample of A

k�1

many shortest substitutions is not good for

� = x

0

; : : : ; x

k�1

.

Finally, it is easy to see that every sample of elements from L(�)

min

that has at

least size A

k�1

+ 1 is good. Consequently, the number of elements from L(�)

min

needed

to achieve convergence of the LWA may considerably vary. Therefore, it is convenient to

introduce another random variable N for this number. As we have seen, N may take as

values natural numbers from fblog

jAj

(jAj+ k � 1)c+ 1; : : :A

k�1

+ 1g.

Hence, we may write the pgf for C as follows:

G

C

(z) =

A

k�1

+1

X

n=blog

jAj

(jAj+k�1)c+1

Pr(N = n) � g

Cjn

(z) (9)

where

Pr(N = n) denotes the probability that precisely n elements from L(�)

min

are

needed

g

Cjn

(z) denotes the cpgf for Cjn, i.e., the pgf for C under the knowledge that N = n.

15



Now, it turned out to be convenient to express the cpgf g

Cjn

(z) as follows:

g

Cjn

(z) =

n

X

m=1

g

T

m

(z) (10)

where the functions g

T

m

have the following meaning:

g

T

1

describes the probabilities for the appearance of the �rst string w

1

from L(�)

min

in a randomly generated text.

g

T

2

describes the conditional probabilities in dependence on the possible w

1

for the

appearance of the second string w

2

from L(�)

min

in a randomly generated text that

ful�lls w

1

6= w

2

.

�

�

�

g

T

n

describes the conditional probabilities in dependence on the possible w

1

; : : : w

n�1

for the appearance of the nth string w

n

from L(�)

min

in a randomly generated text

that ful�lls w

n

6= w

m

for all m = 1; : : : ; n� 1.

The random variables T

m

themselves refer to the lengths of the corresponding

segments in a randomly generated text. That is, T

1

describes the possible lengths of

initial segments of a randomly generated text t until the appearance of the �rst element

w

1

from L(�)

min

. Moreover, T

2

expresses the possible lengths of the next segment in t

until the appearance of an element w

2

from L(�)

min

that is di�erent from w

1

. In general

T

m

describes the possible lengths of the mth segment. The starting point of this segment

is determined by the event that already m � 1 pairwise di�erent strings from L(�)

min

appeared. The end point of the mth segment is de�ned by the appearance of the mth

shortest string w

m

from L(�)

min

in the randomly generated text t that is pairwise di�erent

to all other strings from L(�)

min

seen so far.

The next theorem shows why the approach undertaken turns out to be useful. In

particular, it reduces the estimate of E(C) to the computation of the expected number

of elements from L(�)

min

necessary for the LWA to converge and to the computation of

the expectations for the random variables T

m

introduced above.

THEOREM 9

Let k 2 IN

+

, � 2 Pat

k

be any pattern, and let t = (w

n

)

n2IN

range over all randomly

generated texts with respect to some admissible distribution for Pat

k

. Then the expectation

of the stage of convergence can be estimated as follows:

E(C) � E(N) �maxfE(T

1

);

1

2

2

X

j=1

E(T

j

); : : : ;

1

jAj

k�1

+ 1

jAj

k�1

+1

X

m=1

E(T

m

)g

Proof

16



In accordance with Formula (2) we obtain from (9)

E(C) = G

0

C

(1) =

jAj

k�1

+1

X

n=blog

jAj

(jAj+k�1)c+1

Pr(N = n)

n

X

m=1

g

0

T

m

(1)

Taking into account that g

0

T

m

(1) = E(T

m

), and setting Pr(N = n) = 0 for all n =

1; : : : ; blog

jAj

(jAj + k � 1)c we obtain:

E(C) =

jAj

k�1

+1

X

n=1

Pr(N = n)

n

X

m=1

E(T

m

)

=

jAj

k�1

+1

X

n=1

Pr(N = n) � n �

1

n

n

X

m=1

E(T

m

)

�

jAj

k�1

+1

X

n=1

Pr(N = n) � n �maxfE(T

1

); : : : ;

1

jAj

k�1

+ 1

jAj

k�1

+1

X

m=1

E(T

m

)g

= E(N) �maxfE(T

1

); : : : ;

1

jAj

k�1

+ 1

jAj

k�1

+1

X

m=1

E(T

m

)g

2

Next, we are going to derive formulae for the cpgf g

T

m

. Again, we perform the

wanted derivation in dependence on the number k of di�erent variables in the target

pattern �. Moreover, by Lemma 1 it su�ces to deal with the probabilities of the shortest

substitutions. Let A = f0; 1; : : : ; a � 1g. Then, we use b

i

to denote the shortest sub-

stitution (b

0

i

; : : : ; b

k�1

i

), where b

j

i

2 A, j = 0; : : : ; k � 1, and i = b

0

i

:::b

k�1

i

. That is, i is

expressed as a{ary number including leading zeros. For example, for A = f0; 1; : : : ; 9g

and k = 4 we have b

0

= (0; 0; 0; 0), and b

9999

= (9; 9; 9; 9). Now, let D be any �xed

probability distribution. Then, p =

jAj

k

�1

P

i=0

D(b

i

) is clearly the probability of success for

the �rst shortest substitution. Hence, we obtain:

g

T

1

(z) =

X

��0

Pr(T

1

= �)z

�

=

X

��1

(1� p)

��1

pz

�

=

pz

1� (1� p)z

Consequently, by Formula (2)

E(T

1

) = g

0

T

1

(1) =

1

p

(11)

This was quiet easily done. However, the derivation of expressions for the remaining

g

T

m

again involves conditional probabilities. For the sake of presentation, we �rst handle

the case m = 2, and show subsequently how to generalize it. We use Formula (4) and

express the pgf for T

2

as follows:

g

T

2

(z) =

X

b

i

2A

k

Pr(Y = b

i

)g

T

2

jb

i

(z) (12)

17



where

g

T

2

jb

i

(z) =

X

��1

(1� p+D(b

i

)

| {z }

failure probability

increases

)

��1

((p�D(b

i

)

| {z }

success prob:

decreases

)z

�

(13)

=

(p�D(b

i

))z

1� (1� p+D(b

i

))z

(14)

It remains to compute Pr(Y = b

i

). This is done by Bayes' Theorem. Let H

i

= fb

i

g, i.e.,

H

i

is the hypothesis that the �rst shortest element w

1

from L(�)

min

seen so far has been

generated by the shortest substitution b

i

. Setting B =

S

jAj

k

�1

j=0

H

j

the the probability

Pr(Y = b

i

) is clearly equal to Pr(H

i

jB). Furthermore, the a posteriori probabilities

Pr(H

i

jB) are obtained as follows:

Pr(Y = b

i

) = Pr(H

i

jB) =

Pr(BjH

i

)Pr(H

i

)

jAj

k

�1

P

j=0

Pr(BjH

j

)Pr(H

j

)

(15)

Now, taking into account that Pr(H

i

) = D(b

i

) and that Pr(BjH

i

) =

Pr(B\H

i

)

Pr(H

i

)

= 1 for all

i 2 f0; : : : ; jAj

k

� 1g, Equation (15) simpli�es to

Pr(Y = b

i

) =

D(b

i

)

jAj

k

�1

P

j=0

D(b

j

)

=

D(b

i

)

p

(16)

Incorporating (14) and (16) into (12) and applying again (2) we obtain:

E(T

2

) = g

0

T

2

(1) =

1

p

�

X

b

i

2A

k

D(b

i

)

p�D(b

i

)

(17)

Now, it is not hard to see how to generalize the latter derivation. Let b

i

1

; : : : ; b

i

m�1

denote the shortest substitutions that generated the m � 1 pairwise di�erent strings

w

1

; : : : ; w

m�1

from L(�)

min

already seen. Then, Equations (12), (13) and (14) generalize

as follows:

g

T

m

(z) =

X

(b

i

1

;:::;b

i

m�1

)2(A

k

)

m�1

b

i

`

6=b

i

j

; ` 6=j

Pr(Y = (b

i

1

; : : : ; b

i

m�1

))g

T

m

j(b

i

1

;:::;b

i

m�1

)

(z) (18)

where

g

T

m

j(b

i

1

;:::;b

i

m�1

)

(z) =

X

��1

(1� p +

m�1

X

j=1

D(b

i

j

)

| {z }

failure probability

increases

)

��1

((p�

m�1

X

j=1

D(b

i

j

)

| {z }

success prob:

decreases

)z

�

(19)

=

(p�

m�1

P

j=1

D(b

i

j

))z

1� (1� p+

m�1

P

j=1

D(b

i

j

))z

(20)

18



For computing the probabilities Pr(Y = (b

i

1

; : : : ; b

i

m�1

)) we again apply Bayes'

Theorem. We set H

(i

1

;:::;i

m�1

)

= f(b

i

1

; : : : ; b

i

m�1

)g for all tuples (b

i

1

; : : : ; b

i

m�1

) 2 (A

k

)

m�1

satisfying b

i

`

6= b

i

j

for all `; j 2 f1; : : : ;m� 1g, ` 6= j. The set B is again the union of all

hypotheses H

(i

1

;:::;i

m�1

)

. Furthermore, Pr(H

(i

1

;:::;i

m�1

)

) =

Q

m�1

j=1

D(b

i

j

), since all substitu-

tions are drawn independently. Finally, taking into account that Pr(BjH

(i

1

;:::;i

m�1

)

) = 1,

we obtain

Pr(H

(i

1

;:::;i

m�1

)

jB) =

Q

m�1

j=1

D(b

i

j

)

P

(b

j

1

;:::;b

j

m�1

)2(A

k

)

m�1

b

j

`

6=b

j

i

; ` 6=i

Q

m�1

z=1

D(b

j

z

)

(21)

Finally, incorporating (20) and (21) into (18) and applying again (2) we obtain:

E(T

m

) =

1

P

(b

j

1

;:::;b

j

m�1

)2(A

k

)

m�1

b

j

`

6=b

j

i

; ` 6=i

Q

m�1

z=1

D(b

j

z

)

�

X

(b

i

1

;:::;b

i

m�1

)2(A

k

)

m�1

b

i

`

6=b

i

j

; ` 6=j

Q

m�1

j=1

D(b

i

j

)

p�

m�1

P

j=1

D(b

i

j

)

(22)

The latter formula allows the derivation of lower and upper bounds for E(T

m

). Let

b

min

1

; : : : ; b

min

m

denote the shortest substitutions that satisfyD(b

min

1

) = minfD(b

i

) b

i

2

A

k

g,..., D(b

min

m

) = minfD(b

i

) b

i

2 A

k

n fb

min

1

; : : : ; b

min

m�1

g, respectively. Further-

more, we analogously de�ne b

max

1

; : : : ; b

max

m

by replacing \min" by \max." Then we

have the following corollary.

COROLLARY 10

For all m 2 IN, m � 2, the expectation of T

m

can be estimated as follows:

1

p�

m�1

P

j=1

D(b

min

j

)

� E(T

m

) �

1

p �

m�1

P

j=1

D(b

max

j

)

Proof

By (22) we have:

E(T

m

) =

1

P

(b

j

1

;:::;b

j

m�1

)2(A

k

)

m�1

b

j

`

6=b

j

i

; ` 6=i

Q

m�1

z=1

D(b

j

z

)

�

X

(b

i

1

;:::;b

i

m�1

)2(A

k

)

m�1

b

i

`

6=b

i

j

; ` 6=j

Q

m�1

j=1

D(b

i

j

)

p�

m�1

P

j=1

D(b

i

j

)

�

1

P

(b

j

1

;:::;b

j

m�1

)2(A

k

)

m�1

b

j

`

6=b

j

i

; ` 6=i

Q

m�1

z=1

D(b

j

z

)

�

X

(b

i

1

;:::;b

i

m�1

)2(A

k

)

m�1

b

i

`

6=b

i

j

; ` 6=j

Q

m�1

j=1

D(b

i

j

)

p�

m�1

P

j=1

D(b

min

j

)

=

1

p�

m�1

P

j=1

D(b

min

j

)

�

P

(b

i

1

;:::;b

i

m�1

)2(A

k

)

m�1

b

i

`

6=b

i

j

; ` 6=j

Q

m�1

j=1

D(b

i

j

)

P

(b

j

1

;:::;b

j

m�1

)2(A

k

)

m�1

b

j

`

6=b

j

i

; ` 6=i

Q

m�1

z=1

D(b

j

z

)
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=

1

p�

m�1

P

j=1

D(b

min

j

)

The stated upper bound can be analogously proved. 2

This �nishes the distribution independent estimate of E(C). Clearly, in order to

arrive at better interpretable estimates of E(C) one has to evaluate E(T

1

); : : : ; E(T

n

) as

well as E(N) for particular distributions. This is done in the next subsection.

4.2. RESULTS CONCERNING THE UNIFORM DISTRIBUTION

In this subsection we apply the Theorems 8 and 9 to the uniform distribution. The

following theorem expresses the average-case behavior of the LWA for this particular case.

THEOREM 11

Let k 2 IN

+

, let jAj � 2, let � 2 Pat

k

be any pattern, and let t = (w

n

)

n2IN

range

over all randomly generated texts with respect to the uniform distribution. Then, we have:

E(TT (L(�); (w

n

)) = O(2

k

k

2

jAjj�j

2

log

jAj

(kjAj))

Proof

First of all, we deal with the pgfs G

ju

i

j

. Since the distribution under consideration

is the uniform one, the pgfs G

ju

i

j

are the same for all i = 0; : : : ; k�1. Taking into account

that Pr(ju

i

j = `) = jAj

`

j=(2

`

jAj

`

) = 1=2

`

for all i 2 f0; : : : ; k � 1g and ` 2 IN

+

, we may

rewrite Equation (8) as follows

G

ju

i

j

(z) =

X

`�1

z

`

2

`

=

2

2� z

� 1

Hence, by Equations (2) and (3) we obtain:

E(ju

i

j) = 2 for all i = 0; : : : ; k � 1

V (ju

i

j) = 2 for all i = 0; : : : ; k � 1

Now, applying (6) and (7) we haveE(jw

0

j) � (k+1)j�j and V (jw

0

j) � 2kj�j

2

, respectively.

Therefore, we get:

O(V (jw

0

j) + E

2

(jw

0

j) = O(k

2

j�j

2

) (23)

Next, we can directly apply Corollary 10 in order to compute the E(T

m

)s, since

the lower and upper bound stated there clearly match for the uniform distribution.

Since p =

P

jAj

k

�1

i=0

1=(2jAj)

k

= 1=2

k

, by (11) we have E(T

1

) = 2

k

. Furthermore, an

easy calculation yields E(T

m

) = (2jAj)

k

=(jAj

k

�m+1). In order to apply Theorem 9 we
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continue with the evaluation of maxfE(T

1

);

1

2

2

P

j=1

E(T

j

); : : : ;

1

jAj

k�1

+1

jAj

k�1

+1

P

m=1

E(T

m

)g.

Claim 1. maxfE(T

1

); : : : ;

1

jAj

k�1

+1

jAj

k�1

+1

P

m=1

E(T

m

)g =

1

jAj

k�1

+1

jAj

k�1

+1

P

m=1

E(T

m

)

Obviously, it su�ces to show that

1

n+1

n+1

P

m=1

E(T

m

) >

1

n

n

P

m=1

E(T

m

) for all n � 1.

Since E(T

n+1

) > E(T

m

) for all m = 1; : : : ; n, we know that n � E(T

n+1

) >

n

P

m=1

E(T

m

).

Therefore,

n �

n

X

m=1

E(T

m

) + n � E(T

n+1

) > n �

n

X

m=1

E(T

m

) +

n

X

m=1

E(T

m

)

and hence

n �

n+1

X

m=1

E(T

m

) > (n+ 1)

n

X

m=1

E(T

m

)

This proves Claim 1.

Now, it is not hard to estimate the term

1

jAj

k�1

+1

jAj

k�1

+1

P

m=1

E(T

m

). For that purpose,

we denote by H

n

the nth harmonic number, i.e., H

n

=

P

n

j=1

1=j. Then, we have:

1

jAj

k�1

+ 1

jAj

k�1

+1

X

m=1

E(T

m

) =

1

jAj

k�1

+ 1

jAj

k�1

+1

X

m=1

2

k

jAj

k

jAj

k

�m+ 1

=

2

k

jAj

k

jAj

k�1

+ 1

jAj

k�1

+1

X

m=1

1

jAj

k

� j

=

2

k

jAj

k

jAj

k�1

+ 1

(H

jAj

k �H

jAj

k�1

�1

)

< 2

k

jAj(H

jAj

k �H

jAj

k�1

�1

)

< 2

k+1

jAj (24)

We �nish the proof by estimating the expectation of the number of elements from

L(�)

min

needed by the LWA to converge, i.e., we deal with E(N).

LEMMA 12

Let k 2 IN

+

, and let � 2 Pat

k

be any pattern. Then, the average number of

examples from L(�)

min

needed by the LWA to converge is of order log

jAj

(k � jAj), i.e.,

E(N) = O(log

jAj

(k � jAj)).

First of all, by Corollary 3 we know that Pr(N = n) equals the ratio of all good

samples of size n and all samples S � L(�)

min

of size n. Moreover, by Lemma 4 it

again su�ces to deal with � = x

0

: : : x

k�1

. Hence, we have to study the probabilities

that a randomly chosen subset of n pairwise di�erent shortest substitutions constitutes a

good sample of size n. This is done by applying the principle of inclusion and exclusion
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(cf., e.g., P�olya, Tarjan and Woods [15]). Now, the proof of Lemma 4 shows how to chose

the relevant properties. As we have seen, a sample of size n is not good if and only if it

contains a constant column or at least two columns of it are identical. Hence, we may

de�ne the following properties.

(�) x

i

= const for i = 0; : : : ; k � 1,

(�) x

i

= x

j

for all i; j 2 f0; : : : ; k � 1g with i 6= j.

Therefore, in total we have z = k +

�

k

2

�

many properties. By N

i

we denote the number

of samples ful�lling property i = 0; : : : ; z, by N

i

1

;i

2

we denote the number of samples

satisfying simultaneously the properties i

1

and i

2

, i

1

6= i

2

, and so on. Then, the number

of good samples of size n is obtained by

N

�

=

�

jAj

k

n

�

�

z

X

i=0

N

i

+

X

N

i

1

;i

2

�

X

N

i

1

;i

2

;i

3

+ : : : (�1)

z

N

0;:::;z�1

:

Note that

�

jAj

k

n

�

refers to the number of all possible samples of size n. However, the

precise computation of all those numbers N

i

1

;:::i

j

is quite complicated. Therefore, we

restrict ourselves to calculate the rather rough estimate N

�

�

�

jAj

k

n

�

�

z

P

i=0

N

i

. In order to

simplify notation we set a = jAj.

We continue with the calculation of N

i

for i = 0; : : : k�1. If x

i

= const, then there

are

�

a

k�1

n

�

possibilities to choose the remaining free positions in the shortest substitutions.

Moreover, each resulting sample of shortest substitutions can be varied by choosing a

di�erent constant for x

i

. Therefore, there we have N

i

= a

�

a

k�1

n

�

. Since there are k

possible choices for i, we obtain:

k�1

X

i=0

= k � a

�

a

k�1

n

�

(25)

Next, we consider N

i

for i = k; : : : ; z � 1. Let x

i

; x

j

with i 6= j be arbitrarily �xed.

Then there are a

k�1

many possibilities to choose the values of all x

0

; : : : ; x

k�1

except x

j

.

Clearly, x

j

is already de�ned by specifying x

i

. Hence, there are

�

a

k�1

n

�

samples of size n

ful�lling x

i

= x

j

. Finally, since there are

�

k

2

�

many choices for pairs x

i

; x

j

we have:

z�1

X

i=k

=

�

k

2

��

a

k�1

n

�

(26)

Putting (25) and (26) together and taking into account that Pr(N � n) = N

�

=

�

a

k

n

�

, we

obtain the following estimate:

Pr(N � n) �

�

a

k

n

�

� k � a

�

a

k�1

n

�

�

�

k

2

��

a

k�1

n

�

�

a

k

n

�

= 1�

k � a

�

a

k�1

n

�

�

�

k

2

��

a

k�1

n

�

�

a

k

n

�

Now, it su�ces to estimate the rightmost term in the latter equation. Applying the

de�nition of the Binomial coe�cients and reducing the resulting fraction, we get:

k � a

�

a

k�1

n

�

�

�

k

2

��

a

k�1

n

�

�

a

k

n

�

=

(k � a+

�

k

2

�

)(a

k�1

� 1) : : : (a

k�1

� n+ 1)

(a

k

� 1) : : : (a

k

� n+ 1)

�

k � a+

�

k

2

�

a

n
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The latter inequality is easily obtained by applying (a

k

� `)=(a

k

� `) � 1=a for all

` = 1; : : : n� 1. Summarizing, we already know that

Pr(N � n) � 1�

k � a +

�

k

2

�

a

n

Therefore, we directly obtain:

Pr(N > n) = 1� Pr(N � n) �

k � a+

�

k

2

�

a

n

(27)

This is nice, since E(N) =

P

n�0

Pr(N > n) (cf., e.g., [4]). However, in order to derive

the desired bound we have to be careful. That means, as long as the term in (27) is

worse than the trivial estimate Pr(N > n) = 1, we better sum the 1s. Obviously,

(k � a +

�

k

2

�

)=a

n

� 1 i� n � blog

a

(k � a +

�

k

2

�

)c + 1. In order to simplify notion, we set

m = log

a

(k � a+

�

k

2

�

)c + 1. Then, we have:

E(N) =

X

n�0

Pr(N > n) =

m

X

n=0

+

X

n�m+1

� m+ 1 + (k � a +

�

k

2

�

)

X

n�m+1

1

a

n

= m+ 1 + (k � a+

�

k

2

�

)(

X

n�0

1

a

n

�

m

X

n=0

1

a

n

)

= m+ 1 + (k � a+

�

k

2

�

)(

a

a� 1

(1� 1 +

1

a

m

))

� m+ 1 + (k � a+

�

k

2

�

)

a

a� 1

�

1

k � a+

�

k

2

�

= m+ 1 +

a

a� 1

= log

a

(k � a+

�

k

2

�

)c+ 2 +

a

a� 1

= O(log

a

(k � a))

This proves Lemma 12.

Finally, incorporating Lemma 12 and the Estimation (24) into Theorem 9 as well as

(23) into Theorem 8 we directly obtain E(TT (L(�); (w

n

)) = O(2

k

k

2

jAjj�j

2

log

jAj

(kjAj))

and hence the theorem is proved. 2

5. Conclusions and Open Problems

The present paper dealt with the best-case, worst-case and average-case analysis of

Lange and Wiehagen's [9] pattern language learning algorithm with respect to its total

learning time. As far as we know, this is the �rst paper that analyzes a concrete algorithm

that learns a non-trivial class of objects in the limit.

In particular, we showed that their algorithm has a best-case behavior that de-

pends only logarithmically on the alphabet size jAj and the number of di�erent variables

occurring in the target pattern � and quadratically on j�j. On the other hand, the algo-

rithm may behave arbitrarily complex in the worst-case. Nevertheless, we could establish

an average-case behavior of O(2

k

k

2

jAjj�j

2

log

jAj

(kjAj)) for its total learning time with
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respect to the uniform distribution. Consequently, if the number of di�erent variables is

�xed, then the average-case behavior of the LWA is quadratically bounded in j�j and log-

arithmically in the alphabet size jAj. The latter result remains clearly true, if we replace

\uniform distribution" by \length biased uniform distribution." As an easy inspection

of the proof presented above shows, the only term changing is 2

k

to �

k

0

. Therefore, it

would be desirable to compare the average-case behavior of the LWA to the average-case

behavior of other algorithms that learn PAT

k

.

Nevertheless, when applied to learn the class of all pattern languages, the expected

total learning time is in both cases exponential in the reciprocal value of the relevant

weight factor �

0

assigned to all shortest strings over A.

Furthermore, Lange and Wiehagen [9] also considered pattern inference from good

examples. In this setting, the teacher provides sets of good examples. However, in order

to avoid simple coding tricks, the learner is required to learn from every superset of every

set of good examples. Our results apply to this setting as well. First, Theorem 2 closes

a gap in the proof of Theorem 2 in [9]. Furthermore, our best-case analysis drastically

improved the corresponding assertion concerning the size of sets of good examples.

Finally, the established tight bound for the size of good samples improves the com-

plexity estimates of other algorithms as well. For example, the number of queries needed

in Marron's [13] Algorithm 2.2. also considerably reduces from k+1 to blog

jAj

(jAj+ k�

1)c+ 1.
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