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Abstract

The present paper deals with the co-learnability of enumerable families L of

uniformly recursive languages from positive data. This refers to the following

scenario. A family L of target languages as well as hypothesis space for it are

speci�ed. The co-learner is fed eventually all positive examples of an unknown

target language L chosen from L. The target language L is successfully co-

learned if and only if the co-learner can de�nitely delete all but one possible

hypotheses, and the remaining one has to correctly describe L.

We investigate the capabilities of co-learning in dependence on the choice

of the hypothesis space, and compare it to language learning in the limit from

positive data. We distinguish between class preserving learning (L has to be

co-learned with respect to some suitably chosen enumeration of all and only

the languages from L), class comprising learning (L has to be co-learned with

respect to some hypothesis space containing at least all the languages from

L), and absolute co-learning (L has to be co-learned with respect to all class

preserving hypothesis spaces for L).

Our results are manyfold. First, it is shown that co-learning is exactly as

powerful as learning in the limit provided the hypothesis space is appropriately

chosen. However, while learning in the limit is insensitive to the particular

choice of the hypothesis space, the power of co-learning crucially depends on

it. Therefore we study properties a hypothesis space should have in order to

be suitable for co-learning. Finally, we derive su�cient conditions for absolute

co-learnabilty, and separate it from �nite learning.

�
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1. Introduction

The present paper deals with the co-learnability of enumerable families L of uni-

formly recursive languages from positive data. This refers to the following scenario

introduced by Freivalds, Karpinski and Smith (1994) in the setting of inductive in-

ference of recursive functions. A family L of target languages as well as hypothesis

space for it are speci�ed. The co-learner is fed eventually all positive examples of

an unknown target language L chosen from L. The target language L is successfully

co-learned if and only if the co-learner can de�nitely delete all but one possible hy-

potheses, and the remaining one has to correctly describe L. This approach derives

its motivation from machine learning, where learning algorithms rather often start

from a large �nite set of possible guesses. Then, all but one are refuted during the

learning process. Hence, our model is just the recursion theoretic counterpart of that

approach.

We investigate the capabilities of co-learning in dependence on the choice of the

hypothesis space, and compare it to learning in the limit, conservative learning, and

�nite learning. We distinguish between class preserving learning (L has to be co-

learned with respect to some suitably chosen enumeration of all and only the languages

from L), class comprising learning (L has to be co-learned with respect to some

hypothesis space containing at least all the languages from L), and absolute co-learning

(L has to be co-learned with respect to all class preserving hypothesis spaces for L).

Our results are manyfold. First, it is shown that co-learning is exactly as powerful

as learning in the limit provided the hypothesis space is appropriately chosen. How-

ever, while learning in the limit is insensitive to the particular choice of the hypothesis

space, the power of co-learning crucially depends on it. The latter result is obtained

while studying the co-learnability of the pattern languages. Moreover, proving that

the pattern languages are not absolutely co-learnable but absolute conservatively in-

ferable allows some deeper insight into the strength to refute some and all but one

hypothesis.

Furthermore, we study properties a hypothesis space should have in order to

be suitable for co-learning. Finally, we derive su�cient conditions for absolute co-

learnabilty, and separate it from �nite learning.

2. Notations and De�nitions

Unspeci�ed notations follow Rogers (1967). Let IN = f0; 1; 2; :::g be the set of

natural numbers. We set IN

+

= IN n f0g. By h�; �i: IN� IN! IN we denote Cantor's

pairing function, i.e., hx; yi = ((x + y)

2

+ 3x + y)=2 for all x; y 2 IN. We use P

n

and R

n

to denote the set of all n-ary partial recursive and total recursive functions

over IN, respectively. The class of all f0; 1g valued functions f 2 R

n

is denoted by

R

n

0;1

. For n = 1 we omit the upper index, i.e., we set P = P

1

, and R = R

1

as well as

R

0;1

= R

1

0;1

.

Every function  2 P

2

is called a numbering. Moreover, let  2 P

2

, then we

write  

j

instead of �x (i; x). Furthermore, let  2 R

2

0;1

, then by L( 

j

) we denote

the language generated or described by  

j

, i.e., L( 

j

) = fx  

j

(x) = 1; x 2 INg.
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Moreover, we call L = (L( 

j

))

j2IN

an indexed family (cf. Angluin (1980b)). For the

sake of presentation, we restrict ourselves to consider exclusively indexed families of

non-empty languages. Let L be an indexed family. Every numbering  2 R

2

0;1

is called

hypothesis space. A hypothesis space  2 R

2

0;1

is said to be class comprising

for an indexed family L i� range(L) � fL( 

j

) j 2 INg. Furthermore, we call a

hypothesis space  2 R

2

0;1

class preserving for L i� range(L) = fL( 

j

) j 2 INg.

Let L be a language and let t = s

0

; s

1

; s

2

; ::: be an in�nite sequence of natural

numbers such that range(t) = fs

k

k 2 INg = L. Then t is said to be a text for L or,

synonymously, a positive presentation. By text(L) we denote the set of all positive

presentations of L. Moreover, let t be a text, and let y be a number. Then t

y

denotes

the initial segment of t of length y + 1, i.e., t

y

= s

0

; :::; s

y

. Finally, t

+

y

denotes the

content of t

y

, i.e., t

+

y

= fs

z

z � yg.

As in Gold (1967), we de�ne an inductive inference machine (abbr. IIM) to be

an algorithmic device which works as follows: The IIM takes as its input incrementally

increasing initial segments of a text t and it either requests the next input, or it �rst

outputs a hypothesis, i.e., a number, and then it requests the next input.

We interpret the hypotheses output by an IIM with respect to some suitably chosen

hypothesis space  2 R

2

0;1

. When an IIM outputs a number j, we interpret it to mean

that the machine is hypothesizing the language L( 

j

).

Furthermore, we de�ne a co-learning machine (abbr. CLM) to be an algorithmic

device working as follows: The CLM takes as its input incrementally increasing initial

segments of a text t (as an IIM does) and it either requests the next input, or it �rst

outputs a number, and then it requests the next input.

However, there is a major di�erence in the semantics of the output of an IIM and

CLM, respectively. Let  2 R

2

0;1

be any hypothesis space. Suppose a CLM M has

been successively fed an initial segment t

y

of a text t, and it has output numbers

j

0

; :::; j

z

, z � y. Then we interpret j = min(IN n fj

0

; :::; j

z

g) as M 's actual guess.

Intuitively speaking, if a CLM outputs a number j, then it de�nitely deletes j from

its list of potential hypotheses.

Let M be an IIM or a CLM, let t be a text, and y 2 IN. Then we use M(t

y

)

to denote the last number that has been output by M when successively fed t

y

. We

de�ne convergence of IIMs as usual. Let t be a text, and let M be an IIM. The

sequence (M(t

y

))

y2IN

is said to converge in the limit to the number j if and only

if either (M(t

y

))

y2IN

is in�nite and all but �nitely many terms of it are equal to j, or

(M(t

y

))

y2IN

is non-empty and �nite, and its last term is j.

A CLM M is said to stabilize on a text t to a number j if and only if fjg =

IN n fM(t

y

) y 2 INg. Intuitively, a CLM M stabilizes itself on a number j if it

outputs all but the natural number j when fed a text. Now we are ready to de�ne

learning and co-learning.

De�nition 1. (Gold, 1967) Let L be an indexed family, let L be a language,

and let  2 R

2

0;1

be a hypothesis space. An IIM M CLIM{identi�es L from

text with respect to  i� for every text t for L, there exists a j 2 IN such that the

sequence (M(t

y

))

y2IN

converges in the limit to j and L = L( 

j

).

Furthermore, M CLIM{identi�es L with respect to  if and only if, for each L 2
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range(L), M CLIM{identi�es L with respect to  .

Finally, let CLIM denote the collection of all indexed families L for which there

are an IIM M and a hypothesis space  such that M CLIM{identi�es L with respect

to  .

Since, by the de�nition of convergence, only �nitely many data of L were seen by

the IIM upto the (unknown) point of convergence, whenever an IIM identi�es the

language L, some form of learning must have taken place. For this reason, hereinafter

the terms infer, learn, and identify are used interchangeably.

In De�nition 1, LIM stands for \limit." Furthermore, the pre�x C is used to

indicate class comprising learning, i.e., the fact that L may be learned with respect

to some class comprising hypothesis space  for L. The restriction of CLIM to class

preserving hypothesis spaces is denoted by LIM and referred to as class preserving

inference. Moreover, we use the pre�x A to express the fact that an indexed family

L may be inferred with respect to all class preserving hypothesis spaces for L, and

we refer to this learning model as to absolute learning. We adopt this convention in

the de�nitions of the learning types below.

The following proposition clari�es the relations between absolute, class preserving

and class comprising learning in the limit.

Proposition 1. (Lange and Zeugmann, 1993c)

ALIM = LIM = CLIM

Note that, in general, it is not decidable whether or not an IIM M has already

converged on a text t for the target language L. With the next de�nition, we consider

a special case where it has to be decidable whether or not an IIM has successfully

�nished the learning task.

De�nition 2. (Gold, 1967; Trakhtenbrot and Barzdin, 1970) Let L be an

indexed family, let L be a language, and let  2 R

2

0;1

be a hypothesis space. An IIM

M CFIN{identi�es L from text with respect to  i� for every text t for L,

there exists a j 2 IN such that M, when successively fed t, outputs the single hypothesis

j, L = L( 

j

), and stops thereafter.

Furthermore, M CFIN{identi�es L with respect to  if and only if, for each L 2

range(L), M CFIN{identi�es L with respect to  .

The resulting learning type is denoted by CFIN .

The following proposition states that, if an indexed family L can be CFIN{learned

with respect to some hypothesis space  for it, then it can be �nitely inferred with

respect to every class preserving hypothesis space for L.

Proposition 2. (Zeugmann, Lange and Kapur, 1995)

AFIN = FIN = CFIN

Next we adapt the de�nition of co-learnability introduced by Freivalds, Karpinski

and Smith (1994) to language learning from positive data.

De�nition 3. Let L be an indexed family, let L be a language, and let  2 R

2

0;1

be

a hypothesis space. A CLM M co{CFIN{identi�es L from text with respect

to  i� for every text t for L, there exists a j 2 IN such that M on t stabilizes to j

3



and L = L( 

j

).

Furthermore, M co�CFIN{identi�es L with respect to  if and only if, for each

L 2 range(L), M co�CFIN{identi�es L with respect to  .

Finally, let co�CFIN denote the collection of all indexed families L for which

there are a CLM M and a hypothesis space  such that M co�CFIN{identi�es L

with respect to  .

Next we de�ne conservative IIMs. Intuitively speaking, conservative IIMs main-

tain their actual hypothesis at least as long as the have received data that \provably

misclassify" it. Hence, whenever a conservative IIM performs a mind change it is

because it has perceived a clear contradiction between its hypothesis and the actual

input.

De�nition 4. (Angluin, 1980b) Let L be an indexed family, let L be a language,

and let  2 R

2

0;1

be a hypothesis space. An IIM M CCONSV{identi�es L from

text with respect to  i�

(1) M CLIM{identi�es L with respect to  ,

(2) for every text t for L the following condition is satis�ed:

whenever M on input t

y

makes the guess j

y

and then makes the guess j

y+k

6= j

y

at some subsequent step, then L( 

j

y

) must fail to contain some string from t

+

y+k

.

Finally, M CCONSV {identi�es L with respect to  if and only if, for each L 2

range(L), M CCONSV {identi�es L with respect to  .

The resulting collection of sets CCONSV is de�ned in a manner analogous to that

above.

The following proposition shows that conservative learning is sensitive to the par-

ticular choice of the hypothesis space.

Proposition 3. (Lange and Zeugmann, 1993b)

ACONSV � CONSV � CCONSV � ALIM

3. Results

As already mentioned in the Introduction, Freivalds, Karpinski and Smith (1994)

recently studied co-learnability of recursive functions. On the other hand, in in-

ductive inference functions and languages are usually very di�erent from each other

(cf., e.g., Osherson, Stob and Weinstein (1986) and the references therein). Hence,

it is only natural to ask whether or not there are major di�erences between the co-

learnability of recursive functions and recursive languages, too. In this section we

provide both similarities and distinctions. However, the overall goal is far-reaching,

and results presented in the following subsection will guide us to central questions

concerning the co-inferability of recursive languages.

3.1. Basic Results

We start our investigations by clarifying whether or not the capabilities of co-

learning do depend on the class of admissible hypothesis spaces. Clearly, co�AFIN �

4



co�FIN � co�CFIN . First we ask whether these inclusions are proper, and what

are the lower and upper bounds of this hierarchy. The �rst theorem provides a �rst

lower bound.

Theorem 1. Let L be an indexed family. Then L 2 FIN implies L 2 co�AFIN .

Proof. Let  2 R

2

0;1

be any class preserving hypothesis space for L. By Proposition

2 there exists an IIM M that �nitely infers L with respect to  . The desired CLM

^

M can be de�ned as follows. Let L 2 range(L), t 2 text(L), and y 2 IN. The

CLM

^

M simulates M on input t

y

. Now, two cases are possible. First, M outputs

nothing and request the next input. In this case

^

M also requests the next input

and does not output any hypothesis. Second, M outputs a hypothesis j and stops.

Due to the de�nition of FIN we know that L = L( 

j

). Then

^

M outputs, one at

a time, all natural numbers but j. Clearly,

^

M stabilizes on j, and hence it indeed

co�AFIN{infers L. q.e.d.

Next we deal with the desired upper bound.

Theorem 2. Let L be an indexed family, and let  2 R

2

0;1

be any class comprising

hypothesis space for L. Then, L 2 co�CFIN with respect to  implies L 2 CLIM

with respect to  .

Proof. Let M be a CLM that witnesses L 2 co�CFIN with respect to  . The

desired IIM

^

M is de�ned as follows. Let L 2 range(L), t 2 text(L), and y 2 IN.

^

M

simulatesM on input t

y

. IfM does not produce an output, then

^

M requests the next

input and outputs nothing. Otherwise, it outputs the least number not yet de�nitely

deleted by M and requests the next input. Obviously,

^

M CLIM{learns L. q.e.d.

As the latter theorem shows, co-learning is at most as powerful as learning in the

limit. With the next theorem we establish the equality of CLIM and co�CFIN .

Theorem 3. Let L be an indexed family. If L 2 CLIM then there exists a class

preserving hypothesis space � 2 R

2

0;1

such that L 2 co�FIN with respect to � .

Proof. Let L be an indexed family such that L 2 CLIM . By Proposition 1 we may

assume, without loss of generality, that there are a class preserving hypothesis space

 2 R

2

0;1

for L and an IIM M such that M LIM{identi�es L with respect to  . We

de�ne the desired class preserving hypothesis space � as follows. For all j; x; z 2 IN

we set �

hj;xi

(z) =  

j

(z). Hence, the hypothesis space � contains for every language

L 2 range(L) in�nitely many descriptions. Moreover, given any description hj; xi

one can easily compute in�nitely many descriptions generating the same language

L(�

hj;xi

). Applying the same technique as in Freivalds, Karpinski and Smith (1994)

one directly obtains a CLM

^

M that co�FIN{infers L with respect to � . q.e.d.

Theorem 2 and 3 as well as Proposition 1 directly allow the following corollary.

Corollary 4.

(1) ALIM = co�CFIN ,

(2) co�FIN = co�CFIN .

The latter corollary yields some insight into the potential capabilities of co-learning.

In particular, we already know that every LIM{inferable indexed family is also co-

5



learnable provided the hypothesis space is appropriately chosen. Hence, in order to

decide whether or not a particular indexed family can be co-learned one can apply

any of the known criteria for LIM{inferability (cf., e.g., Angluin (1980b), Sato and

Umayahara (1992)). On the other hand, if an indexed family L is CLIM{identi�able

at all then it can be learned in the limit with respect to any class comprising hy-

pothesis space for L. That is, the principle capabilities of learning in the limit are

insensitive to the particular choice of the hypothesis space. Therefore, it is only nat-

ural to ask whether or not the power of co-learnability does depend on the choice of

the possible hypothesis spaces. We answer this question by clarifying the relations be-

tween absolute and class preserving co-learning. We achieve this goal by studying the

co-learnability of the pattern languages introduced by Angluin (1980a). Nix (1983)

outlined interesting applications of inference algorithms for pattern languages. Shino-

hara (1982), Kearns and Pitt (1989), Schapire (1991), Lange and Wiehagen (1991) as

well as Wiehagen and Zeugmann (1994) studied polynomial time learnability of pat-

tern languages. Furthermore, Zeugmann, Lange and Kapur (1995) investigated the

inferability of pattern languages under various constraints of monotonicity. So let us

de�ne what are a pattern and a pattern language. Let � = fa; b; ::g be any non{empty

�nite alphabet containing at least two elements. Furthermore, let X = fx

i

i 2 INg

be an in�nite set of variables such that � \X = ;. Patterns are non-empty strings

from � [X, e.g., ab; ax

1

ccc; bx

1

x

1

cx

2

x

2

are patterns. L(p), the language generated

by pattern p is the set of strings which can be obtained by substituting non{null

strings from �

�

for the variables of the pattern p. Thus aabbb is generable from pat-

tern ax

1

x

2

b, while aabba is not. Pat and PAT denote the set of all patterns and of

all pattern languages over �, respectively. From a practical point of view it is highly

desirable to choose the hypothesis space as small as possible. For that purpose we

use the canonical form of patterns (cf. Angluin (1980a)). A pattern p is in canonical

form provided that if k is the number of variables in p, then the variables occurring

in p are precisely x

0

; :::; x

k�1

. Moreover, for every j with 0 � j < k � 1, the leftmost

occurrence of x

j

in p is left to the leftmost occurrence of x

j+1

in p. If a pattern p is in

canonical form then we refer to p as a canonical pattern. Let Patc denote the set of

all canonical patterns. Clearly, for every pattern p there exists a unique q 2 Patc such

that L(p) = L(q). Finally, choose any repetition free e�ective enumeration p

0

; p

1

; :::

of Patc and de�ne PAT = (L(p

j

))

j2IN

. Since membership for pattern languages is

uniformly decidable, there is a  2 R

2

0;1

such that L(p

j

) = L( 

j

) for all j 2 IN

(cf. Angluin (1980a)). Note that  enumerates every pattern language exactly ones.

By Angluin (1980b) we also know that PAT 2 CONSV with respect to  . However,

PAT cannot be co�FIN{inferred with respect to  as our next theorem shows.

Theorem 5. Let PAT and  be de�ned as above. Then, PAT =2 co�FIN with

respect to  .

Proof. Suppose the converse, i.e., there is a CLM M that co�FIN{learns PAT

with respect to  . Now, let k be the index of L(x

1

) in the hypothesis space  , i.e.,

L(x

1

) = L( 

k

). We proceed in showing that there is a text

^

t 2 text(L( 

k

)) from

which M fails to co�FIN{identify L(x

1

). For that purpose let p 2 Patc be any

pattern with L(p) 6= L(x

1

), and let t 2 text(L(p)). Since M co�FIN{infers L(p),

there exists a y such that k =M(t

y

), since otherwise M cannot stabilize on a correct

hypothesis for L(p). But now we observe that t

y

is an initial segment of some text

^

t 2 text(L( 

k

)) = text(L(x

1

)), since L(x

1

) = �

+

. Therefore, (M(

^

t

z

))

z2IN

cannot

6



stabilize on k, a contradiction. q.e.d.

The latter theorem directly implies the wanted separation of absolute and class

preserving co-learnability.

Corollary 6. co�AFIN � co�FIN

Additionally, Theorem 5 provides a main ingredient to show that absolute conser-

vative learning does not imply absolute co-inferability.

Corollary 7.

(1) ACONSV n co�AFIN 6= ;

(2) AFIN � ACONSV

Proof. First, we prove Assertion (1). In accordance with Theorem 5 it su�ces to

show that PAT 2 ACONSV . Let M and  be chosen as in the proof of Theorem

5, i.e., M witnesses PAT 2 CONSV with respect to  . Now, let � be any class

preserving hypothesis space for PAT. We have to show that there exists an IIM

^

M

conservatively inferring PAT with respect to � .

The main ingredient to the de�nition of

^

M is the fact that PAT can be �nitely

inferred from positive and negative data with respect to  (cf. Lange and Zeugmann

(1993a)). Therefore, we can de�ne

^

M as follows. Let L 2 PAT , let t 2 text(L) and

let y 2 IN.

^

M(t

y

) = \Compute M(t

y

). If M when successively fed t

y

does not produce any

hypothesis, then output nothing and request the next input.

Otherwise, let j = M (t

y

). Compute  

j

(0); :::;  

j

(z) and search for the least

index k such that �

k

(x) =  

j

(x) for all x � z, where z is the least number such

that all shortest strings in L( 

j

) are classi�ed. Output k and request the next

input."

We show that

^

M conservatively infers PAT with respect to � . Remember that  

and � are class preserving hypothesis spaces for PAT. Hence, if j =M (t

y

) then L( 

j

) is

a pattern language. As shown in Lange and Zeugmann (1993a), if all shortest strings

in L( 

j

) are classi�ed, then L( 

j

) = L(�

k

) provided �

k

(x) =  

j

(x) for all x � z.

Therefore,

^

M is conservative and it learns PAT with respect to � . Consequently,

PAT 2 ACONSV , and (1) is proved.

Now, Assertion (2) is an immediate consequence of PAT =2 FIN (cf. Lange and

Zeugmann (1993a)). q.e.d.

Furthermore, as we have seen, one-to-one hypothesis spaces  do not guarantee

the co-inferability of the corresponding indexed families (L( 

j

))

j2IN

. This nicely con-

trasts a result for the co-learnability of recursive functions (cf. Freivalds, Karpinski

and Smith (1994), Theorem 3). Moreover, the proof technique applied in the demon-

stration of Theorem 5 allows the following generalizations.

Theorem 8. Let L = (L

j

)

j2IN

be any indexed family such that L =

S

j2IN

L

j

2

range(L). Furthermore, let  2 R

2

0;1

be any hypothesis space for L such that card(fk

7



k 2 IN; L( 

k

) = Lg) < 1. Then, L cannot be co�CFIN{identi�ed with respect to

 .

Proof. Suppose the converse, i.e., there is a CLM M that co�FIN{learns L with

respect to  . Let L =

S

j2IN

L

j

, and let fk

1

; :::; k

m

g be the set of all  {indices that

generate L. Furthermore, let

^

L 2 range(L) be any �xed language such that

^

L 6= L,

and let

^

t be any text for

^

L. Consequently, there has to be a y 2 IN such that M when

successively fed

^

t

y

outputs at least the numbers from fk

1

; :::; k

m

g. Again, we observe

that

^

t

y

constitutes an initial segment of some text t for L. Consequently, (M(t

z

))

z2IN

cannot stabilize on a correct index for L. q.e.d.

Theorem 9. Let L = (L

j

)

j2IN

be any indexed family containing at least two lan-

guages L

k

; L

z

such that L

k

� L

z

. Then, for any hypothesis space  2 R

2

0;1

satisfying

card(fm L( 

m

) = L

z

g) <1 we have that L =2 co�CFIN with respect to  .

Proof. Again, the same argument as above applies mutatis mutandis. q.e.d.

As we have seen, the power of co-learnability may heavily depend on the partic-

ular choice of the hypothesis space. However, Theorems 8 and 9 might suggest that

inclusion of some languages in the target indexed family causes the sensitivity of co-

learning with respect to the choice of the hypothesis space. Nevertheless, the situation

is more complex as our next theorem shows.

Theorem 10. There is an indexed family L such that

(1) L 6�

^

L for all L;

^

L 2 range(L),

(2) there exists a class preserving hypothesis space � for L with respect to which L

cannot be co�FIN learned.

Proof. LetM

0

;M

1

;M

2

; ::: be the canonical enumeration of all CLMs. We construct

the desired indexed family by de�ning the numbering � 2 R

2

0;1

. As we shall see, all

languages are �nite ones and they either contain one or two numbers. This is done as

follows. By p

j

we denote the jth prime number.

We de�ne �

2j

(p

j

) = �

2j+1

(p

j

) = 1 for all j 2 IN. Hence, L(�

2j

) as well as L(�

2j+1

)

contain p

j

. In order to complete the de�nition of � let t

j

x

be the �nite sequence of

length x+ 1 with content(t

j

x

) = fp

j

g.

Then, for x = 0; 1; :::; p

j

� 1; p

j

+ 1; ::: we successively de�ne �

2j

(x) and �

2j+1

(x)

as follows. Simulate the computation of M

j

on input t

j

x

. If M

j

when fed t

j

x

does

not output a hypothesis or n = M

j

(t

j

x

) satis�es n =2 f2j; 2j + 1g then set �

2j

(x) =

�

2j+1

(x) = 0. Otherwise, de�ne �

2j

(p

x+2

j

) = 1 and �

2j+1

(p

x+3

j

) = 1 and set �

2j

(x) =

�

2j+1

(x) = 0 for all x 2 IN for which �

2j

and �

2j+1

are not de�ned yet.

Obviously, � 2 R

2

0;1

. Moreover, Assertion (1) is an immediate consequence of our

de�nition, since any two languages are either equal or incomparable.

We proceed with Assertion (2). Suppose the converse, i.e., (L(�

z

))

z2IN

2 co�FIN

with respect to � . Hence, there must be a CLM M witnessing the co-learnability of

(L(�

z

))

z2IN

with respect to � . Moreover, this CLM has to appear in the canonical

enumeration of all CLMs. Thus, there is a j such that M =M

j

. Now, consider M

j

's

behavior when successively fed t

j

x

. We distinguish the following cases.

8



Case 1. M

j

when successively fed t

j

x

, x 2 IN, does never output a number n 2

f2j; 2j + 1g.

By construction, L(�

2j

) = L(�

2j+1

) = fp

j

g, and therefore t

j

= (t

j

x

)

x2IN

constitutes

a text for L(�

2j

) as well as for L(�

2j+1

). But M

j

on input t

j

does neither output 2j

nor does it output 2j + 1. Thus, it cannot stabilize on input t

j

, a contradiction.

Case 2. M

j

when successively fed t

j

x

, x 2 IN, does output a number n 2 f2j; 2j+1g.

Then, in accordance with the de�nition of � we know that fp

j

g 6= L(�

2j

) 6=

L(�

2j+1

) 6= fp

j

g, and that both languages contain p

j

. Assume M

j

outputs 2j, say

on input t

j

x

. Then, t

j

x

is an initial segment of a text t for L(�

2j

) but M

j

has de�nitely

deleted the only correct hypothesis for L(�

2j

) when fed t

x

. Hence, it cannot co-learn

L(�

2j

) from text t, a contradiction. The remaining case that M

j

outputs 2j + 1 can

be analogously handled. q.e.d.

Next, we are interested in learning under what conditions hypothesis spaces are

appropriate for co-inferability. This is done in the next subsection.

3.2. Main Results

This subsection is devoted to the problem why an indexed family that is co-

learnable with respect to some hypothesis space  might become co�FIN{non-

inferable with respect to other hypothesis spaces � . First of all, we want to point to

another di�erence between learning in the limit and co-inference. Gold (1967) proved

that every IIM which learns an indexed family L with respect to some hypothesis

space  can be e�ectively transformed into an IIM

^

M inferring L with respect to

some other hypothesis space � provided that there is a limiting recursive compiler

from  into � . For co-learning, the situation is much more subtle. To see this, we

introduce the following notation.

De�nition 5. Let  ; � 2 R

2

0;1

be two hypothesis spaces. � is said to be reducible

to  (abbr. � �

c

 ) i� there exists a recursive compiler c 2 R such that �

j

=  

c(j)

for

all j 2 IN.

Clearly, if L is an indexed family and  ; � 2 R

2

0;1

are hypothesis spaces for L

satisfying � �

c

 , then L 2 CLIM with respect to � implies L 2 CLIM with respect

to  . In contrast, for co� FIN we have the following theorem.

Theorem 11. There are an indexed family L and class preserving hypothesis

spaces  ; � for L such that

(1) � �

c

 ,

(2) L 2 co�FIN with respect to � but L =2 co�FIN with respect to  .

Proof. We set L = PAT . Since PAT 2 LIM , by Theorem 3 we may conclude that

there exists a class preserving hypothesis space � such that PAT 2 co�FIN with

respect to � . Furthermore, let  be the class preserving hypothesis space for PAT

from Theorem 5. Hence, PAT =2 co�FIN with respect to  . It remains to show that

there is a recursive compiler c such that � �

c

 . But this has been implicitly done in

the proof of Corollary 7. q.e.d.
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Consequently, it is only natural to ask under what circumstances reducibility of

hypothesis spaces does preserve co-learnability. Our next theorem provides a partial

answer to this question.

Theorem 12. Let L be an indexed family. Furthermore, let � be any class preserv-

ing hypothesis space for L that contains precisely one index for every L 2 range(L).

Then we have:

L 2 co�FIN with respect to � implies L 2 co�FIN with respect to any class

preserving hypothesis space  provided  �

c

� .

Proof. By assumption, there exists a CLMM witnessing L 2 co�FIN with respect

to � . Let  be any class preserving hypothesis space for L with  �

c

� . We have to

construct a CLM

^

M that co�FIN{infers L with respect to  . The desired CLM

^

M

may be de�ned as follows. Let L 2 range(L), and let t 2 text(L). Then,

^

M when

successively fed (t

y

)

y2IN

works as follows:

^

M simulatesM when successively fed (t

y

)

y2IN

and keeps track of the following sets

I(�; y), C( ; y), and G( ; y) of � and  indices. Let I(�; y) = fM(t

z

) z � yg. That

is, I(�; y) is the set of all � indices that M has de�nitely deleted when successively

fed t

y

. Since � is a one-to-one hypothesis space, we know that none of the indices j 2

I(�; y) may satisfy L = L(�

j

). However, we have to ensure that

^

M de�nitely deletes all

indices i in the hypothesis space  that are equivalent to one of the �{indices in I(�; y).

Therefore,

^

M additionally computes C( ; y) = fc(i) 0 � i � y; c(i) 2 I(�; y)g,

and by dovetailing, it successively outputs all elements in C( ; y). Moreover, let

a

y

= min(IN n I(�; y)), i.e., a

y

is M 's actual guess. The CLM

^

M seeks the least index

i

y

such that c(i

y

) = a

y

, and computes G( ; y) = fi i

y

< i � i

y

+ y; c(i) = a

y

g. Note

that the unbounded search for i

y

has to terminate, since  and � are class preserving

hypothesis spaces and  �

c

� . Again, by dovetailing it successively outputs all

elements from G( ; y).

It remains to show that

^

M witnesses L 2 co�FIN with respect to  . Let

a = min(IN n fM(t

y

) y 2 INg), i.e., a is the index the CLM M stabilizes to. We have

to argue that

^

M outputs all natural numbers except i, where i is the least number

satisfying c(i) = a. In accordance with

^

M 's de�nition it is obvious that

^

M does not

output i. Moreover, by the de�nition of the sets I(�; y) and C( ; y) one straightfor-

wardly obtains that

^

M sometimes outputs all  {indices j with L 6= L( 

i

). Hence, it

remains to argue that all but the  {index i of L are output, too. But this is ensured

by the de�nition of the set G( ; y) in which

^

M successively keeps track of all other

possible  {indices. Finally, if M changes its actual guess, say from a

y

to a

y+1

then

any number in G( ; y) which has not already been output has to appear in I(�; y+ r)

for some r 2 IN. Hence,

^

M co�FIN{learns L with respect to  . q.e.d.

Note that the latter theorem establishes a certain type of \co-reducibility," i.e.,

instead of requiring � �

c

 , as for \traditional" learning types, we demand  �

c

� .

This is, in general, a stronger requirement, since  �

c

� implies � �

~c

 . The latter

implication easily follows, since � is a one-to-one hypothesis space.

Moreover, the latter theorem can be successfully applied to solve the intriguing

problem whether or not AFIN � co�AFIN . The a�rmative answer is provided by

our next theorem.
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Theorem 13. co�AFIN n AFIN 6= ;

Proof. First, we de�ne the desired indexed family L witnessing the announced

separation. For the sake of presentation, we describe L as a family of languages over

an alphabet �. As we shall see, AFIN and co�AFIN may be even separated over

a one letter alphabet. We set � = fag, and de�ne L

j

= fa

n

n 2 IN

+

; n 6= jg for all

j 2 IN

+

. Clearly, L = (L

j

)

j2IN

+
is an indexed family.

Claim 1. L =2 AFIN

It su�ces to show that L cannot be �nitely learned with respect to the hypothesis

space L. Suppose the converse, i.e., there is an IIM witnessing L 2 FIN with respect

to L. We consider M 's behavior on the following text t

fool

. M is fed a

2

; a

3

; ::: until it

outputs the hypothesis 1. In case it does not, we are already done, since thenM does

not �nitely learn L

1

from its lexicographically ordered text. But if it does, say on input

a

2

; a

3

; :::; a

x

, we may de�ne t

fool

as follows. We set t

fool

= a

2

; a

3

; :::; a

x

; a; a

x+2

; a

x+3

; :::,

i.e., t

fool

is a text for L

x+1

. However, when successively fed t

fool

the IIMM converges

to 1, and L

1

6= L

x+1

, a contradiction.

The remaining part of the proof, i.e., the demonstration of L 2 co�AFIN is

divided into two parts. First, we show that L 2 co�FIN with respect to L. Next, we

apply Theorem 5 to prove that L 2 co�FIN with respect to every class preserving

hypothesis space  for L.

Claim 2. L 2 co�FIN with respect to L.

The desired CLM M can be de�ned as follows. Let L 2 range(L), t 2 text(L),

and let y 2 IN. We de�ne:

M(t

y

) = \If y = 0, then compute the unique number j such that t

0

= a

j

. Output j,

and request the next input.

For y � 1 proceed inductively as follows. Let I(y) be the set of all numbers

n such that t

+

y

= fa

n

n 2 I(y)g. If I(y) n I(y � 1) 6= ;, then output j =

min(I(y) n I(y � 1)), and request the next input.

Otherwise, output nothing, and request the next input."

Since L 2 range(L), there is a unique number k such that L = L

k

. It remains to

show thatM stabilizes on t to k. In accordance with the de�nition of L we know that

a

n

2 L

k

for all n 2 IN

+

n fkg. Hence, k is never output by M . Furthermore, since t

is a text for L

k

, all numbers n 2 IN

+

n fkg must be sometimes output by M . Thus,

M stabilizes to k.

Claim 3. L 2 co�AFIN

Let  2 R

2

0;1

be any class preserving hypothesis space for L. By Theorem 5 it

su�ces to show that there is a recursive compiler c 2 R such that  �

c

L. For

the sake of presentation we suppress all the technicalities dealing with the relevant

encoding, i.e., the isomorphism between the string over the alphabet fag and the

natural numbers. The desired compiler c can be de�ned as follows. Let i 2 IN.

Compute  

i

(0);  

i

(1); ::: until the least x 2 IN with  

i

(x) = 0 is found. Since  is a

class preserving hypothesis space, this unbounded search has to terminate. Moreover,

the number x encodes the unique missing string, say a

k

, over the alphabet fag that

characterizes L( 

i

). Thus, we can de�ne c(i) = k. Obviously, L( 

i

) = L

k

, and hence

c is a compiler from  to L. q.e.d.
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