
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

An Approximation Algorithm for Alphabet
Indexing Problem

Shimozono, Shinichi
Department of Control Engineering and Science, Kyushu Institute of Technology

https://hdl.handle.net/2324/3079

出版情報：RIFIS Technical Report. 96, 1995-01. Research Institute of Fundamental Information
Science, Kyushu University
バージョン：
権利関係：

An Approximation Algorithm for Alphabet Indexing Problem

Shinichi Shimozono

Department of Control Engineering and Science,

Kyushu Institute of Technology

Kawazu 680-4, Iizuka, 820 JAPAN

Abstract

Alphabet Indexing is the problem to �nd a mapping f : �! f1; : : : ;Kg for alpha-

bet �, positive integer K and a pair of disjoint sets of strings P;Q � �

�

such that f

transforms no two strings from P and Q into identical ones. Although Alphabet In-

dexing problem is NP-complete, we de�ne a combinatorial optimization problem, Max

K-Indexing, and propose a simple greedy algorithm for this problem. Then we show

that the algorithm achieves the constant error ratio 1=K for K-indexing with respect

to the number of distinguishable pairs and our problem is MAX SNP-hard.

Keywords: alphabet indexing, approximation algorithm, MAX-SNP, combinatorial optimization

1 Introduction

Given a pair of disjoint sets of strings P and Q over alphabet � and positive integer K ,

Alphabet Indexing is the problem to �nd a mapping f from � to � = f1; : : : ;Kg such that

f transforms no two strings drawn from P and Q into identical ones in �

�

.

Alphabet Indexing is named after \Hydropathy Index" for amino acid residues by Kyte

and Doolittle [6] in molecular biology, which has been developed to specify the characteristic

part of proteins by viewing them as the sequences of numbers representing hydropathy value

of the residues. By giving alphabet indexings for string data consisting of a large number

of symbols, we can drastically reduce the search domain of machine learning algorithms

that require positive and negative training examples. In bioinformatical research �eld, we

have experienced that the processing time is reduced and the domains of machine learning

algorithms that computes decision trees over regular patterns are simpli�ed by giving a

suitable indexing for amino acid residues over the 20 kinds of symbols [8, 10].

Unfortunately, it is known that Alphabet Indexing Problem is NP-complete, and its

polynomial-time local search problem version is PLS-complete [9]. In this paper, to deal

with those intractability, we propose a strategy for this problem and introduce a combina-

torial optimization problem Max K-Indexing. We present a simple greedy algorithm for

1

this problem based on that strategy, inspired by the greedy algorithm for Maximum Satis�-

ability (Max Sat) developed and analyzed by Johnson [5]. We show our greedy algorithm

achieves constant error ratio 1=K for K-indexing, with respect to the maximum number of

distinguishable pairs. Additionally, we show the problem is MAX SNP-hard [1, 2, 7]. This

means that the problem seems to have no polynomial-approximation schemes, i.e., there is

a certain constant bound for the error ratio for polynomial-time approximation algorithms.

2 Preliminaries

Let � and � be �nite alphabets. For a string s in �

�

, we denote the i-th symbol by s

i

and the length by jsj. We say that two strings s and t are identical (denoted by s = t)

if jsj = jtj and s

i

= t

i

for every 1 � i � jsj. Let f be a mapping from � to �. The

homomorphism f : �

�

! �

�

is derived from f : � ! � for transforming strings from s in

�

�

to f(s) = f(s

1

) � � � f(s

jsj

) in �

�

.

A combinatorial optimization problem � consists of (1) a set of instances L

�

, (2) a

�nite set of feasible solutions S

�

(�) of an instance � 2 L

�

, and (3) a measure (cost)

�

�

: S

�

(L

�

)! Z

+

. The problem � is speci�ed as a maximization or minimization problem,

depending on whether the measure of solutions is to be maximized or minimized. The cost of

the optimal solution OPT (�) for � 2 L

�

is de�ned by OPT (�) = bestf�

�

(s) j s 2 S

�

(�)g,

where best is max (resp. min) for maximization problems (resp. minimization problems).

For an approximation algorithm A that solves �, we de�ne the relative error

�(�; A) = max

�2�

�

�

�

�

OPT (�)� �

�

(A(�))

maxfOPT (�); �

�

(A(�))g

�

�

�

�

;

where A(�) is the output of A for �. Also, we say that A is the �(�; A)-approximation for

�. For conveniences, problem and algorithm of � is abbreviated if there is no ambiguity.

Let �;� be optimization problems. We say that � L-reduces to � [7] if there are two

polynomial time functions �; � and constants �; � > 0 such that:

1. Given an instance � of �, algorithm � produces an instance �(�) of � such that the

measure of the optimum solution of �(�) is at most � �OPT (�), and

2. Given any solution s of �(�), algorithm � produces a solution �(s) of � such that

j�

�

(�(s))�OPT (�)j � �j�

�

(s)�OPT (�(�))j.

This L-reductions compose, and if problem � L-reduces to problem � and � can be ap-

proximated in polynomial time with error � and relative error �, then � can be approximated

with error ��� and relative error

���

1��

.

2

A problem is MAX SNP-hard if every MAX SNP problem can be L-reduced to it [7].

3 Alphabet Indexing Problem and An Approximation Al-

gorithm

The Alphabet Indexing problem is formulated as follows [9, 10].

De�nition 1. Alphabet Indexing

Instance: Alphabet �, disjoint sets of strings P;Q � �

�

, and positive integer K.

Question: Do P;Q have a K-indexing, i.e., is there a function f : � ! f1; � � � ; Kg such

that f(p) 6= f(q) whenever p 2 P and q 2 Q?

This problem is NP-complete [9]. For dealing with this problem, we consider the following

strategy: the number of pairs (p; q) 2 P�Q satisfying f(p) 6= f(q) is maximized to minimize

the number of pairs (p

0

; q

0

) with f(p

0

) = f(q

0

). In our approximation scheme, we allow that

indexings may have some confusing pairs (p; q) 2 P � Q with p 6= q but f(p) = f(q).

According to this strategy, we propose the following combinatorial optimization problem.

De�nition 2. Max K-Indexing

Instance: Alphabet �, sets of strings P;Q � �

�

, weights w

P

and w

Q

each maps from P

and Q to positive integer.

Object: Find a K-indexing f : � ! f1; : : : ;Kg that maximizes the sum of the weight

products w

P

(p) � w

Q

(q) of all pairs (p; q) 2 P �Q that are jpj = jqj but f(p) 6= f(q).

From now on, we concentrate on the pairs consisting of di�erent strings of the same length,

Pairs(P;Q), de�ned by

Pairs(P;Q) = f(p; q) 2 P �Q j jpj = jqj ^ p 6= qg :

Let p and q be strings in �

�

and let a and b be symbols in �. For a pair of strings (p; q),

we say that symbols a and b are facing in (p; q) if, for some i with 1 � i � jpj = jqj, either

p

i

= a ^ q

i

= b or p

i

= b ^ q

i

= a. Notice that, for distinguishing a pair (p; q), there must

be at least one facing pair of symbols a and b with di�erent indices f(a) 6= f(b).

Given an instance of Max K-Indexing, we apply the following algorithm Greedy

K

.

Algorithm Greedy

K

(input: �, Pairs(P;Q))

1. Let Di� := ;, Res := Pairs(P;Q) and f(a) := 0 for all a 2 �.

3

2. For each a 2 � do

a. For each i 2 f1; � � � ; Kg compute Saved

i

:=

f(p; q) 2 Res j a and b are facing in (p; q) and satisfying 0 < f(b) 6= ig.

b. Find k that maximizes

P

(p;q)2Saved

k

w

P

(p) � w

Q

(q).

c. Di� := Di� [Saved

k

, Res := Res � Saved

k

and f(a) := k.

3. Return f .

Theorem 1. �(Max K-Indexing;Greedy

K

) = 1=K .

Proof. Suppose that the algorithm has been applied to the set Pairs(P;Q) of an instance �,

and is now going into step 2{(a) of l-th iteration for choosing the best index to a

l

2 �. Let

d

i

= f(p; q) 2 Res j a

l

and b are facing in (p; q) satisfying f(b) = ig for 1 � i � K, where

Res is the remained pairs after the (l � 1)-th iteration. In another words, d

i

is equal to

Saved

k

and removed from Res in step 2{(b) if index f(a

l

) is determined to k 6= i. We divide

K

[

i=1

d

i

into K + 1 disjoint parts as follows.

� D

0

=

[

i 6=j

d

i

\ d

j

: the set of pairs distinguished by any index for a

l

with f(a

l

) > 0.

� D

i

= d

i

�D

0

: the set of pairs distinguished if and only if the index for a

l

, f(a

l

) is

not i.

Also, we de�ne Ex

i

� D

i

, the set of pairs which exhaust symbols indexed 0 and are not

distinguished if f(a

l

) is indexed to i. (We ignore the symbols which are still not indexed but

facing only the same symbol.) Notice that all of Ex

i

will remain in Res and never be saved

if i is indexed to a

l

, and by the de�nition, D

i

\D

j

= ; for any 1 � i 6= j � K. For choosing

k 2 f1; : : : ; Kg to f(a

l

), algorithm Greedy

K

maximizes the size of Saved

k

= D

0

[([

i 6=k

D

i

)

and thus k must be a number that minimizes jD

k

j. For an index f(a

l

) = k we lose the pairs

in Ex

k

, so we have

jSaved

k

j = jD

0

j+ j [

i 6=k

D

i

j � jD

0

j+ (K � 1) � jD

k

j � (K � 1) � jEx

k

j :

The statements discussed above hold at any iteration, and after the algorithm stopped,

Di� is the union of all Saved's at each iteration, and Res is also the union of all Ex's.

Therefore after the algorithm stopped we have Greedy

K

(�) = jDi� j � (K � 1) � jResj, and

by OPT (�) � jPairs(P;Q)j,

OPT (�) � jPairs(P;Q)j = jDi� j+ jResj � jDi� j+

1

K � 1

jDi� j :

4

This gives us the error bound of algorithm Greedy

K

, and we conclude,

� �

1

K

:

Now we show the worst case causing the rate 1=K. Let m be a su�ciently large positive

integer. We consider the following instance �

0

with strings of the length two:

� = fa

1

; � � � ; a

K

; b

1

; b

2

; c

1

; � � � ; c

m

g.

P = fa

i

b

1

j 1 � i � Kg ; Q = fa

i

b

2

j 1 � i � Kg [fc

i

b

1

j 1 � i �mg.

In Pairs, we have (a

i

b

1

; a

j

b

2

) for 1 � i; j � K and (a

i

b

1

; c

j

b

1

) for 1 � i � K; 1 � j � m.

One of the optimum indexings of this instance is, for example,

f(�) =

8

>

<

>

:

1 if � = a

i

with 1 � i � K

i if � = b

i

2 if � = c

i

with 1 � i � m

and this distinguishes all K

2

of (a

i

b

1

; a

j

b

2

)'s by f(b

1

) 6= f(b

2

) and all mK of (a

i

b

1

; c

j

b

1

)'s by

f(a

i

) 6= f(c

j

). Although the algorithm may assign K di�erent symbols to a

1

; � � � ; a

K

�rstly,

with saving 2(i� 1) pairs at each i-th decision of index, and then di�erent two symbols to

b

1

; b

2

. This results that all pairs of the form (a

i

b

1

; a

j

b

2

) to be distinguished, but for any

succeeding indexing to each c

j

, we can save only K � 1 pairs of (a

i

b

1

; c

j

b

1

)'s. For m!1,

we have the ratio Greedy

K

(�

0

)=OPT (�

0

) goes to the bound

K(K � 1) +K +m(K � 1)

K

2

+mK

!

K � 1

K

;

and thus � = 1=K . 2

4 SNP-hardness of Max K-Indexing

Lemma 1. Max K-Indexing is MAX SNP-hard.

Proof. We show a L-reduction from MAX SNP-hard problem MAX CUT [7]. Given a

graph G = (V; E), MAX CUT is the problem to �nd the partition of the vertices S and

�

S = V �S that maximizes the number of edges going from S to

�

S. The algorithm � builds

an instance of Max 2-Indexing for an instance G of MAX CUT as follows. For every i-th

vertex v

i

of V we have a symbol v

i

in �. For each edge (v

i

; v

j

) of E (assume i < j) we

have two strings (v

i

)

i

in P and (v

j

)

i

in Q. Another polynomial-time algorithm � is given as

follows. If an indexing f of � (G) maps v

i

to 1, �(f) partitions v

i

into S, otherwise partitions

v

i

into

�

S.

5

Notice that any pair in Pairs(P;Q) corresponds to the only one edge in E, and the

transformation of solutions � is one to one and on to mapping. We de�ne the reverse

mapping of �, say, �

�1

, by mapping v

i

to 1 if and only if v

i

2 S.

Now we show the �rst condition of L-reduction holds for � = 1. From now on, we refer to

the problem MAX CUT by C and to Max K-Indexing by I. Let S

0

be a partition of G. Any

pair

�

(v

i

)

i

; (v

j

)

i

�

can be distinguished by f

0

= �

�1

(S

0

) if and only if the corresponding edge

(v

i

; v

j

) goes from S

0

to

�

S

0

and vice versa. Then S

0

is optimum if and only if f

0

is optimum:

if there exists a better solution for G, it implies that there also exists a better solution for

�(G). Therefore OPT (G) = OPT (�(G)) and the �rst condition of the L-reduction holds.

Next we show the remaining condition OPT (G)��

C

(G; �(f))� �(OPT (�(G))��

I

(�(G); f))

holds for � = 1. Let f be an indexing of �(G). For each pair in Pairs(P;Q), we have the

corresponding edge in E, and if f distinguishes a pair

�

(v

i

)

i

; (v

j

)

i

�

then f(v

i

) 6= f(v

j

). By

the de�nition of �, we can count the edge (v

i

; v

j

) as it going from S to

�

S for S = �(f), and

this depends only whether f(v

i

) 6= f(v

j

). Therefore, we have �

C

(G;�(f)) = �

I

(�(G); f)

and the second condition of L-reduction holds for � = 1. 2

5 Conclusion

We have shown the polynomial-time approximation algorithm for Max K-Indexing, and

shown the error ratio and the existence of the worst case examples for this algorithm. How-

ever, the error ratio 1=K seems wrong, especially when a few indices are available, such

as K = 2. In the recent researches, we have some results on approximation algorithms for

MAX K-SAT and MAX CUT with better error ratio [3, 4]. Is there any better approxima-

tion algorithm for MAX K-INDEXING? And more, for the result of MAX SNP-hardness, is

Max K-Indexing with constant length bounded strings MAX SNP-hard? These are arisen

as the open problems.

References

[1] Arora, S., Lund, C., Motwani, R., Sudan, M. and Szegedy, M., \Proof veri�cation and

hardness of approximation problems", in Proc. 33rd Annual Symposium on Founda-

tions of Computer Science, pp. 14{23, 1992

[2] Blum, A., Jiang, T., Li, M., Tromp, J. and Yannakakis, M., \Linear approximation of

shortest superstrings", in Proc. 23rd Annual ACM Symposium on Theory of Comput-

ing, pp. 328{336, 1991

6

[3] Goemans, M. X. and Williamson, D. P., \New 3/4-approximation algorithms for max

sat", in Proc. 3rd IPCO, pp. 313{321, 1993

[4] Goemans, M. X. and Williamson, D. P., \.878-approximation algorithms for max cut

and max 2sat", in Proc. 26th Annual ACM Symposium on Theory of Computing, pp.

422{431, 1994

[5] Johnson, D. S., \Approximation algorithms for combinatorial problems", J. Comput.

Sys. Sci., vol. 9, pp. 256{278, 1974

[6] Kyte, J. and Doolittle, R. F., \A simple method for displaying the hydropathic char-

acter of protein", J. Mol. Biol., vol. 157, pp. 105{132, 1982

[7] Papadimitriou, C. H. and Yannakakis, M., \Optimization, approximation, and com-

plexity classes", J. Comput. Sys. Sci., vol. 43, pp. 425{440, 1991

[8] Shimozono, S., Shinohara, A., Shinohara, T., Miyano, S., Kuhara, S. and Arikawa, S.,

\Finding alphabet indexing for decision trees over regular patterns", in Proc. Twenty-

Sixth Annual Hawaii International Conference on System Sciences, pp. 763{772, 1993

[9] Shimozono, S. and Miyano, S., \Complexity of �nding alphabet indexing", IEICE

Trans. Inf. Sys., vol. 1, 1995

[10] Shimozono, S., Shinohara, A., Shinohara, T., Miyano, S., Kuhara, S. and Arikawa, S.,

\Knowledge acquisition from amino acid sequences by machine learning system bon-

sai", Trans. Inf. Proc. Soc. Japan, vol. 35, pp. 2009{2018, 1994

7

