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Abstract

This paper presents an elementary and self-contained proof of an existence theorem

of �nal coalgebras for endofunctors on the category of sets and functions.

1 Introduction

Graphs are fundamental algebraic structures in computer science. Recently labelled transition

systems, namely, labelled directed graphs have been considered an appropriate model for con-

current computations. It is known that graph structures are often represented by coalgebra

structures [4, 6, 7]. Many kinds of coalgebras have been considered as objects with circularity

in programming semantics, knowledge dynamics and situation theory (Cf. [8]). In 1988 Peter

Aczel [1] pointed out that the axiom of anti-foundation (AFA) on axiomatic set theory claims

that the universal class of all sets with the membership relation is the �nal graph structure

on classes. Moreover Peter Aczel and Nax Mendler [2] proved a �nal coalgebra theorem for

set-based endofunctors. As is well-known the collection of all philosophical concepts consti-

tutes a proper class. Thus it is natural to consider the hyperset theory based on classes for

situation semantics. On the other hand the investigation of algebraic structures within the

well-founded set theory (ZFC) seems to be enough for usual applications to computer science.

In fact Michael Barr [3] showed the theorem of Aczel and Mendler [2] on the existence of �nal

coalgebras for accessible endofunctors on the category Set of (well-founded) sets and functions.

In this paper we will also discuss with the same small �nal coalgebra theorem as in [3]. Some

detailed analysis on trees (in other words, the subcoalgebras generated by single elements) and

congruences [2] (or, bisimulation equivalences) on coalgebras are essential for our results. The

discussion of the paper is elementary and self-contained.

The main theorem of the paper is as follows:

Theorem 1.1 If an endofunctor � : Set ! Set preserves intersections and there is a set M

such that all trees of �-coalgebras are M-bounded, then the category Set(�) of �-coalgebras

has a �nal �-coalgebra.

The paper is organised as follows. In Section 2 we review the de�nition of coalgebras

for endofunctors on Set, and only note that the class of all coalgebras de�ned on subsets of

a given set forms a set. In Section 3 we recall some basic properties of subcoalgebras for

endofunctors on Set. In particular, it turns out that, when the involved endofunctor preserves

�
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intersections of subsets, the notion of trees of coalgebras, which are the smallest subcoalgebras

containing singleton sets, can be considered. In Section 4 we discuss congruences on coalgebras

initiated by Aczel and Mendler [2]. The notion of congruences is a modi�cation of bisimulation

equivalence relations on labelled transition systems due to D. Park. The aim of this section is

to show a usual fact (Cf. [1, theorem 2.4] and [2, Lemma 4.3]) that every coalgebra has the

maximum congruecne. The fact indicates that the quotient coalgebra of a weak �nal coalgebra

with respect to the maxiamum congruence is a �nal coalgebra (Cf. 4.8). Thus the category of

coalgebras has a �nal object if and only if it has a weak �nal object. In Section 5 we state the

main result of the paper. First we intorduce tree congruences on coalgebras using tne notion

of trees. Then we show that, whenever all trees of coalgebras are bounded to a set, there is

a weak �nal coalgebra. Thus by the similar fashion to Aczel and Mendler [2] an existence

theorem of �nal coalgebras is proved. In section 6 a few examples of coalgebras which satisfy

the main theorem are listed.

2 Coalgebras

This section de�nes the notion of coalgebras for endofunctors on the category Set of sets and

functions. Let � : Set ! Set denote an endofunctor throughout the paper. A �-coalgebra

(A; a) is a pair of a set A and a function a : A ! �A. A homomorphism f : (A; a) ! (B; b)

of a �-coalgebra (A; a) into another �-coalgebra (B; b) is a function f : A! B rendering the

following square commutative:

A

f

���! B

?

?

y

a

?

?

y
b

�A ���!

�(f)

�B:

All �-coalgebras and all their homomorphisms form a category Set(�) which is called the

category of �-coalgebras.

Proposition 2.1 The category Set(�) of �-coalgebras has all small colimits.

Proof. It su�ces to prove the existence of coequalizers and coproducts because of [5, V 2.1].

First let f; g : (A; a) ! (B; b) be a pair of parallel homomorphisms of �-coalgebras. As the

category Set has all small colimits there is a coequlaizer e : B ! Q of a pair of functions f and

g in Set. Noticing that �(e)bf = �(e)�(f )a = �(e)�(g)a = �(e)bg there is a unique function

q : Q! �Q such that qe = �(e)b. It is an elementary exercise to show that e : (B; b)! (Q; q)

is a coequalizer of f and g in Set(�). Next suppose that f(A

�

; a

�

)g

�2�

is a family of �-

coalgebras indexed by a set �. Let A be a coproduct (or disjoint union) of fA

�

g

�2�

and

i

�

: A

�

! A the inclusion of coproducts for � 2 �. De�ne a function a : A ! �A to be a

unique function such that a square

A

�

i

�

���! A

?

?

y

a

�

?

?

y

a

�A

�

���!

�(i

�

)

�A

commutes for every � 2 �. It is also a routine work to show that a �-coalgebra (A; a) is a

coproduct of f(A

�

; a

�

)g

�2�

.2

The following lemma is a basic fact of functors on Set.

Lemma 2.2 If f : X ! Y is an injection and X is a nonempty set, then �(f) : �X ! �Y

is an injection.

2



Proof. Choose x

0

2 X and de�ne a function g : Y ! X by g(y) = x if y = f(x) for x 2 X

and g(y) = x

0

if there is no x 2 X such that y = f (x). Then it is clear that gf = id

X

and

�(g)�(f) = id

�X

, which shows that �(f) : �X ! �Y is injective.2

Given a set M the class of all �-coalgebras (A; a) such that A is a nonempty subset of M

is denoted by Set

M

(�). The following proposition points out that Set

M

(�) constitutes a set.

Proposition 2.3 For every set M the class Set

M

(�) is a subset of }(M)�}(M ��M ), that

is,

Set

M

(�) � }(M)� }(M � �M):

Proof. Let (A; a) be a �-coalgebras in Set

M

(�) and i : A ! M the inclusion. Then it is

immediate that A 2 }(M) and a 2 }(M ��M) since a function a : A! �A can be identi�ed

with a subset â = f(x;�(i)a(x))jx 2 Ag of M � �M by the last lemma. 2

In a category of coalgebras a �nal coalgebra is a coalgebra such that there is a unique

homomorphism from each coalgebra into it. A weak �nal coalgebra is a coalgebra such that

there is at least one homomorphism from each coalgebra into it. The purpose of the paper is

to show an existence theorem of �nal coalgebras for endofunctors on Set.

3 Subcoalgebras

This section is devoted to state the notion and the basic properties of subcoalgebras. Trees,

that is, the smallest subcoalgebras containing singleton sets, play an important role to prove

the main theorem of the paper.

Let (A; a) be a �-coalgebra. A subset H of A is called a subcoalgebra of (A; a) if there is

a function h : H ! �H which makes the inclusion i : H ! A a homomorphism i : (H; h) !

(A; a) of �-coalgebras. (By the de�nition the empty set ; is always a subcoalgebra.)

Lemma 3.1 Let (A; a) be a �-coalgebra. A subset H of A is a subcoalgebra of (A; a) if and

only if for each x 2 H there is z 2 �H such that a(x) = �(i)(z), where i : H ! A is the

inclusion of H into A.

Proof. Only if part is trivial from the de�nition of subcoalgebras. We have to show its converse.

Assume that for each x 2 H there is z 2 �H such that a(x) = �(i)(z). When H = ; the

assertion is in the case. So we can assume that H is nonempty. A function h : H ! �H can

be de�ned by:

For each x 2 H : h(x) = z if a(x) = �(i)(z) for some z 2 �H:

Since �(i) is injective by 2.2 h is uniquely de�ned and �(i)h = ai is immediate. 2

Let (A; a) be a �-coalgebra and H a subcoalgebra of (A; a). Then it is easy to see that a

subset S of H is a subcoalgebra of H if and only if S is a subcoalgebra of (A; a).

Proposition 3.2 Let f : (A; a)! (B; b) be a homomorphism of �-coalgebras.

(a) If H is a subcoalgebra of (A; a), then fH = ff (x)jx 2 Hg is a subcoalgebra of (B; b).

(b) If H is a subcoalgebra of (A; a) and f : (A; a) ! (B; b) is an injective homomorphism,

then fH is isomorphic to H as �-coalgebras.
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Proof. (a) Let i : H ! A and j : Hf ! B be inclusions. A function f

0

: H ! fH is de�ned

by f

0

(x) = f(x) for each x 2 H. Then fi = jf

0

. Hence for x 2 H there is z 2 �H such that

a(x) = �(i)(z) and so b(f(x)) = �(f )a(x) = �(f)�(i)(z) = �(j)�(f

0

)(z). This means that

for each y 2 fH there is w 2 �(fH) such that b(y) = �(j)(w), which completes the proof. (b)

It su�ces to see that a bijective homomorphism of �-coalgebras is an isomorphism. Assume

that f : (A; a) ! (B; b) is a bijective homomorphism and let g : B ! A be the inverse set

function of f . Then gf = id

A

and fg = id

B

and �(g)b = �(g)bfg = �(g)�(f)ag = ag by

bf = �(f )a. 2

An endofunctor � : Set ! Set preserves intersections if �(i)�(\

�

H

�

) = \

�

�(i

�

)�H

�

for

all families fH

�

g

�

of subsets of a set A, where i

�

: H

�

! A and i : \

�

H

�

! A are inclusions,

respectively.

Lemma 3.3 Let (A; a) be a �-coalgebra. If � : Set ! Set preserves intersections, then for

every family fH

�

g

�

of subcoalgebras of (A; a) its intersection H = \

�

H

�

is a subcoalgebra of

(A; a).

Proof. Let i : H ! A and i

�

: H

�

! A be inclusions, respectively. We have to show that for

each x 2 H there is z 2 �H such that a(x) = �(i)(z). Assume that x 2 H. Then for each

� there is z

�

2 �H

�

such that a(x) = �(i

�

)(z

�

). Hence a(x) 2 \

�

�(i

�

)�H

�

= �(i)�H and

there is z 2 �H such that a(x) = �(i)(z). 2

Let � : Set ! Set be an endofunctor preserving intersections. For a �-coalgebra (A; a)

and x 2 A consider the family of all subcoalgebras of (A; a) containing x. Then by the last

lemma its intersection is the smallest subcoalgebra containing x, which is called the tree of

(A; a) with a root x and denoted by [x]

A

.

Proposition 3.4 Let � : Set! Set be an endofunctor preserving intersections.

(a) If H is a subcoalgebra of a �-coalgebra (A; a), then [x]

H

= [x]

A

for x 2 H.

(b) If f : (A; a)! (B; b) is an injective homomorphism of �-coalgebras, then f [x]

A

= [f (x)]

B

for x 2 A.

Proof. (a) First note that [x]

H

� H. By 3.2(a) [x]

H

is a subcoalgebra of (A; a) and so

[x]

A

� [x]

H

. On the other hand [x]

A

is a subcoalgebra of H since [x]

A

� H. Hence [x]

H

� [x]

A

.

(b) Set K = fA. By 3.3 K is a subcoalgebra of (B; b) and isomorphic to (A; a). Then

f [x]

A

= [f(x)]

K

= [f (x)]

B

by (a). This completes the proof. 2

4 Congruences

This section discusses the notion of congruences on coalgebras initiated by Aczel and Mendler

[2]. The notion of congruences is a modi�cation of bisimulation equivalence relations on labelled

transition systems due to D. Park. Clearly congruences generalize bisimulations and correspond

to quotient coalgebras. The aim of this section is to show a usual fact (Cf. [1, theorem 2.4]

and [2, Lemma 4.3]) that evry coalgebra has the maximum congruecne.

A (binary) relation on a set A is a subset of A � A. Hence boolean operations such as

union and intersections can be applied to relations. An equivalence relation � on a set A is

a relation on A such that (x; x) 2 � (reexive), (x; y) 2 � ) (y; x) 2 � (symmetric) and

(x; y) 2 � ^ (y; z) 2 � ) (x; z) 2 � (transitive) for all x; y; z 2 A. Note that the identity
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relation id

A

= f(x; x)jx 2 Ag (the diagonal set of A) is an equivalence ralation on any set A.

Given an equivalence relation � on A there is a surjection of A onto a (quotient) set Q such that

(x; y) 2 � if and only if e(x) = e(y). We call such a surjection e : A ! Q a quotient function

with respect to �. Since a quotient function is unique up to isomorphisms, an equivalence

relation �(�) on �A is uniquely de�ned as follows:

(u; v) 2 �(�) () �(e)(u) = �(e)(v):

Moreover let f : A

0

! A be a function. An equivalence relation �

f

on A

0

is a relation on A

0

such that (u; v) 2 �

f

() (f(u); f(v)) 2 �.

Proposition 4.1 Let f : A

0

! A be a function and �; �

0

equivalence relations on A.

(a) If � � �

0

, then �

f

� �

0

f

.

(b) If � � �

0

, then �(�) � �(�

0

).

Proof. (a) It is trivial from de�nition. (b) Let e : A! Q and e

0

: A! Q

0

be quotient functions

with respect to � and �

0

, respectively. Then there is a function k : Q ! Q

0

such that ke = e

0

.

Hence

(u; v) 2 �(�)

) �(e)(u) = �(e)(v)

) �(e

0

)(u) = �(k)�(e)(u) = �(k)�(e)(v) = �(e

0

)(v)

) (u; v) 2 �(�

0

): 2

De�nition 4.2 Let (A; a) be a �-coalgebra.

(a) An equivalence relation � on a set A is a congruence on (A; a) if � � �(�)

a

.

(b) A relation � on A is a pre-congruence on (A; a) if the equivalence relation �

�

generated

by � (that is, reexive, symmetric and transitive closure of �) is a congruence on (A; a),

that is, � � �(�

�

)

a

.

The condition � � �(�)

a

in the above de�nition (a) is equivalent to a condition that

(x; y) 2 � implies (a(x); a(y)) 2 �(�).

Proposition 4.3 If f : (A; a) ! (B; b) is a homomorphism of �-coalgebras, then an equiva-

lence relation (id

B

)

f

is a congruence on (A; a).

Proof. Set � = (id

B

)

f

and let e : A ! Q be a quotient function with respect to (id

B

)

f

. Then

there is a unique injection m : Q! B such that f = me. Note that �(m) is injective by 3.1.

Hence

(x; y) 2 (id

B

)

f

) f(x) = f(y)

) �(m)�(e)a(x) = �(f)a(x) = bf(x) = bf(y) = �(f)a(y) = �(m)�(e)a(y)

) �(e)a(x) = �(e)a(y)

) (x; y) 2 �(�)

a

: 2

Proposition 4.4 Given a congruence � on (A; a) and a quotient function e : A ! Q with

respect to � there is a unique function q : Q ! �Q such that e : (A; a) ! (Q; q) is a

homomorphism of �-coalgebras.

5



Proof. A function q : Q! �Q can be de�ned as follows:

For w 2 Q : q(w) = �(e)a(x) if w = e(x):

This de�nition is well-de�ned, since if e(x) = e(y) then (x; y) 2 � and so (a(x); a(y)) 2 �(�)

by � � �(�)

a

. It is trivial that qe = �(e)a. The uniqueness of q follows from the surjectivity

of e. This completes the proof. 2

The �-coalgebra (Q; q) constructed in the above proposition is called a quotient �-coalgebra

of (A; a) with respect to a congruence � and denoted by (A=�; a=�).

Lemma 4.5 (a) If � is a pre-congruence on (A; a), then �

�

is a congruence on (A; a).

(b) If � and � are pre-congruences on (A; a), then � [ � is a congruence on (A; a).

Proof. (a) Assume that � � �(�

�

)

a

. As �(�

�

)

a

is an equivalence relation on A it simply follows

that �

�

� �(�

�

)

a

. (b) By 4.1 we have

� [ � � �(�

�

)

a

[ �(�

�

)

a

� �((� [ �)

�

)

a

: 2

Theorem 4.6 Every �-coalgebra (A; a) has the maximum congruence �

A

.

Proof. De�ne a relation �

A

on A to be a union (supremum) of all pre-congruences on (A; a),

that is,

�

A

=

[

�2S

�;

where S is the set of all pre-congruences on (A; a). Then

�

A

=

[

�2S

� �

[

�2S

�(�

�

)

a

� �(�

�

A

)

a

since by 4.1 �(�

�

) � �(�

�

A

) for each � 2 S. This shows that �

A

is the maximum pre-

congruence. Finally it su�ces to prove that �

A

is an equivalence relation on A. As the

identity relation id

A

on A is a congruence it is clear that id

A

� �

A

(reexive). Assume that

(x; y) 2 �

A

. Then there is a pre-congruence � such that (x; y) 2 � and so (y; x) 2 �

�

. But

by the last lemma �

�

is a (pre-)congruence and hence (y; x) 2 � (symmetric). Finally assume

that (x; y) 2 �

A

and (y; z) 2 �

A

. Then (x; y) 2 �

0

and (y; z) 2 �

1

for some �

0

; �

1

2 S. Hence

(x; y) 2 �

0

� (�

0

[ �

1

)

�

and (y; z) 2 �

1

� (�

0

[ �

1

)

�

and so (x; z) 2 (�

0

[ �

1

)

�

because (�

0

[ �

1

)

�

is an equivalence relation. As (�

0

[ �

1

)

�

is a

(pre-)congruence by the last lemma we have (x; z) 2 �

A

(transitive). 2

Theorem 4.7 For every �-coalgebra (A; a) there is at most one homomorphism from any

�-coalgebra into (A=�

A

; a=�

A

).

Proof. Let e : A ! A=�

A

be a quotient function with respect to �

A

. Assume that f; g :

(B; b) ! (A=�

A

; a=�

A

) are homomorphisms. Construct a coequalizer d : (A=�

A

; a=�

A

) !

(R; r) of f and g (which does exist by 2.1). Then for any u 2 B there is x; y 2 A such that

f(u) = e(x) and g(u) = e(y). Moreover de(x) = df(u) = dg(u) = de(y), which means that

(x; y) 2 (id

R

)

de

. As (id

R

)

de

� �

A

by 4.3 it follows that (x; y) 2 �

A

and e(x) = e(y). Hence

f(u) = e(x) = e(y) = g(u), which proves that f = g. 2

The following corollary is an immediate consequence from the last theorem.

Corollary 4.8 If the category Set(�) of �-coalgebras has a weak �nal coalgebra, then it has

a �nal coalgebra. 2
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5 Main Theorem

This section proves the main theorem of the paper. To treat freely with trees of coalgebras we

assume that an endofunctor � : Set! Set preserves intersections throughtout this section.

First we intorduce tree congruences on coalgebras using tne notion of trees. Then we show

that, whenever all trees of coalgebras are bounded to a set, there is a weak �nal coalgebra.

Thus by the similar fashion to Aczel and Mendler [2] an existence theorem of �nal coalgebras

is proved.

Let (A; a) be a �-coalgebra. De�ne a relation �

A

on A as follows: (x; y) 2 �

A

for x; y 2 A

if and only if there is an isomorphism f : [x]

A

! [y]

A

of �-coalgebras such that f(x) = y.

Obviously �

A

: A ! A is an equivalence relation on A, which we call the tree congruence on

(A; a) by virtue of the following

Theorem 5.1 For each �-coalgebra (A; a) the equivalence relation �

A

on A is a congruence

on (A; a).

Proof. Let e : A ! Q be a quotient function with respect to �

A

. It su�ces to show that

(x; y) 2 �

A

implies �(e)a(x) = �(e)a(y). Assume that (x; y) 2 �. Let i : [x]

A

! A and

j : [y]

A

! A be inclusions, respectively. There is an isomorphism k : [x]

A

! [y]

A

with

k(x) = y.

A

i

 ��� [x]

A

jk

���! A

?

?

y

a

?

?

y

h

x

?

?

y

a

�A  ���

�(i)

�[x]

A

���!

�(jk)

�A:

First note that ei = ejk. For each z 2 [x]

A

(= H) we have

[i(z)]

A

= [z]

H

(3.4(a))

�

=

jk[z]

H

(3.2(b))

= [jk(z)]

A

(3.4(b));

which indicates that (i(z); jk(z)) 2 �

A

and so ei(z) = ejf(z). Therefore it follows that

�(e)a(x) = �(e)ai(x)

= �(e)�(i)h

x

(x) (i is a homomorphism.)

= �(e)�(jk)(x) (ei = ejk)

= �(e)ajk(x) (jk is a homomorphism.)

= �(e)a(y) (y = jk(x)):

The proof is completed. 2

Theorem 5.2 If every tree of a �-coalgebra (A; a) is isomorphic to a subcoalgebra of a �-

coalgebra (T; t), then there is at least one homomorphism f : (A; a)! (T=�

T

; t=�

T

).

Proof. Let e : (T; t) ! (T=�

T

; t=�

T

) be a quotient homomorphism by �

T

. For every x 2 A

there is an injective homomorphism k : [x]

A

! (T; t) by the assumption. De�ne a function

f : A! T=�

T

by f (x) = ek(x).

A

i

 ��� [x]

A

k

���! T

e

���! T=�

T

?

?

y

a

?

?

y

h

x

?

?

y

t

?

?

y

t=�

T

�(A)  ���

�(i)

�[x]

A

���!

�(k)

�T ���!

�(e)

�(T=�

T

):

Note that this de�nition of f(x) is independent on the choice of an injective homomorphism

k. (Let k

0

: [x]

A

! T be another injective homomorphism. Then by 3.2(b) and 3.4(b) it is

7



trivial that [k(x)]

R

�

=

[x]

A

�

=

[k

0

(x)]

R

. Hence ek(x) = ek

0

(x).) Next we show that fi = ek. For

each z 2 [x]

A

the composite mk of the inclusion m : [z]

A

! [x]

A

followed by k is an injective

homomorphism into T and so f (z) = ekm(z). Hence fi(z) = f(z) = ekm(z) = ek(z), which

shows that fi = ek. Finally we show that f : A ! T=�

T

is a homomorphism, that is,

a�(f) = f (t=�

T

). But we have

�(f)a(x) = �(f)ai(x)

= �(i)�(f)h

x

(x) (i is a homomorphism.)

= �(ek)h

x

(x) (fi = ek)

= (t=�

T

)ek(x) (ek is a homomorphism.)

= (t=�

T

)f (x) (f (x) = ek(x)): 2

For a set M the coproduct of all coalgebras in Set

M

(�) will be denoted by (T

M

; t

M

), that

is,

(T

M

; t

M

) =

a

(A;a)2Set

M

(�)

(A; a)

and i

A

: (A; a) ! (T

M

; t

M

) denotes the inclusion of the coproduct for a �-coalgebra (A; a) 2

Set

M

(�). A �-coalgebra (A; a) is called M-bounded if there is an injection of A into M .

It is obvious that for an M -bounded �-coalgebra (A; a) there is an injective homomorphism

k : (A; a)! (T

M

; t

M

), that is, card(A) � card(M). Hence we have the following

Corollary 5.3 If all trees of �-coalgebras are M-bounded for a set M , then for each �-

coalgebra (A; a) there is at least one homomorphism f : (A; a) ! (T

M

=�

T

M

; t

M

=�

T

M

), that

is, the quotient coalgebra (T

M

=�

T

M

; t

M

=�

T

M

) of (T

M

; t

M

) is a weak �nal coalgebra in Set(�).

2

In a category of coalgebras a �nal coalgebra is a coalgebra such that there is a unique

homomorphism from each coalgebra into it. Combining with 4.8 and the last corollary we

have the following

Theorem 5.4 If there is a set M such that all trees of �-coalgebras are M-bounded, then the

category Set(�) of �-coalgebras has a �nal coalgebra. 2

6 Examples

This section illustrates a few examples of coalgebras which satisfy the main theorem 5.4 and

so have a �nal coalgebra.

Let M be a set. The M -bounded power set functor }

M

: Set! Set is a functor such that

}

M

(A) = fSjS � A ^ card(S) � card(M )g

for all sets A, where card(M ) denotes the cardinality of M . For a set M n-th product M

n

is

de�ned by M

0

= 1 (a singleton set) and M

n+1

= M

n

�M for n � 0. The set M

�

of all �nite

strings of elements in M is formally de�ned by M

�

= [

n�0

M

n

.

Theorem 6.1 All trees of }

M

-coalgebras are M

�

-bounded.

8



Proof. Let (A; a) be a }

M

-coalgebra and x 2 A. De�ne a subset [x]

n

of A by [x]

0

= fxg and

[x]

n+1

= [

y2[x]

n

a(y) for n � 0. Set [x]

1

= [

n�0

[x]

n

. >From card([x]

n+1

) � card([x]

n

�M) it

follows that

card([x]

1

) � card([

n�0

M

n

) = card(M

�

):

Finally it su�eces to see that [x]

A

= [x]

1

. By induction we have [x]

n

� [x]

A

for all n � 0 and

so [x]

1

� [x]

A

. Because [x]

0

� [x]

A

and if [x]

n

� [x]

A

then [x]

n+1

= [

y2[x]

n

a(y) � [x]

A

. Finally

note that [x]

1

is a subcoalgebra of (A; a) since a(y) � [x]

n+1

� [x]

1

(i.e. a(y) 2 }

M

([x]

1

))

for y 2 [x]

n

. Hence [x]

A

� [x]

1

. 2

Combining with 5.4 and the last theorem we have the following

Corollary 6.2 The category Set(}

X

) has a �nal coalgebra. 2

Note that }

1

(X) = 1 +X for a singleton set 1(= f;g).

Let 	 and � be endofunctors on Set. A natural transformation � : 	 ! � is strict if for

every injection f : X ! Y a naturality square

	X

	(f)

���! 	Y

?

?

y

�

X

?

?

y

�

Y

�X ���!

�(f)

�Y

is a pullback.

Proposition 6.3 Let � : 	! � be a natural transformation between endofunctors 	 and � on

Set. If � preserves intersections and � : 	! � is strict, then 	 also preserves intersections.

Proof. It follows from easy daigram chasing. 2

Lemma 6.4 Let � : 	! � be a strict natural transformation and (B; b) a 	-coalgebra. Then

a subset H of B is a subcoalgebra of (B; b) if and only if H is a subcoalgebra of a �-coalgebra

(B; �

B

b).

Proof. Let i : H ! B be the inclusion and consider a diagram

H

i

���! B

?

?

y
b

	H

	(i)

���! 	B

?

?

y

�

H

?

?

y

�

B

�H ���!

�(i)

�B;

in which the square is a pullback by the strictness of �. Then it is trivial that a function

h : H ! 	H with bi = 	(i)h bijectively corresponds to a function h

0

: H ! �H with

�

B

bi = �(i)h

0

. This completes the proof. 2

As a direct result from the above lemma we have the following

Corollary 6.5 Let �;	 : Set! Set be endofunctors preserving intersections and � : 	! �

a strict natural transformation.

(a) If (B; b) is a 	-coalgebra, then [x]

(B;b)

= [x]

(B;�

B

b)

for all x 2 B.

9



(b) If all trees of �-coalgebras are M-bounded for a set M , then so are those of 	-coalgebras.

2

By 6.1 and 5.4 we have the following

Example 6.6 All categories of coalgebras for the following endofunctors have �nal coalgebra.

(a) The �nite powerset functor }

�n

: Set! Set.

(b) The Kleene functor X

�

: Set! Set.

(c) A polynomial functor �X = A

0

+ A

1

� X + � � � + A

n

� X

n

+ � � � : Set ! Set (where

A

0

; A

1

; � � � are �xed sets).

(d) A functor }

M

(A�X) : Set! Set.

(e) A functor (A�X)

�

: Set! Set

Proof. (a) Let ! denote the set of all natural numbers. A natural inclusion }

�n

(X) !

}

!

(X) is a strict natural transformation. (b) A natural transformation X

�

! }

!

(X) assigning

f�

1

; �

2

; � � � ; �

k

g 2 }

!

(X) to �

1

�

2

� � ��

k

2 X

�

is strict. (c) A natural transformation �X !

}

!

(X) assigning f�

1

; �

2

; � � � ; �

k

g 2 }

!

(X) to (a; �

1

�

2

� � � �

k

) 2 A

k

�X

k

(k � 0) is strict. (d)

A natural transformation }

M

(A � X) ! }

M

(X) induced by the projection A � X ! X is

strict. (e) A natural transformation (A � X)

�

! X

�

assigning f�

1

; �

2

; � � � ; �

k

g 2 }

!

(X) to

(a

1

; �

1

)(a

2

; �

2

) � � � (a

k

; �

k

) 2 (A�X)

�

is strict.
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