
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Rule-Generating Abduction for Recursive Prolog

Hirata, Kouichi
Research Institute of Fundamental Information Science, Kyushu University

https://hdl.handle.net/2324/3072

出版情報：RIFIS Technical Report. 85, 1994-04. Research Institute of Fundamental Information
Science, Kyushu University
バージョン：
権利関係：

Rule-Generating Abduction for Recursive Prolog

Kouichi Hirata

Research Institute of Fundamental Information Science

Kyushu University 33, Fukuoka 812, Japan

phone: +81-92-641-1101 ext. 4478 fax: +81-92-611-2668

e-mail: hirata@ri�s.kyushu-u.ac.jp

Abstract

The rule-generating abduction is a kind of abduction which generates a rule and

proposes a hypothesis from a surprising fact . In general, there may exist in�nitely many

rules and hypotheses to explain such a surprising fact. Hence, we need to put some

restriction on the class of rules. In rule-generating abduction, only one surprising fact is

given. Hence, we also need to generalize the concept of a surprising fact. When we deal

with such generalizations, we must avoid overgeneralization. It should be determined

whether or not a generalization is overgeneral by an intended model. However, it is hard

to give in advance such an intended model in our rule-generating abduction. Hence, in

this paper we introduce a syntactical formulation of generalization, in which it can be

determined whether or not a generalization is overgeneral by the forms of atoms and

substitutions. On the other hand, by the restriction of rules, it su�ces to consider only

two types of terms, constants and lists, and two types of substitutions with these two

terms. By using the above generalizations and substitutions, we design an algorithm for

rule-generating abduction, which generates rules and proposes hypotheses in polynomial

time with respect to the length of a surprising fact. The number of rules and hypotheses

is at most the number of common terms in a surprising fact. Furthermore, we show that

a common term in some argument of a surprising fact also appears in the same argument

of the proposed hypothesis by this algorithm.

1 Introduction

C. S. Peirce, who was a philosopher, scientist and logician, asserted that a scienti�c research

consists of three stages, abduction, deduction, and induction [Pei65, Ino92, Yon82]. According

to him, abduction is an inference which begins with an observation of a surprising fact , and

proposes a hypothesis to explain why the fact arises. The main role of abduction is to propose

a hypothesis. Thus, abduction is a method of scienti�c discovery. An inference schema by

abduction is described by the following three steps [Pei65, Ino92, Yon82]:

1. A surprising fact C is observed.

2. If A were true, then C would be a matter of course.

3. Hence, there is reason to suspect that A is true.

In general, the above inference schema is depicted by a syllogism:

C A! C

A

.

1

In computer science, especially in computational logic and logic programming, many re-

searchers have extensively studied the abduction from various viewpoints. Plotkin [Plo71] has

studied abduction together with inductive generalization. It is considered that Shapiro's model

inference system [Sha81] and inductive logic programming [Lin89a, Lin89b, Mug92a, Mug92b]

are the extensions of Plotkin. These are also related to machine learning and knowledge

acquisition. On the other hand, Pople [Ino92, Kun87] has given one direction for the re-

searches of abduction. It is considered that Poole's Theorist [Poo88, Ino92, Kun87], Kunifuji's

hypothesis-based reasoning [Kun87], and abductive logic programming [Dun91, EK89, KM90]

are the extensions of Pople. These are also related to knowledge representation.

In order to systematically understand these various researches of abduction, we have clas-

si�ed abduction into �ve types by an interpretation of syllogism [Hir93]; rule-selecting abduc-

tion, rule-�nding abduction, rule-generating abduction, theory-selecting abduction, and theory-

generating abduction. By this classi�cation, the above researches are placed in the following

positions [Hir93]: Abductive logic programming [Dun91, EK89, KM90] is a sort of rule-selecting

abduction. The constructive operators such as V and W operators [Mug92b] in inductive logic

programming are a sort of rule-generating abduction. Poole's Theorist [Poo88] and hypothesis-

based reasoning [Kun87] are a sort of theory-selecting abduction. Shapiro's model inference

system [Sha81] and inductive logic programming [Lin89a, Lin89b, Mug92a, Mug92b] are a sort

of theory-generating abduction.

In this paper, we investigate the rule-generating abduction, which generates a rule and

proposes a hypothesis from a surprising fact. In rule-generating abduction, only one surprising

fact is given. Hence, we need to generalize the concept of a surprising fact.

A generalization is an important tool for inductive logic programming and program syn-

thesis. Plotkin has introduced and developed the least generalization and the relative least

generalization [Plo70, Plo71]. Arimura et al. have developed Plotkin's least generalization

as the minimal multiple generalization [ASO91]. Note that all of them are researches on the

generalization of at least two atoms. Thus, the following problem arises; Is the generalization

of one atom worth or worthless? Hirowatari and Arikawa [HA94] have introduced the par-

tially isomorphic generalization and answered this problem a�rmatively in the framework of

analogical reasoning.

When we deal with generalizations, we must avoid overgeneralization. It should be deter-

mined whether or not a generalization is overgeneral by an intended model. However, it is hard

to give in advance such an intended model in our rule-generating abduction. Hence, in this

paper we introduce a syntactical formulation of generalization, in which it can be determined

whether or not a generalization is overgeneral by the forms of atoms and substitutions. In

this formulation, a common ground term is replaced by a common variable, because an atom

represents a relation which holds between its arguments.

This paper is organized as follows: In general, there may exist in�nitely many rules and

hypotheses to explain a surprising fact in rule-generating abduction. Hence, we need to put

some restriction on the class of logic programs. In Section 2, we introduce the syntactical

characterization of the rule p(t

1

; � � � ; t

n

) p(s

1

; � � � ; s

n

). Throughout this paper, we deal with

these classes.

In Section 3, we formulate a safe generalization, in which it can be determined whether

or not a generalization is overgeneral by the forms of atoms and substitutions, instead of

an intended model. On the other hand, by the restriction of logic programs, it su�ces to

consider only two types of terms, constants and lists, and two types of substitutions with these

two terms, constant substitutions and list substitutions . A constant substitution �

c

consists

of the bindings x := c, where c is a constant symbol, while a list substitution �

l

consists of

the bindings x := l, where l is a list. For these substitutions, we give a condition that the

2

generalization is safe with respect to the composition �

c

�

l

of �

c

and �

l

.

In Section 4, by using the above generalizations and substitutions, we design an algorithm

for rule-generating abduction, which generates rules and proposes hypotheses in polynomial

time with respect to the length of a surprising fact. The number of rules and hypotheses is at

most the number of common terms in a surprising fact. Furthermore, we show that a common

term in some argument of a surprising fact also appears in the same argument of the proposed

hypothesis by this algorithm.

In Section 5, we discuss the several examples for this algorithm.

2 Preliminary

Throughout this paper, we deal with the following class of programs:

P = fp(t

1

; � � � ; t

n

) p(s

1

; � � � ; s

n

)g.

Hirata [Hir93] has introduced a class such that, for a given de�nite program P in the class and

a ground atom �, all the derivations of P [f �g are �nite. In this section, we reform the

de�nitions [Hir93] for the above rule. In this paper, we assume that readers are familiar with

the notions of logic programming and de�nite clause [Llo87]. We also assume that any term

in L is either a constant or a list, where L is a �rst-order language with an n-ary predicate

symbol p, a list constructor [j], and �nitely many constant symbols []; a

1

; � � � ; a

n

.

For a term t, jtj denotes the length of t, that is, the number of all occurrences of symbols

in t. In particular, for a list l, the length jlj of l is de�ned as follows: jlj = 1, if l is an empty

list []. Otherwise jlj = n + 1, if t is a list [ajlist] and jlistj = n.

In order to discuss the termination of derivations, we introduce some classes in the following

way:

De�nition 1 (Hirata [Hir93], Yamamoto [Yam92]) Let C be a clause

p(t

1

; � � � ; t

n

) p(s

1

; � � � ; s

n

).

1. C is head-reducing if there exists an i such that jt

i

�j > js

i

�j for any ground substi-

tution �.

2. C is weakly reducing if jt

i

�j � js

i

�j for any ground substitution � and for any i.

3. C is weakly head-reducing if it is head-reducing and weakly reducing.

In other words, a clause p(t

1

; � � � ; t

n

) p(s

1

; � � � ; s

n

) is weakly head-reducing if jt

i

�j � js

i

�j

for any i, and jt

k

�j > js

k

�j for at least one argument k and for any ground substitution �.

There are many Prolog programs for list processing such that any argument of the head

is either x or [wjx]. Then, we restrict the form of clause as follows: A clause p(t

1

; � � � ; t

n

)

p(s

1

; � � � ; s

n

) is 2-reducing, if t

i

is either x

i

or [w

i

jx

i

] for any i, and it is head-reducing. A clause

p(t

1

; � � � ; t

n

) p(s

1

; � � � ; s

n

) is weakly 2-reducing if it is weakly reducing and 2-reducing.

Example 1 The following Prolog programs in Sterling and Shapiro [SS86] are weakly 2-

reducing.

list([W|X]):- list(X)

member(X,[W|Y]):- member(X,Y)

prefix([W|X],[W|Y]):- prefix(X,Y)

suffix(X,[W|Y]):- suffix(X,Y)

append([W|X],Y,[W|Z]):- append(X,Y,Z)

concat(X,[W|Y],[W|Z]):- concat(X,Y,Z)

3

Note that the clauses of member and suffix are the same forms. The �rst argument of member

is a constant, while that of suffix is a list.

Then, the following theorem holds.

Theorem 1 (Hirata [Hir93], Yamamoto [Yam92]) Let � be a ground atom with a predicate

p and C be a clause p(t

1

; � � � ; t

n

) p(s

1

; � � � ; s

n

).

1. If C is head-reducing, in particular 2-reducing, then the derivation of

fp(t

1

; � � � ; t

n

) p(s

1

; � � � ; s

n

)g [f �g is �nite.

2. If C is weakly head-reducing, in particular weakly 2-reducing, then the derivation

of fp(t

1

; � � � ; t

n

) p(s

1

; � � � ; s

n

)g [f �g is �nite, and all nodes of derivation are

ground goals.

3 Safe Generalization

It is an important point to avoid overgeneralization when we deal with generalization. In

general, it is determined whether or not a generalization � of � is overgeneral is determined by

an intended model. Let �� = � andM be an intended model. Then, � is an overgeneralization

of � if there exists a ground atom
 such that 8� `
 and M 6j=
 for an intended model M .

However, the decision problem of whether or not there exists such a
 is undecidable. On the

other hand, in rule-generating abduction, only one surprising fact is given, and it is hard to

give in advance an intended model. To overcome these di�culties, we introduce a syntactical

formulation of generalization.

Let � be a ground substitution, that is, � = [

n

i=1

fx

i

:= t

i

g, where any t

i

is a ground term.

Let � be a ground atom and � be an atom such that �� = �. Note that, throughout this

paper, if �� = � then a variable x

i

appears in � and t

i

6= []. A substitution � is well-de�ned

if, for any t

i

, there exists no term t

j

such that t

j

is a subterm of t

i

. In general, � is called an

overgeneralization of � if � is not well-de�ned.

Example 2 Let � be a ground atom p([a; b]; [b]). Let

�

1

= p([a; x]; [b]), �

2

= p([ajx]; [b]), �

3

= p([xjy]; y),

�

4

= p([ajx]; [y]), �

5

= p([ajx]; y).

For any �

i

, there exist the following substitutions �

i

such that �

i

�

i

= �:

�

1

= fx := bg, �

2

= fx := [b]g, �

3

= fx := a; y := [b]g,

�

4

= fx := [b]; y := bg, �

5

= fx := [b]; y := [b]g.

Then, �

1

; �

2

, and �

3

are well-de�ned, while �

3

and �

4

are not.

Let � be a ground atom and � be an atom such that �� = �. If a substitution � =

[

n

i=1

fx

i

:= t

i

g is well-de�ned, then we can de�ne the reversal �

�1

= [

n

i=1

ft

i

:= x

i

g. Note that,

if � is well-de�ned, then, for any t

i

and x

i

, there exists no term t

j

such that t

j

is a subterm

of t

i

and no variables x

i

such that x

i

= x

j

(j 6= i). However, even if � is well-de�ned, � is not

always ��

�1

.

Example 3 For �

1

and �

2

in Example 2,

��

�1

1

= p([a; b]; [b])fb := xg = p([a; x]; [x]) 6= �

1

,

��

�1

2

= p([a; b]; [b])f[b] := xg = p([ajx]; x) 6= �

2

.

4

On the other hand, ��

�1

3

= p([a; b]; [b])fa := x; [b] := yg = p([xjy]; y) = �

3

.

For the reversal �

�1

, the following lemma holds.

Lemma 1 Let � be a ground atom and � be an atom such that �� = �. Suppose that a

substitution � = [

n

i=1

fx

i

:= t

i

g is well-de�ned. Then, � = ��

�1

if and only if no t

i

appears in

�.

Proof Suppose � = ��

�1

. By the de�nition of �

�1

, ��

�1

is an atom which replaces all t

i

in �

with variable x

i

. Then, no t

i

appears in ��

�1

= �.

For simplicity, suppose that � = fx := tg. If t appears once in �, that is � = p(� � � t � � �),

then ��

�1

= p(� � � t � � �)ft := xg = p(� � � x � � �). Since � is ground, ��

�1

= �.

If t appears at least twice in �, that is � = p(� � � t � � � t � � �), then � is p(� � �x � � � y � � �). If

x 6= y, then, by �� = �, � is fx := t; y := tg. Since � is not well-de�ned, it is contradiction.

Then, x = y, � = fx := tg, and � = p(� � � x � � �x � � �). Hence, � = ��

�1

. 2

A ground term t(6= []) is a common term in � if t appears at least twice in � except an

empty list []. In particular, if a common term is a ground list, it is called a common list .

De�nition 2 Let � be a ground atom, � be a substitution [

n

i=1

fx

i

:= t

i

g, and � be an atom

such that �� = �. An atom � is a safe generalization of � if (�; �) satis�es the following

safeness conditions:

1. � is well-de�ned,

2. � = ��

�1

, and

3. if there exist common terms in �, then there exists a ground term t

j

2 [

n

i=1

ft

i

g such

that t

j

is a common term in �.

The safeness condition 1 means that � is not overgeneral on �. The safeness condition 2

and 3 mean that a generalization of � is not overgeneral on �. Hence, if a given ground

atom is generalized safely, then we can avoid overgeneralization. Furthermore, each of safe

generalizations is corresponding to the relation which is represented by a given ground atom.

Let � be a ground atom and � be an atom such that �� = �. Let t be some common term

in �. If � is well-de�ned and �

�1

is the form ft := xg, then � is safe on �.

Example 4 Let � be a ground atom p([a; b]; [b]) and � be an atom such that �� = �. Then,

the common terms in � are [b] and b.

1. Let �

1

be an atom p(x; y) and �

1

be a substitution �

1

= fx := [a; b]; y := [b]g. By the

safeness condition 1, �

1

is not safe on �.

2. Let �

2

be an atom p([x; b]; [y]) and �

2

be a substitution fx := a; y := bg. By the

safeness condition 2, �

2

is not safe on �.

3. Let �

3

be an atom p(x; [b]) and �

3

be a substitution fx := [a; b]g. By the safeness

condition 3, �

3

is not safe on �.

For the above �, atoms p([ajx]; x); p([a; x]; [x]); p([y; x]; [x]), and p([yjx]; x) are safe on �.

5

In general, an atom represents a relation which holds between its arguments. Thus, the

syntactical generalization of one atom should obtained by replacing a common term by a

common variable. The above safe generalization is an example of such generalizations. On the

other hand, it su�ces to consider only two types of terms, constants and lists. Then, we also

de�ne the following two types of substitution.

Let � be a substitution [

n

i=1

fx

i

:= t

i

g. Then, � is a constant substitution (resp. a list

substitution) if every t

i

is a constant symbol (resp. a ground list) without an empty list [].

In particular, a constant substitution is related to partially isomorphic generalizations which

have been introduced by Hirowatari and Arikawa [HA94].

Let � be an atom. A term t is a replaceable term of � if t is a constant symbol. For a

replaceable term t of �, let �[t] be an atom obtained by replacing each t in � by a new variable

Z which does not appear in �. Then, we write � ! � when �[t] is a variant of �. We de�ne

!

�

as the re
exive and transitive closure of !.

De�nition 3 (Hirowatari and Arikawa [HA94]) Let � and � be atoms. Then, � is a partially

isomorphic generalization of � if �!

�

�.

For a set of atoms S, let [S] denote the equivalence class of all atoms in S. In particular, for

any � 2 S and � 2 S, � is a variant of �.

Theorem 2 (Hirowatari and Arikawa [HA94]) Let � be an atom and S be the set of all

partially isomorphic generalizations of �. Then, [S] is a lattice whose partial order is !

�

,

meet operator is the greatest instantiation, and join operator is the least generalization.

Note that, though a replaceable term includes an empty list [], the de�nition of a replaceable

term is independent of the proof of Theorem 2. Let RT be the set of all replaceable terms of

� and T � RT . Then, we can re-formulate a partially isomorphic generalization by using T

instead of RT , and the above Theorem 2 also holds for a set T of replaceable terms. Let � be

a ground atom, �

c

be a constant substitution, and � be an atom such that ��

c

= �. Thus, we

assume that � is a partially isomorphic generalization of �, whose replaceable terms are all

constant symbols in � except an empty list [].

In the next section, we apply rule-generating abduction to a list substitution �

l

and a

constant substitution �

c

in the following way: Let � be a ground atom, i.e., a surprising fact.

First, by using a list substitution, we obtain an atom � such that ��

l

= � and � is safe on �.

Secondly, by using a constant substitution, we obtain an atom
 such that
�

c

= � and
 is

safe on �. By the above assumption,
 is also a partially isomorphic generalization of �.

Unfortunately, �

c

�

l

is not always well-de�ned, and
 is not always safe on �. For example,

let � be a ground atom p([a; b; c]; [b; c]; [a; b; c]). Then, there exist the following atoms �

i

such

that �

i

�

i

= � and �

i

is a well-de�ned list substitution:

�

1

= p([a; bjx]; [bjx]; [a; bjx]) �

1

= fx := [c]g,

�

2

= p([ajy]; y; [ajy]) �

2

= fy := [b; c]g,

�

3

= p(z; [b; c]; z) �

3

= fz := [a; b; c]g.

There exists no atom
 and substitutions �(6= ") such that
� = �

3

and �

3

� is well-de�ned.

Note that there does not exist the greatest list generalization of �.

Let � be a ground atom. Let � and
 be atoms such that ��

l

= � and
�

c

= �. Suppose

that both (�; �

l

) and (
; �

c

) satisfy the safeness conditions. Then, the following two theorems

hold.

Theorem 3 If �

c

�

l

is well-de�ned, then
 is a safe generalization of �.

6

Proof Suppose that �

c

�

l

is well-de�ned. Then, (
; �

c

�

l

) satis�es the safeness condition 1.

Since both (�; �

l

) and (
; �

c

) satisfy the safeness conditions, (
; �

c

�

l

) satis�es the safeness

condition 3.

By supposition, � = ��

�1

l

and
 = ��

�1

c

. The list substitution �

l

replaces the common lists

in � by variables. The constant substitution �

c

replaces the same constant symbols in � by

the same variables and other constant symbols by other variables. Hence, the composition �

c

�

l

replaces the common lists in � by variables, the same constant symbols in � except common

terms by the same variables, and other constant symbols by other variables. By Lemma 1 and

well-de�nedness of �

c

�

l

, (
; �

c

�

l

) satis�es the safeness condition 2. 2

Theorem 4 Suppose that any constant which appears in common lists in � does not appear

in � except them. If � = ��

�1

l

and
 = ��

�1

c

, then �

c

�

l

is well-de�ned. Hence,
 is a safe

generalization of �.

Proof Suppose that �

l

= [

n

i=1

fx

i

:= l

i

g, where l

i

is a common list in �. For any j-th argu-

ment's term t

j

of �, if t

j

includes l

i

, then t

j

= [a

j

1

; a

j

2

; � � � ; a

j

n

j

jl

i

], and no constants a

j

1

; a

j

2

; � � � ; a

j

n

j

appear in l

i

. Then, �

c

does not include the binding x := c such that c appears in l

i

. Hence,

�

c

�

l

is well-de�ned. By Theorem 3, (
; �

c

�

l

) satis�es the safeness conditions. Then, for
 such

that
�

c

�

l

= �,
 is a safe generalization of �. 2

4 Rule-Generating Abduction

The rule-generating abduction is a process which generates a rule and proposes a hypothesis

from a surprising fact. An inference schema by rule-generating abduction is described by the

following three steps:

1. A ground atom C is given.

2. A rule C

0

 A

0

is generated, where C

0

� = C and A

0

� = A.

3. A hypothesis A is proposed.

In Section 2, we have discussed the head-reducing clause of which all the derivations are

�nite. Suppose that the rule p(s

0

1

; � � � ; s

0

n

) p(t

0

1

; � � � ; t

0

n

) is head-reducing. Then, for a given

ground atom p(t

1

; � � � ; t

n

), the head-reducing rule

p(t

0

1

; � � � ; t

0

n

) p(s

0

1

; � � � ; s

0

n

)

is generated and the hypothesis p(s

1

; � � � ; s

n

) is proposed by rule-generating abduction, where

p(t

0

1

; � � � ; t

0

n

)� = p(t

1

; � � � ; t

n

) and p(s

0

1

; � � � ; s

0

n

)� = p(s

1

; � � � ; s

n

). An inference schema is de-

picted by the following syllogism:

p(t

1

; � � � ; t

n

) p(t

0

1

; � � � ; t

0

n

) p(s

0

1

; � � � ; s

0

n

)

p(s

1

; � � � ; s

n

)

:

Unfortunately, the number of head-reducing rules is at most

(m� 1)

n

n

X

i=1

n!

i!

;

where m = max

1�i�n

jt

i

j for a ground atom p(t

1

; � � � ; t

n

).

In usual, there exists no variable which appears only once in the body of the rule p(t

0

1

; � � � ; t

0

n

)

 p(s

0

1

; � � � ; s

0

n

). Then, the number of weakly head-reducing rules is at most m

n

, where m =

max

1�i�n

jt

i

j for a ground atom p(t

1

; � � � ; t

n

).

7

Furthermore, suppose that a given program is 2-reducing or weakly 2-reducing. Then, for

a ground atom with n-ary predicate symbol, the number of 2-reducing rules is at most

n

X

i=1

n!

i!

;

while the number of weakly 2-reducing rules is at most 2

n

:

On the other hand, by using safe generalizations in Section 3, we design an algorithm to

generate weakly 2-reducing rules as follows: Suppose that a ground atom � is given. First,

by generalizing � with a list substitution �

l

, we obtain an atom � such that ��

l

= � and

� is safe on �. We call such � a list generalization of �. Secondly, by generalizing � with

a constant substitution �

c

, we obtain an atom
 such that
�

c

= � and
 is safe on �.

We call such
 a constant generalization of �. Note that
 is also assumed the partially

isomorphic generalization of �. For this algorithm, the number of rules is at most the number

of generalizations. Then, we investigate the number of generalizations.

Let � be a ground atom p(t

1

; � � � ; t

n

). For all common lists in �, we can classify them by

the sublist relation. For example, let � be a ground atom p([a; b; c; d]; [c; d]; [b; c]; [c]; [b; c; d])

and t

i

be the i-th argument's term of �. Then, t

2

; t

4

, and t

5

are common lists in �. By the

sublist relation, we classify them into ft

2

; t

5

g and ft

4

g. Let l be the number of such classes.

Then, the number of the maximal generalizations is at most

0

@

�

p

2

�

n

l

1

A

l

:

Even if l = 1, the number of the maximal list generalizations of � is at most

�

p

2

�

n

. We

discuss more detail in Appendix at the end of this paper.

The number of the maximal list generalizations increases exponentially with respect to n.

Thus, in the following algorithm PROPOSE , we restrict the reversal of list generalizations

to the form ft := xg, where t is both a common term in � and some argument's term of �.

Obviously, the generalization �fx := tg is safe on �. The number of weakly 2-reducing rules

generated by the algorithm PROPOSE is at most n.

An important basis on the algorithm PROPOSE is that, if the i-th argument's term is some

common list in �, then the i-th argument's term of the head of the generated rule is a variable;

otherwise, it is a list. Furthermore, by the algorithm PROPOSE , the rules in Example 1 are

constructed from one ground atom.

In PROPOSE , rs abd(fact; head body; hyp), which is rule-selecting abduction, is a

procedure to propose a hypothesis hyp such that (head)� = fact and (body)� = hyp for some

substitution �. Then, the following two theorems hold.

Theorem 5 Let � be a ground atom p(t

1

; � � � ; t

n

) and k = jt

1

j+� � �+jt

n

j. Then, the algorithm

PROPOSE computes the rules and hypotheses in O(k

3

) time.

Proof For any t

i

, it can be determined whether or not t

i

is a sublist of t

j

in O(jt

i

j). Then,

for any i, it can be determined whether or not t

i

is a sublist of any t

j

(j 6= i) in O((n� 1)jt

i

j).

Hence, the set L in the algorithm PROPOSE can be constructed in O((n� 1)k).

For the selected � in L, the greatest constant generalization of � is also a partially isomor-

phic generalization of �. By Hirowatari and Arikawa [HA94], a partially isomorphic generaliza-

tion
 of � can be computed in O(k

2

). Since the procedures in the for-loop can be computed in

O(n), the for-loop terminates in O(n

2

). Then, the procedures in while-loop can be computed

in O(k

2

+ n

2

). Since the number of elements in L is at most n, the while-loop terminates in

O(k

2

n+ n

3

). Hence, the algorithm PROPOSE terminates in O((n� 1)k + k

2

n + n

3

).

Since n � k, the algorithm PROPOSE computes rules and hypotheses in O(k

3

) time. 2

8

Algorithm PROPOSE

input � = p(t

1

; � � � ; t

n

) : fact, i.e., ground atom

output head body : rule

� : hypothesis

L := f� j � = �ft

i

:= v

i

g; t

i

: common list in �g [f�g;

/* � : safe on � */

while L 6= � do

select � 2 L;

 = p(s

1

; � � � ; s

n

) : the greatest constant generalization of �;

for i = 1 to n

if s

i

= [] then /* base step */

output
 true : rule

output true : hypothesis

halt;

else if s

i

: a variable then /* induction step */

head arg

i

:= x

i

; /* x

i

is a new variable */

else /* s

i

= [w

i

1

; � � �] */

head arg

i

:= [w

i

1

jx

i

]; /* x

i

is a new variable */

end

end

head := p(head arg

1

; � � � ; head arg

n

);

/* head arg

i

= [w

i

1

jx

i

] or x

i

*/

body := p(x

1

; � � � ; x

n

);

output head body : rule

rs abd(�; head body; �);

output � : hypothesis

L := L� f�g

end

Theorem 6 Let � be a ground atom p(t

1

; � � � ; t

n

). If there exists a common list l in � and

l appears in t

i

, then l also appears in the i-th argument of the proposed hypothesis � by the

algorithm PROPOSE .

Proof Let l be a common list in �. If some argument's term t

i

of � is l, then each of the i-th

argument's terms of the head and of the body is a variable x

i

by the algorithm PROPOSE .

Then, the i-th argument's term of � is also l.

If l appears in some argument's term t

i

of �, then t

i

= [a

i

1

; a

i

2

; � � � ; a

i

n

i

jl]. By the algorithm

PROPOSE , the i-th argument's term of the head is a list [y

i

1

jx

i

], where y

i

1

is a variable cor-

responding to a

i

1

, while one of the body is a variable x

i

. Then, for the hypothesis �, the i-th

argument's term of � is [a

i

2

; � � � ; a

i

n

i

jl].

Hence, a common list also appears in the same argument of the proposed hypothesis � by

the algorithm PROPOSE . 2

Hence, if a given ground atom satis�es the relation on common lists, then the proposed hy-

pothesis by the algorithm PROPOSE also satis�es it.

5 Examples

In this section, we discuss the several examples for the algorithm PROPOSE .

9

Example 5 Let � be a ground atom p([a; b]; [c; d]; [a; b; c; d]). The list [c; d] is both a common

list in � and the second argument's term of �. By the construction of L, � = p([a; b]; v

2

; [a; bjv

2

])

is a safe list generalization of �, and
 = p([x; y]; v

2

; [x; yjv

2

]) is the greatest constant general-

ization of �. The �rst argument's term of
 is a list which begins with x, the second argument's

term is a variable v

2

, and the third argument's term is also a list which begins with x. By

the for-loop in PROPOSE , we obtain the head p([xjx

1

]; x

2

; [xjx

3

]) and the body p(x

1

; x

2

; x

3

).

Hence, PROPOSE generates the rule

p([xjx

1

]; x

2

; [xjx

3

]) p(x

1

; x

2

; x

3

)

and proposes the hypothesis p([b]; [c; d]; [b; c; d]). Note that the predicate p means append in

Example 1.

Since L includes �, let � = �. Then,
 = p([x; y]; [z; w]; [x; y; z; w]). The �rst argument's

term of
 is a list which begins with x, the second argument's term is a list which begins

with z, and the third argument's term is also a list which begins with x. By the for-loop

in PROPOSE , we obtain the head p([xjx

1

]; [zjx

2

]; [xjx

3

]) and the body p(x

1

; x

2

; x

3

). Hence,

PROPOSE generates the rule

p([xjx

1

]; [zjx

2

]; [xjx

3

]) p(x

1

; x

2

; x

3

)

and proposes the hypothesis p([b]; [d]; [b; c; d]).

Furthermore, each of the rules and hypotheses by PROPOSE satis�es the following syllo-

gism respectively:

p([a; b]; [c; d]; [a; b; c; d]) p([xjx

1

]; x

2

; [xjx

3

]) p(x

1

; x

2

; x

3

)

p([b]; [c; d]; [b; c; d])

;

p([a; b]; [c; d]; [a; b; c; d]) p([xjx

1

]; [zjx

2

]; [xjx

3

]) p(x

1

; x

2

; x

3

)

p([b]; [d]; [b; c; d])

:

Example 6 Let � be a ground atom p(a; [a; b]). Since there exists no common list in �,

� = p(a; [a; b]) and
 = p(x; [x; y]). The �rst argument's term of
 is a variable x, and the

second argument's term is a list which begins with x. By the for-loop in PROPOSE , we obtain

the head p(x

1

; [xjx

2

]) and the body p(x

1

; x

2

). Hence, PROPOSE generates the rule

p(x

1

; [xjx

2

]) p(x

1

; x

2

)

and proposes the hypothesis p(a; [b]). Note that the predicate p means member in Example 1.

Let � be a ground atom p([a]; [a; b]). Since there exists no common list in �, � = p([a]; [a; b])

and
 = p([x]; [x; y]). The �rst argument's term of
 is a list which begins with x, and the

second argument's term is also a list which begins with x. By the for-loop in PROPOSE , we

obtain the head p([xjx

1

]; [xjx

2

]) and the body p(x

1

; x

2

). Hence, PROPOSE generates the rule

p([xjx

1

]; [xjx

2

]) p(x

1

; x

2

)

and proposes the hypothesis p([]; [b]). Note that the predicate p means prefix in Example 1.

Let � be a ground atom p([b]; [a; b]). The list [b] is both a common list in � and the �rst

argument's term of �. Then, � = p(v

1

; [ajv

1

]) and
 = p(v

1

; [xjv

1

]). The �rst argument's

term of
 is a variable v

1

, and the second argument's term is a list which begins with x. By

the for-loop in PROPOSE , we obtain the head p(x

1

; [xjx

2

]) and the body p(x

1

; x

2

). Hence,

PROPOSE generates the rule

p(x

1

; [xjx

2

]) p(x

1

; x

2

)

10

and proposes the hypothesis p([b]; [b]). Note that the predicate p means suffix in Example 1.

On the other hand, since L includes � = p([a; b]; [b]), let � = �. Then,
 = p([x]; [y; x]). The

�rst argument's term of
 is a list which begins with x, and the second argument's term is a

list which begins with y. By the for-loop in PROPOSE , we obtain the head p([xjx

1

]; [yjx

2

])

and the body p(x

1

; x

2

). Hence, PROPOSE generates the rule

p([xjx

1

]; [yjx

2

]) p(x

1

; x

2

)

and proposes the hypothesis p([]; [b]).

If � = p([a; b]; [c; d]; [a; b; c; d]), then PROPOSE generates the rule

p([xjx

1

]; x

2

; [xjx

3

]) p(x

1

; x

2

; x

3

)

and proposes the hypothesis p([b]; [c; d]; [b; c; d]). If � = p([a; b]; [a; b; c; d]; [c; d]), then PRO-

POSE also generates the rule

p([xjx

1

]; [xjx

2

]; x

3

) p(x

1

; x

2

; x

3

)

and proposes the hypothesis p([b]; [b; c; d]; [c; d]). Hence, the algorithm PROPOSE is indepen-

dent of the order of argument. Furthermore, as member and suffix in Example 6, the algorithm

PROPOSE is also independent of the types of argument. In other words, PROPOSE needs

no types of argument.

We have implemented the algorithm PROPOSE by Prolog. The predicate propose returns

the generated rule as the third argument. It also returns the hypothesis proposed by the

generated rule as the second argument.

: ?- propose(p([a,b],[c,d],[a,b,c,d]),X,Y).

X = p([b],[d],[b,c,d]),

Y = p([_2046|_2602],[_1378|_2600],[_2046|_2598]):-p(_2602,_2600,_2598) ;

X = p([b],[c,d],[b,c,d]),

Y = p([_1578|_2070],_2058,[_1578|_2066]):-p(_2070,_2058,_2066) ;

no

: ?- propose(p(a,[a,b]),X,Y).

X = p(a,[b]),

Y = p(_1334,[_972|_1340]):-p(_1334,_1340) ;

no

: ?- propose(p([a],[a,b]),X,Y).

X = p([],[b]),

Y = p([_1016|_1418],[_1016|_1416]):-p(_1418,_1416) ;

no

: ?- propose(p([b],[a,b]),X,Y).

X = p([],[b]),

Y = p([_1158|_1560],[_904|_1558]):-p(_1560,_1558) ;

X = p([b],[b]),

Y = p(_1220,[_872|_1226]):-p(_1220,_1226) ;

no

: ?- propose(p([a,b,c],[b,c],[a,b,c]),X,Y).

X = p([b,c],[c],[b,c]),

Y = p([_2066|_2622],[_1738|_2620],[_2066|_2618]):-p(_2622,_2620,_2618) ;

X = p([b,c],[b,c],[b,c]),

Y = p([_1638|_2102],_2090,[_1638|_2098]):-p(_2102,_2090,_2098) ;

X = p([a,b,c],[c],[a,b,c]),

Y = p(_2360,[_1670|_2368],_2356):-p(_2360,_2368,_2356) ;

no

11

Note that, in the last example, �

1

= p([ajv

2

]; v

2

; [ajv

2

]) and �

2

= p(v

1

; [b; c]; v

1

) are the safe

generalizations of p([a; b; c]; [b; c]; [a; b; c]). Hence, there are three hypotheses and rules for a

ground atom p([a; b; c]; [b; c]; [a; b; c]).

On the other hand, for a ground atom p([a; b; c]; [d; e]; [a; b; c]), the predicate propose re-

turns the following two rules and hypotheses:

: ?- propose(p([a,b,c],[d,e],[a,b,c]),X,Y).

X = p([b,c],[e],[b,c]),

Y = p([_2510|_3066],[_1490|_3064],[_2510|_3062]):-p(_3066,_3064,_3062) ;

X = p([a,b,c],[e],[a,b,c]),

Y = p(_2056,[_1366|_2064],_2052):-p(_2056,_2064,_2052) ;

no

6 Conclusion

In this paper, we have formulated an overgeneralization and a safe generalization, and given the

algorithm PROPOSE to construct weakly 2-reducing rules. We have shown that the algorithm

PROPOSE can generate rules and propose hypotheses in polynomial time with respect to the

length of a surprising fact. Also we have shown that a common term in some argument of a

surprising fact appears in the same argument of the proposed hypothesis by PROPOSE .

Abduction is an inference to propose hypotheses to be used before deduction and induction.

We have left as a future work to combine abduction and inductive logic programming. Ling

[Lin89a, Lin89b] has introduced the constructive inductive logic programming. There may

exist a relationship between such works and this paper.

Furthermore, as to the inductive logic programming, we have left the problem of predicate

invention. The number of rules and hypotheses becomes exponentially large. Hence, we need to

introduce some heuristics such as on a distinction between a necessary and useful intermediate

term, the number of local variables, invented predicate symbols and rules, and so on.

Acknowledgment

The author would like to thank Setsuo Arikawa and Eiju Hirowatari for many precious dis-

cussions about partially isomorphic generalizations. He also thanks the reviewers for valuable

comments.

References

[ASO91] Arimura, H., Shinohara, T., Otsuki, S.: A polynomial time algorithm for �nite unions

of tree pattern languages. In Proceedings of the 2nd Workshop on Algorithmic Learning

Theory (1991) 105{114.

[Dun91] Dung, P. M.: Negation as hypothesis: an abductive foundation for logic programming. In

Proceedings of the 8th International Conference on Logic Programming (1991) 3{17.

[EK89] Eshghi, K., Kowalski, R. A.: Abduction compared with negation by failure. In Proceedings

of the 6th International Conference on Logic Programming (1989) 234{254.

[Hir93] Hirata, K.: A classi�cation of abduction: abduction of logic programming. Machine In-

telligence 14 (to appear).

[HA94] Hirowatari, E., Arikawa, S.: Partially isomorphic generalization and analogical reasoning.

In Proceedings of European Conference on Machine Learning (1994), Lecture Notes in

Arti�cial Intelligence 784 (1994) 363{366.

12

[Ino92] Inoue, K.: Principles of abduction. Journal of Japanese Society for Arti�cial Intelligence

7 (1992) 48{59 (in Japanese).

[KM90] Kakas, A. C., Mancarella, P.: Generalized stable models: a semantics for abduction. In

Proceedings of the 9th European Conference on Arti�cial Intelligence (1990) 385{391.

[Kun87] Kunifuji, S.: Hypothesis-based reasoning. Journal of Japanese Society for Arti�cial Intel-

ligence 2 (1987) 22{87 (in Japanese).

[Lin89a] Ling, X.: Learning and invention of Horn clause theories - a constructive method. Method-

ologies for Intelligent Systems 4 (1989) 323{331.

[Lin89b] Ling, X.: Inventing theoretical terms in inductive learning of functions - search and

constructive methods. Methodologies for Intelligent Systems 4 (1989) 332{341.

[Llo87] Lloyd, J. W.: Foundations of logic programming (second, extended edition). Springer-

Verlag (1987).

[Mug92a] Muggleton, S. (ed.): Inductive logic programming. Academic Press (1992).

[Mug92b] Muggleton, S.: Machine invention of �rst-order predicates by inverting resolution. In

Proceedings of the 5th International Conference on Machine Learning (1988) 339-352; In

[Mug92a].

[Pei65] Peirce, C. S.: Collected papers of Charles Sanders Peirce (1839-1914). Hartshone, C. S.,

Weiss, P.(eds.), The Belknap Press (1965).

[Plo70] Plotkin, G. D.: A note on inductive generalization. Machine Intelligence 5 (1970) 153{163.

[Plo71] Plotkin, G. D.: A further note on inductive generalization. Machine Intelligence 6 (1971)

101{124.

[Poo88] Poole, D.: A logical framework for default reasoning. Arti�cial Intelligence 36 (1988)

27{47.

[Sha81] Shapiro, E. Y.: Inductive inference of theories from facts. Research Report 192, Yale

University (1981).

[SS86] Sterling, L., Shapiro, E.: The art of Prolog. The MIT Press (1986).

[Yam92] Yamamoto, A.: Procedural semantics and negative information of elementary formal

system. Journal of Logic Programming 13 (1992) 89{97.

[Yon82] Yonemori, Y.: Peirce's semiotics. Keisou Syobou (1982) (in Japanese).

Appendix

In Section 4, we investigate the number of the maximal list generalizations. In this appendix,

we explain how to solve the upper bound of this number.

Let � be a ground atom p(t

1

; � � � ; t

n

) and K

n

be the number of the maximal list general-

izations of �. In Section 4, we introduce the classi�cation by the sublist relation. Suppose

that l is the number of such classes. If l = 1, then we can �nd the upper bound of K

n

in the

following way.

For simplicity, suppose that the common lists in � are t

1

; t

2

; � � � ; t

n�1

, and jt

1

j > jt

2

j >

� � � > jt

n�1

j. We denote the generalization �ft

j

1

:= x

j

1

; � � � ; t

j

f

:= x

j

f

g by �

(j

1

;���;j

f

)

. Note that

t

j

i

+1

is not a common list in �

(j

i

)

. Furthermore, for �

(j

i

;j

i

+a;j

i

+a+b)

(a; b = 2 or 3), there exist

substitutions �

j

i

+a+b

, �

j

i

+a

, and �

j

i

such that

�

(j

i

;j

i

+a)

= �

(j

i

;j

i

+a;j

i

+a+b)

�

j

i

+a+b

,

�

(j

i

;j

i

+a+b)

= �

(j

i

;j

i

+a;j

i

+a+b)

�

j

i

+a

,

�

(j

i

+a;j

i

+a+b)

= �

(j

i

;j

i

+a;j

i

+a+b)

�

j

i

.

13

Hence, �

(j

i

;j

i

+a)

, �

(j

i

;j

i

+a+b)

, and �

(j

i

+a;j

i

+a+b)

are not maximal list generalizations.

By using the index of �, K

n

is equal to the number of the sequences (j

1

; � � � ; j

f

) which

satisfy the following conditions:

1. j

1

= 1 or 2,

2. j

f

= n� 1 or n, and

3. the adjacent number of j

i

is either j

i

+ 2 or j

i

+ 3.

For example, let n = 8. Then, the following seven sequences

(1; 3; 5; 7); (1; 3; 6); (1; 4; 6); (1; 4; 7); (2; 4; 6); (2; 4; 7); (2; 5; 8)

satisfy the above conditions. For the sequence (j

1

; � � � ; j

f

) which satis�es the above conditions,

the number of sequences such that j

1

= 1 is greater that j

1

= 2. Let A

n

be the set of the

sequences (j

1

; � � � ; j

f

) which satisfy the above conditions and j

1

= 1. Then, K

n

� 2jA

n

j.

Furthermore, for n � 6, we can construct the set A

n

in the following way:

1. if (j

1

; � � � ; j

f

) 2 A

n�2

, then (j

1

; � � � ; j

f

; n) 2 A

n

, and

2. if (j

0

1

; � � � ; j

0

f

) 2 A

n�3

, then (j

0

1

; � � � ; j

0

f

; n� 1) 2 A

n

.

Hence, jA

n

j satis�es the following equations:

jA

3

j = 1; jA

4

j = 1; jA

5

j = 2; jA

n

j = jA

n�2

j+ jA

n�3

j (n � 6):

By the mathematical induction, we obtain the following formula:

�

3

p

2

�

n�2

� jA

n

j �

�

p

2

�

n�2

(n � 6):

Hence, the numberK

n

of the maximal generalizations is characterized by the following formula:

K

n

� 2

�

p

2

�

n�2

=

�

p

2

�

n

:

Note that this formula holds for any n � 1.

Let l be the number of classes by the sublist relation and C

j

be such class for 1 � j � l. For

any C

j

, the number of the sequences which satisfy the above conditions is at most

�

p

2

�

jC

j

j

.

Then, the number K

n

of the maximal generalizations is at most

�

p

2

�

jC

1

j

� � � � �

�

p

2

�

jC

l

j

:

Hence, K

n

is also characterized by the following formula:

K

n

�

0

@

�

p

2

�

n

l

1

A

l

:

14

