
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Partially Isomorphic Generalization and
Analogical Reasoning

Hirowatari, Eiju
Research Institute of Fundamental Information Science, Kyushu University

Arikawa, Setsuo
Research Institute of Fundamental Information Science, Kyushu University

https://hdl.handle.net/2324/3070

出版情報：RIFIS Technical Report. 76, 1993-10. Research Institute of Fundamental Information
Science, Kyushu University
バージョン：
権利関係：

Partially Isomorphic Generalization

and Analogical Reasoning

�

Eiju Hirowatari

y

Setsuo Arikawa

Research Institute of Fundamental Information Science,

Kyushu University 33, Fukuoka 812, Japan

e-mail: eiju, arikawa@ri�s.sci.kyushu-u.ac.jp

Abstract

Analogical reasoning is carried out based on an analogy which gives a similarity

between a base domain and a target domain. Thus, the analogy plays an important

role in analogical reasoning. However, computing such an analogy leads to a com-

binatorial explosion. This paper introduces partially isomorphic generalizations of

atoms and rules which make it possible to carry out analogical reasoning without

computing the analogy, and also gives a relationship between our generalization

and the analogy. Then, we give a procedure which produces such a generalization

in polynomial time with respect to the length of a given atom or rule, and realize

it as a Prolog program.

1 Introduction

Analogical reasoning is an important paradigm of machine learning [1, 5, 6]. it acquires

unknown knowledge by computing an analogy, which gives a similarity between a base

domain and a target domain. In analogical reasoning, we �rst detect an analogy, and

then project the well-known knowledge in the base domain on the target domain by

using the analogy. Thus, it is an essential point for analogical reasoning to compute

an analogy which maps from a base domain to a target domain. Then, Many authors

have extensively studied analogical reasoning from this point of vew [1, 5, 6, 11, 16,

17]. However, there often arises a problem of combinatorial explosion in computing

analogies [3].

�

This work is partly supported by Grant-in-Aid for Scienti�c Research on Priority Areas from the

Ministry of Education, Science and Culture, Japan.

y

JSPS Fellowship for Japanese Junior Scientists.

1

In order to solve this problem, we introduce a new concept of partially isomorphic

generalizations of atoms and rules. Then, we present a procedure to compute such

generalizations in polynomial time, and show that our generalizations make it possible

to carry out analogical reasoning without computing an analogy.

The relationships between analogical reasoning and generalizations have been dis-

cussed by many researches [2, 4, 14, 15]. Haraguchi [4] and Furtado [2] dealt with

generalizations of two atoms in base and target domains, which are nearly the same as

Plotkin's generalization [9, 10]. Russell introduced a notion of single instance general-

ization [14] in connection with EBG and determinations. Vrain and Lu [15] dealt with

a generalization of predicates by using a taxonomy of concepts.

Our partially isomorphic generalization is a method to generalize an atom or a rule

as general as possible without destroying its syntactical structure. Then, we use this new

generalization in analogical reasoning, and show that ground instantiations of the atoms

thus generalized are also derived by the ordinary analogical reasoning by Haraguchi and

Arikawa [5, 6]. Hence, our generalization can be justi�ed by their theory of analogical

reasoning.

This paper is organized as follows. In Section 2, we briey recall the analogical rea-

soning based on an analogy as a function from a base domain to a target domain. In

Section 3, we prepare some concepts on generalization and instance of atoms necessary

for our discussion. In Section 4, we introduce the notion of partially isomorphic general-

izations of atoms and rules, show some properties and justi�cation of them, and describe

a procedure to compute our generalizations in polynomial time. In Section 5, we realize

our generalization procedure as a Prolog program.

2 Analogical Reasoning

In this paper, we deal with logic programs (programs, for short) as the domains for

analogical reasoning. Let P

1

and P

2

be base and target programs, respectively, on which

analogical reasoning is carried out.

Assume that, in P

1

, premises �

1

; : : : ; �

n

logically imply a fact �. Assume also that

premises �

1

; : : : ; �

n

hold in P

2

, and �

i

and �

i

(1 � i � n) are analogous. Then, analogical

reasoning is to derive a fact � in P

2

which is analogous to �. Thus, we follow the principle

of analogical reasoning by Haraguchi and Arikawa [6] shown in Figure 1 which is based

on Polya [11] and Winston [16, 17].

P

1

: �

1

; : : : ; �

n

! �

m similarity ' m

P

2

: �

1

; : : : ; �

n

! �

Figure 1: The principle of analogical reasoning.

Then, ' in Figure 1 denotes an analogy which gives a similarity between the base

and the target. Analogical reasoning is carried out by projecting some of the base on

2

the target by using '. Hence, we take ' as a mapping from the base to the target. Let

U

i

be the Herbrand universe for P

i

(i = 1; 2). Then, we present some de�nitions for P

1

and P

2

.

De�nition 1 Let P

1

and P

2

be base and target programs, respectively. A �nite subset

' of U

1

� U

2

is called a pairing between P

1

and P

2

. Then, the set '

+

is de�ned to be

the smallest set that satis�es the following conditions:

(a) ' � '

+

, and

(b) ht

1

; s

1

i; : : : ; ht

n

; s

n

i 2 '

+

) hf(t

1

; : : : ; t

n

); f (s

1

; : : : ; s

n

)i 2 '

+

,

where f is a function symbol appearing in either P

1

or P

2

.

If we can take a pairing ' as a function such that

'

+

(t) = s if ht; si 2 '

+

,

then we say that ' is an analogy.

An analogy can be extended from terms to atoms in a natural way as follws:

De�nition 2 Let P

1

and P

2

be base and target programs, respectively. Let � be a

ground atom that holds in P

1

, and � be a ground atom that holds in P

2

. For an analogy

', we say that � is analogous to � under ', if � and � are written as

� = p(t

1

; : : : ; t

n

) and � = p(s

1

; : : : ; s

n

) ;

respectively, for some predicate symbol p appearing in either P

1

or P

2

, and '

+

(t

i

) = s

i

holds for each i (1 � i � n).

3 Generalization and instance of atoms

First, we prepare some concepts on generalization and instance of atoms necessary for

our discussions. For detailed de�nitions on �rst order logic, logic programming and

algebraic structure of atoms, readers should refer to [8, 9, 12].

An atom without variables is called a ground atom. A de�nite clause is a clause of

the form

A B

1

; : : : ; B

n

(n � 0);

where A;B

1

; : : : ; B

n

are atoms. A is called the head and B

1

; : : : ; B

n

is called the body

of the de�nite clause. Then, a de�nite clause with the body is called a rule and a rule

without variables is called a ground rule.

De�nition 3 Let � and � be atoms. Then, � is a generalization of � or � is an instance

of �, denoted by � � �, if there exists a substitution � such that �� = �. Atoms � and

� are variants, denoted by � ' �, if � � � and � � � hold.

3

De�nition 4 Let S be a set of atoms. Then, an atom is a common generalization of

S if � � for each atom � in S. An atom � is a common instance of S if � � � for

each atom � in S. An atom is a least common generalization of S, if is a common

generalization of S and �

0

for each common generalization

0

of S. An atom � is

a greatest common instance of S, if � is a common instance of S and �

0

� � for each

common instance �

0

of S.

Let S be a set of generalizations of an atom, and � and � be atoms in S. Then, by

[�] we denote the equivalence class of � under the equivalence relation ', and by [S]

the set of equivalence classes of all atoms in S induced by '.

Now we de�ne two binary functions t and u on S as follows: � t � is a least

generalization of � and � obtained by Plotkin's algorithm [9]. let �

0

and �

0

be variants

of � and �, respectively, which do not share any variable. Then, � u � is an atom

�

0

�, where � is the most general uni�er of �

0

and �

0

obtained by Robinson's uni�cation

algorithm [13].

Furthermore, we de�ne two binary functions t and u, and a relation � on [S] as

follows: For [�] and [�] in [S],

[�] t [] = [� t] , [�] u [] = [� u],

and [�] � [�] when � � �.

We have the following lemmas:

Lemma 1 For atoms � and � with the same n-ary predicate symbol, � t � is a least

common generalization of f�; �g with respect to �.

Lemma 2 For atoms � and � which are uni�able, �u� is a greatest common instance

of f�; �g with respect to �.

Lemma 3 For a set of atoms S, the relation � is a partial order on [S].

By these lemmas, we can prove the following proposition:

Proposition 1 Let S be the set of all generalizations of an atom. Then, [S] is a lattice

with a partial order �, a join operator t, and a meet operator u.

Proof. By Lemma 3, � is a partial order on [S]. By Lemma 1 and 2, for [�] and [] in

[S], [�] t [] and [�] u [] are in [S], and they are the least common generalization and

the greatest common instance of f[�]; []g, respectively. Hence, t and u on [S] are join

and meet operators, respectively. 2

The lattice [S] is said to be a normal lattice.

4

4 Partially Isomorphic Generalization

In this section, we introduce a new concept of partially isomorphic generalization of

atoms and rules.

For u, a term or an atom, let C

u

be the set of all constants occurring in u, and V

u

be the set of all variables. For an atom � and a term t occurring in �, �[t] is an atom

obtained by replacing each occurrence of t in � by a new variable which does not occur

in �.

De�nition 5 Let � be an atom and t be a term occurring in �. Then, t is a quasi-

replaceable term of �, if t is a constant or a term of the form f (X

1

; � � � ; X

n

), where f is

a function symbol and each X

i

is a variable symbol. A term t is a replaceable term of

�, if t is a quasi-replaceable term and V

t

\ V

�[t]

= ; holds.

Example 1 The set of all replaceable terms of p(f(a); a; g(b)) is fa; bg.

The set of all replaceable terms of p(f(X;Z); g(Y; f (X;Z); a)) is ff(X;Z); ag.

Let � be an atom and t be a replaceable term of �. Then, we write � ! � for each

variant � of �[t]. The relation ! is a binary relation on a set of atoms. Then, we de�ne

!

�

as the reexive and transitive closure of !.

De�nition 6 Let � and � be atoms. Then, � is a partially isomorphic generalization

(PIG, for short) of �, if �!

�

�.

As shown later, there exists a PIG of an atom � such that � !

�

 holds for each

PIG � of �. Then, such an atom is a greatest PIG of �.

Example 2 For an atom � = p(f(a); a; g(b)), the followings atoms are PIGs of �:

p(f (a); a; g(b)) , p(f(A); A; g(b)) ,

p(f (a); a; g(B)) , p(f(a); a; C) ,

p(f (A); A;C) ,

but not p(A;B; C), where A, B and C are new variables. p(f (A); A;C) is a greatest

PIG of �.

For an atom � = p(f (X;Z); g(Y; f(X;Z); a)), the followings atoms are PIGs of �:

p(f(X;Z); g(Y; f (X;Z); a)) , p(A; g(Y; A; a)) ,

p(f(X;Z); g(Y; f (X;Z); B)) , p(A; g(Y;A;B)) ,

but not p(A;B), where A and B are new variables. p(A; g(Y;A;B)) is a greatest PIG

of �.

The following proposition asserts that, for PIGs � and of an atom �, a greatest

common generalization and a least common instance of f�; g are PIGs of �.

Proposition 2 For PIGs � and of an atom �, there exist atoms �t and �u which

are PIGs of �.

5

Proof. Let �

0

and

0

be variants of � and , respectively, which do not share any

variable. Let �(�

0

;

0

) be the set of pairs ht

1

; t

2

i of terms t

1

and t

2

which occur in the

same place in �

0

and

0

, respectively, and of which the left most symbols are distinct.

Then, for ht

1

; t

2

i in �(�

0

;

0

), at least one of t

1

and t

2

is a variable. Let

�

1

= ft

1

:= t

2

j t

1

is a variable and ht

1

; t

2

i is in �(�

0

;

0

)g,

�

2

= ft

2

:= t

1

j t

1

is not a variable and ht

1

; t

2

i is in �(�

0

;

0

)g,

and put � = �

1

[�

2

. Then, �!

�

�

0

� and �

0

� '

0

� ' � u . Hence, � u is a PIG of �.

Furthermore, for ht

1

; t

2

i in �(�

0

;

0

), let �

00

be an atom obtained by replacing each

occurrence of t

1

in �

0

by t

2

when t

1

is not a variable, and

00

be an atom obtained by

replacing each occurrence of t

2

in

0

by t

1

when t

2

is not a variable. Then, � !

�

�

00

and

�

00

'

00

' � t . Hence, � t is a PIG of �. 2

For a set S of atoms, the relation !

�

is not a partial order but a quasi-order on S.

Thus, we investigate the set [S] of equivalence classes of all atoms in S. For [�] and [�]

in [S], we also write [�] !

�

[�] when � !

�

�. Then, we can easily prove the following

proposition:

Proposition 3 For a set S of atoms, the relation !

�

is a partial order on [S].

Just as we have done with � in Section 3, we have the following theorem:

Theorem 1 Let � be an atom and S be the set of all PIGs of an atoms. Then, [S] is

a lattice with a partial order !

�

, a join operator t, and a meet operator u.

Proof. By Proposition 3, !

�

is a partial order on [S]. By Lemma 1 , 2 and Proposition

2, for [�] and [] in [S], there exist the least common generalization [� t] and the

greatest common instance [� u] of f[�]; []g in [S], respectively. Hence, t and u on [S]

are join and meet operators, respectively. 2

The lattice [S] is said to be a PIG lattice . From Theorem 1, for any atom �, there

exists a greatest PIG of �. The PIG lattice and the normal lattice is illustrated in Figure

2.

For a ground atom � and an analogy ', let Ana(�;') be the set of all ground atoms

to which � is analogous under ', and G(�) be the set of all ground instances of the

greatest PIG of �. From now on, we identify an atom with its equivalence class. Then,

we have the following theorem:

Theorem 2 Let � be a ground atom. For each atom � in G(�), there exists an analogy

' such that � is in Ana(�; ').

Proof. Let �

00

be the greatest PIG of � and X

1

; � � � ; X

n

be all the variables occurring

in �

00

. Then, there exist substitutions

� = fX

1

:= s

1

; � � � ;X

n

:= s

n

g , � = fX

1

:= t

1

; � � � ;X

n

:= t

n

g

6

PIG lattice

[p(f(V),V,Z)]

[p(f(a),a,Z)][p(f(V),V,b)]

[p(f(a),a,b)]

normal lattice

[p(X,Y,Z)]

[p(X,Y,b)][p(X,a,Z)][p(f(V),Y,Z)]

[p(f(V),Y,b)][p(f(V),a,Z)][p(f(a),Y,Z)][p(f(V),V,Z)] [p(X,a,b)]

[p(f(V),a,b)][p(f(a),Y,b)][p(f(a),a,Z)][p(f(V),V,b)]

[p(f(a),a,b)]

Figure 2: The PIG lattice and the normal lattice for p(f(a); a; b).

such that � = �

00

� and � = �

00

� for any � in G(�). Then, C

s

i

\ C

s

j

= ; and C

�

00

= ;,

where i 6= j for 1 � i; j � n. We de�ne a pairing ' as follows:

' = fhs

1

; t

1

i; � � � ; hs

n

; t

n

ig.

Then, ' is an analogy and �'� holds. 2

A ground atom � is analogous to all ground instances of the greatest PIG of � under

an analogy '. Hence, in order to obtain an analogy ' and a ground atom to which �

is analogous under ', it su�ces to compute the greatest PIG of �. Then, we show an

algorithm which computes the greatest PIG of an atom in Figure 3.

Algorithm: G

PIG

input: an atom �

output: the greatest PIG A of �

begin

A := �;

N := 0;

while there exists the (N + 1)-st quasi-replaceable term t

from the right in A do begin

if t is a replaceable term then

replace each occurrence of t in A by a new variable Z

else N := N + 1

end;

output A and halt

end.

Figure 3: The greatest PIG algorithm for an atom.

7

For an atom �, the length of �, denoted by j�j, is the number of occurrences of

constant, variable and function symbols in �. Then, we have the following propositions:

Proposition 4 Let � be an atom of length n, and e be Napier's number. The number

of nodes in the normal lattice for � is at most e n!.

Proof. Let N (�) be the number of nodes of the normal lattice for �. N (�) is the

number of combinations of terms which can be replaced by new variables in computing

a generalization of �. Thus, N (�) is maximum in case � is of the form p(a; � � � ; a), where

p is n-ary predicate symbol and a is a constant symbol. Let B(i) be Bell number and

S

i

j

(0 � i; j) be Stirling number of the �rst kind. Then, we have

N(�) =

n

X

i=0

n

C

i

B(i)

�

n

X

i=0

n

C

i

i

X

j=0

S

i

j

=

n

X

i=0

n

C

i

i! =

n

X

i=0

n! i!

i! (n� i)!

= n!

�

1

0!

+

1

1!

+ � � �+

1

n!

�

= n!

e�

e

�

(n+ 1)!

!

< e n!

for some 0 < � < 1. 2

Proposition 5 Let � be an atom of length n. The number of nodes in the PIG lattice

for � is at most 2

n

.

Proof. Let P (�) be the number of nodes in the PIG lattice for �. P (�) is the number

of combinations of terms which can be replaced by new variables in computing a PIG

of �. Thus, P (�) is maximum in case � is of the form p(a

1

; � � � ; a

n

), where p is n-ary

predicate symbol and a

1

; � � � ; a

n

are n distinct constant symbols. Hence, we have

P (�) =

n

X

i=0

n

C

i

= 2

n

.

2

The following theorem guarantees that we can compute the greatest PIG of an atom

in polynomial time.

Theorem 3 Let � be an atom of length n. The greatest PIG of � can be computed in

time O(n

2

).

Proof. To prove this theorem, we evaluate the total run-time of the algorithm G

PIG

in

Figure 3. The majority of the time is spent in the while loop. Let k be the number of

terms in � which are not variables. Then, 0 � k � n. The while loop is repeated at

most k times. Let A

0

be �, and A

i

(1 � i � k) be the components of A at the end of

8

the i-th execution of the while loop. G

PIG

checks if there exists the (N + 1)-st quasi-

replaceable term t

i

from the right in A

i

in time O(n) for 0 � N � k. The operation in

the while loop involves (a) checking if t

i

is a replaceable term and (b) replacing each

occurrence of t

i

in A

i

by a new variable Z when t

i

is a replaceable term. The operation

(a) takes O(jt

i

jn) steps in simply comparing the variables in t

i

with A

i

. The operation

(b) takes O(n) steps. Thus, the total run-time of G

PIG

is O(

P

k

i=1

jt

i

jn). Furthermore,

for the sequence A

0

= �;A

1

; � � � ; A

k

, if t

i

occurs in A

i+1

then jA

i+1

j = jA

i

j otherwise

jA

i+1

j � jA

i

j � jt

i

j+ 1, for 0 � i � k. Let t

0

1

; � � � t

0

l

be all replaceable terms in ft

1

; � � � t

k

g

(0 � l � k). Then, we have

k

X

i=1

jt

k

j � jA

k

j+

l

X

j=1

jt

0

j

j

� jA

0

j+ k = j�j+ k

= n+ k,

and

k

X

i=1

jt

i

jn � n(n+ k).

Hence, the total run-time of G

PIG

is O(n

2

). 2

Just as we have done with PIGs of atoms, we can de�ne PIGs of rules, and we have

the same results on rules as those of atoms.

Now we discuss reasoning by PIGs. Let P

1

and P

2

be programs. For each rule C in

P

1

[P

2

, we compute the greatest PIG R of C in polynomial time, and then learn a new

program P obtained by replacing each C in P

1

[P

2

by R. Thus, we can acquire the

fact derived from P without computing an analogy which often leads to a combinatorial

explosion. The fact thus acquired can be derived from P

1

and P

2

by analogical reasoning.

Hence, reasoning by PIGs of rules is more useful than the analogical reasoning as far as

time complexity is concerned.

5 Prolog implementation

The PIG system we have realized as a Prolog program takes atom as input, constructs

PIGs of � in an ordering by the relation ! and then returns the greatest PIG of � as

output. It carries out a rightmost and depth-�rst search based on the algorithm G

PIG

in Figure 3. Then, we show the PIG system.

(C1) pig(Atom1,Atom):-

nonvar(Atom1),functor(Atom1,F,N),

N>0,!,functor(Atom,F,N),

pig1(N,Atom1,Atom,0).

(C2) pig1(0,_,_,_):-!.

(C3) pig1(N,Atom1,Atom,Cnt1):-

Cnt1=0,arg(N,Atom1,Arg1),

9

search(Arg1,Arg,Atom1,Cnt1,Cnt),

(nonvar(Arg)->pig_A(N,Arg,Atom1,Atom,Cnt);

pig_B(N,Arg1,Atom1,Atom)),!.

(C4) pig1(N,Atom1,Atom,Cnt1):-

arg(N,Atom1,Arg1),

search1(Arg1,Arg2,Atom1,Cnt1,Cnt2),

search(Arg2,Arg,Atom1,Cnt1,Cnt),

(nonvar(Arg)->pig_A(N,Arg,Atom1,Atom,Cnt);

pig_B(N,Arg1,Atom1,Atom)),!.

(C5) pig_A(N,Arg,Atom1,Atom,Cnt):-

replace_term(Atom1,Arg,Var,Atom2),

pig1(N,Atom2,Atom,Cnt).

(C6) pig_B(N,Arg,Atom1,Atom):-

M is N-1,arg(N,Atom,Arg),

pig1(M,Atom1,Atom,0).

Let � be an atom as input to the system. The predicate pig takes � as its �rst

argument and returns the greatest PIG of � as its second argument. The clauses (C2),

(C3) and (C4) are proper rules to the system. The predicate pig1 takes a number N

as its �rst argument, a PIG A of � as its third argument and a number M as its forth

argument, and returns a replaceable term t if it exists in the N -th argument of A as its

second argument. The predicate search1 searches the N -th argument of A for the M -th

quasi-replaceable term s. The predicate search searches the N -th argument of A for the

rightmost quasi-replaceable term u to the left of s, and checks if u is a replaceable term.

If u is a replaceable term, the clause (C3) or (C4) calls the predicate pig A. Otherwise,

the clause calls the predicate pig B. The clause (C5) replaces each occurrence of u in A

by a new variable.

The system has been implemented in K-Prolog on Spark Station 10.

Example 3 Let � be p(f(a); a; g(b)),

and � be p(f(X); g(a; f(X); Y); b; h(c; Z; c); a).

The question to our PIG system is

?- pig(p(f(a),a,g(b)),Atom).

The answer from the system is

Atom = p(f(212), 212, 210).

The question to our PIG system is

?- pig(p(f(X),g(a,f(X),Y),b,h(c,Z,c),a),Atom).

The answer from the system is

Atom = p(272,g(264, 272,Y), 268, 266, 264).

10

6 Conclusion

The ordinary methods of generalization [9] of examples often cause non-valid and over

generalization, and sometimes they need vast search-spaces. To overcome these di�-

culties, we have considered syntactic analogies and introduced the notion of PIG. Our

PIGs are all valid generalizations in the sense that they are justi�ed by the theory of

analogical reasoning. Moreover, each PIG can be computed in polynomial time.

Now we are considering a declarative de�nition of PIGs, and a kind of completeness

of PIGs with respect to the analogical reasoning. Also we are improving our previous

work on EBG by analogical reasoning [7] using PIGs.

References

[1] J. Arima. A logical analysis of relevance in analogy. In Proceedings of the 2nd

Workshop on Algorithmic Learning Theory, pp. 255{265, 1991.

[2] A. L. Furtado. Analogy by generalization{and the quest of the grail. ACM SIG-

PLAN Notices, Vol. 27, pp. 105{113, 1992.

[3] S. Furuya and S. Miyano. Analogy is NP-hard. In Proceedings of the 2nd Workshop

on Algorithmic Learning Theory, pp. 207{212, 1991.

[4] M. Haraguchi. Towards a mathematical theory of analogy. Bulletin of Informatics

and Cybernetics, Vol. 21, pp. 29{56, 1985.

[5] M. Haraguchi and S. Arikawa. A foundation of reasoning by analogy { analogical

union of logic programs. In Proceedings of Logic Programming Conference 1986

(Lecture Notes in Computer Science 264 Springer-Verlag), pp. 58{69. Springer-

Verlag, 1987.

[6] M. Haraguchi and S. Arikawa. Reasoning by analogy as a partial identity between

models. In Proceedings of First International Conference on Analogical and Induc-

tive Inference, (Lecture Notes in Computer Science 265 Springer-Verlag), pp. 61{

87. Springer-Verlag, 1987.

[7] E. Hirowatari and S. Arikawa. Incorporating explanation-based generalization with

analogical reasoning. Bulletin of Informatics and Cybernetics, Vol. 26, pp. 13{33,

1994.

[8] J. W. Lloyd. Foundations of logic programming (second edition). Springer-Verlag,

1987.

[9] G. D. Plotkin. A note on inductive generalization. Machine Intelligence, Vol. 5,

pp. 153{216, 1970.

[10] G. D. Plotkin. A further note on inductive generalization. Machine Intelligence,

Vol. 6, pp. 101{124, 1971.

11

[11] G. Polya. Induction and Analogy in Mathematics. Princeton University Press, 1954.

[12] J. C. Reynolds. Transformational systems and the algebraic structure of atomic

formulas. Machine Intelligence, Vol. 5, pp. 135{151, 1970.

[13] J.A. Robinson. A machine-oriented logic based on the resolution principle. Journal

of the Association for Computing Machinery, Vol. 12, pp. 23{41, 1965.

[14] S. J. Russell. Analogy and single-instance generalization. In Proceedings of the

Fourth International Workshop on Machine Learning, pp. 390{397, 1987.

[15] C. Vrain and Cheng-Ren Lu. An analogical method to do incremental learning

of concepts. In Proceedings of the Third European Working Session on Learning,

pp. 227{235, 1988.

[16] P. H. Winston. Learning and reasoning by analogy. Communications of ACM,

Vol. 23, pp. 689{703, 1980.

[17] P. H. Winston. Learning new principles from precedents and exercises. Arti�cial

Intelligence, Vol. 19, pp. 321{350, 1983.

12

