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Abstract

The semantic tableaux system is a procedure to decide whether or not a given formula

is valid. The system also works for �nding minimal models of formulas. In this paper, we

apply this function to circumscription. We show that we can obtain the minimal models

of circumscription just by checking the models produced by the system, and hence we do

not need to check all possible models of it. We also present an algorithm to produce the

models of circumscription based on the system.

1 Introduction

Various methods of computing circumscription have been reported by many researchers; the

reduction to �rst-order logic by Lifschitz [7], the compilation to logic programs by Gelfond and

Lifschitz [4], a special type of resolution, called MILO-resolution by Przymusinski [11], and

the method based on de Kleer's ATMS by Ginsberg [5]. All of these methods are of proving

the circumscriptive theorem. In this paper, we introduce another method of �nding minimal

models of circumscription, which is based on the semantic tableaux system.

The semantic tableaux (tableaux, for short) system, introduced by Beth [1] and developed

by Smullyan [13], Hintikka [6], Fitting [3], and Olivetti [10], is a theorem prover of �rst-order

logic, that is, a refutation system like the resolution by Robinson [12]. The idea behind the

present work is motivated by Hintikka [6]. He introduced a circumscriptive theorem prover

based on the semantic tableaux system that works in the following way: Let us consider the

McCarthy's sample theory [8, 6] consisting of the conjunction

Isblock(a)^ Isblock(b)^ Isblock(c).

Then by using the semantic tableaux system, we can produce a model

fIsblock(a), Isblock(b), Isblock(c)g ,

and obtain the following formula

8X(X = a _X = b _X = c).

The semantic tableaux system is based on disjunctive normal forms or dual clause forms, while

the resolution is based on conjunctive normal forms or clause forms. In Section 2, we focus

our attention on the models produced by the semantic tableaux system, which we call tableau

models, and present an algorithm to produce such tableau models.
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Figure 1: Propositional tableaux rules

In Section 4, we study tableau models of circumscription. In general, the model of circum-

scription of a formula is a minimal model of it, where a model is to be minimal if it is minimal

for all the models. Hence we need to check all the models of a formula to obtain the minimal

models, i.e., the models of circumscription. It is di�cult to �nd all the models. We can, how-

ever, obtain the minimal models of a formula just by checking the tableau models, and hence

we do not need to check all models of it. We also present an algorithm to produce the tableau

models of circumscription. Furthermore we deal with predicate circumscription to minimize

any set of predicate symbols, and deal with formula circumscription [9, 7], while Hintikka

[6] only dealt with predicate circumscription to minimize all predicate symbols [8]. Thus we

extend the tableau models so that we can apply our discussions to formula circumscription.

2 Semantic Tableaux System

The semantic tableaux system is a procedure to decide whether or not a given formula is

valid. We use the notions on the semantic tableaux system by Bowen [2]. The tableaux rules

for propositional logic are given in Figure 1. Note that, in the tableaux rules, we regard the

lefthand side of � as components of the formula which are true, and the righthand side as those

which are false. The rules have the following meanings: The �rst rule (we call :� rule) means

that if :A is true then A is false. The second rule (�: rule) means that if :A is false then A

is true. The third rule (^� rule) means that if A^B is true then both A and B are true. The

fourth rule (�^ rule) means that if A ^B is false then either A or B is false, and so on.

By using tableaux rules, we can decide whether or not a given formula T is valid in the

following way. At �rst, we put T on the righthand side of �. For �T , we produce a tree by

applying the tableaux rules. By checking the leaves of the tree, we can decide whether or not

T is valid by Theorem 1 bellow. We call this tree a tableau proof of T .

We denote a branch in a tree by its leaf (L �R), and we call L a left column and R a right

column. If the same propositional variables occur on both left and right columns at the leaf,

then we call a branch including its leaf a closed branch. Otherwise we call it an open branch.

Whether or not a given formula is valid is decidable by the following theorem.
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Figure 2: Tableau proofs of A = p! (q ^ p) and B = (p! (q ^ r))! (p ^ q)

Theorem 1 (Smullyan [13], Fitting [3]) All branches of the tableau proof of a given formula

are closed if and only if the formula is valid.

Example 1 Let A be a formula p! (q^ p). Then the tableau proof of A is given as a tree in

the lefthand side of Figure 2. Since the left branch in the tableau proof of A is open, A is not

valid. In fact, if p is true and q is false then A is false. On the other hand, let B be a formula

(p! (q ^ r)) ! (p ^ q). Then the tableau proof of B is given as a tree in the righthand side

of Figure 2. Since all branches in the tableau proof of B are closed, B is valid.

The semantic tableaux system is based on disjunctive normal forms, but not on conjunctive

normal forms. Hence we can use the semantic tableaux system not only for the refutation

system, but also for �nding models. Let T be a propositional formula. By putting T on the

right column of �, we can produce a tree for deciding whether or not T is valid, while by

putting it on the right column of �, we produce a tree for �nding the models of T . Thus we

can decide whether or not a leaf is a model. By ltab(T ) we denote such a tree.

Note that our semantics is an Herbrand model semantics. In this paper, we do not deal

with other models than Herbrand models. Under this assumption, the following theorem holds.

Theorem 2 (Hintikka [6]) Let T be a formula. If a branch B = (L � R) in ltab(T ) is open,

then L j= T .

Note also that we can regard a left column L as a set of propositional variables which are true

in an Herbrand interpretation. Hence L in Theorem 2 is an Herbrand model.

Example 2 Figure 3 illustrates a tree ltab((p! (q ^ r))! (p ^ q)). All branches in the tree

are open, and fpg, �, and fqg are models of the formula by Theorem 2.

Although the semantic tableaux system does not �nd all Herbrand models of a given formula,

the following lemma clearly holds.

Lemma 1 Let T be a formula. If M is a model of T , then there exists an open branch

B = (L � R) in ltab(T ) such that L j= T and L �M .
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Figure 4: First-order tableaux rules

By Lemma 1, any model of T includes some left column of open branch in ltab(T ). We call

such a left column a tableau model.

In �rst-order logic, there have been reported many kinds of semantic tableaux systems that

deal with quanti�ers; the semantic tableaux system (Smullyan [13] and Fitting [3]), the free-

variable tableaux system (Fitting [3]), and the systematic tableaux system (Smullyan [13]).

We adopt here the systematic tableaux system. The systematic tableaux rules are divided

into propositional tableaux rules in Figure 1 and �rst-order tableaux rules, 8� rule, �8 rule,

9� rule, and �9 rule in Figure 4, where a is any element of Herbrand universe.

A substitution is a �nite set of the form fv

1

:= t

1

; � � � ; v

n

:= t

n

g, where each v

i

is a variable,

each t

i

is a term distinct from v

i

and the variables v

1

; � � � ; v

n

are mutually distinct. In Figure

4, although a is any element of Herbrand universe, we can regard A(a) as the formula given

by substituting a for x in 8xA(x). To apply substitutions to leaves, we need to introduce the

substitution rule for �rst-order tableaux system:

Substitution rule: We apply a substitution to all leaves of the tableau proof.

Furthermore we need to introduce the systematic tableaux rule:

Systematic tableaux rule: For a given leaf of a tableau proof, �rst we apply the proposi-

tional tableaux rules, �8 rule, and 9� rule, and then apply 8� rule and �9 rule.

In this paper, we only deal with the tableau models of function-free formulas. Then we

can show that Theorem 1,2 and Lemma 1 also hold for �rst-order logic. Let T be a formula

and U(T ) be an Herbrand universe of T . For the open branch B = (L �R) in ltab(T ), we can

regard the left column L as

fp(t) j p(x) 2 L, p is an n-ary predicate symbol, and t 2 U

n

(T )g,
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which is the set of all ground atoms that are true in an Herbrand interpretation. We also call

such a left column a tableau model.

Example 3 For a formula p(a) ^ 8X(p(X) ! q(X))), fag is an Herbrand universe of the

formula. Then the tableau model of the formula is fp(a); q(a)g.

Tableau models are found by the following algorithm.

Algorithm to �nd tableau models

input T : formula

produce ltab(T )

B

i

= (L

i

�R

i

) (1 � i � n) : branches in ltab(T )

for i = 1 to n

if B : open then

output \L

i

: tableau model of T"

else

output \L

i

: not model of T"

3 Circumscription

By p; q; � � �, we denote predicate constants and by P;Q; � � �, predicate variables. We use p(x)

instead of p(x

1

; � � � ; x

n

), and 8x instead of 8x

1

� � � 8x

n

.

We introduce an order < on predicate symbols as follows. Let p; q be predicate symbols

with the same arity. Then p � q stands for the formula 8x(p(x) ! q(x)). Let p = p

1

; � � � ; p

n

and q = q

1

; � � � ; q

n

be tuples of predicate symbols, where p

i

and q

i

have the same arity for any

i. Then p � q stands for the formula

(p

1

� q

1

) ^ � � � ^ (p

n

� q

n

).

Furthermore p < q stands for the formula (p � q) ^ :(q � p), and p = q for the formula

(p � q) ^ (q � p).

By T (p) (resp. T (p; z)), we mean the formula T with the tuple p (resp. p and z) of predicate

symbols. Then circumscription is de�ned as follows.

De�nition 1 Let T (p; z) be a formula, and p and z be disjoint tuples of predicate symbols.

Then formula circumscription CIRC(T (p; z); p; z) of p in T (p; z) with variables z is de�ned by

a simpler second-order formula:

CIRC(T (p; z); p; z) = T (p; z) ^ 8PZ(:T (P ;Z) _ P 6< p).

If z is empty, then predicate circumscription CIRC(T (p); p) of p in T (p) is de�ned by the

following second-order formula:

CIRC(T (p); p) = T (p) ^ 8P (:T (P ) _ P 6< p).

The model-theoretic meaning of circumscription can be expressed by the following notion.

De�nition 2 Let M

1

= (D; I

1

) and M

2

= (D; I

2

) be the structures of �rst-order logic. Let

p = p

1

; � � � ; p

n

and q = q

1

; � � � ; q

n

be tuples of predicate symbols.

1. M

1

�

p

M

2

if

(a) for any c 62 p, I

1

(c) = I

2

(c), and
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(b) for any c 2 p, I

1

(c) � I

2

(c).

2. M

1

�

p;z

M

2

if

(a) for any c 62 p [ z, I

1

(c) = I

2

(c), and

(b) for any c 2 p, I

1

(c) � I

2

(c).

3. M

1

<

p

M

2

if M

1

�

p

M

2

and :(M

2

�

p

M

1

).

4. M

1

<

p;z

M

2

if M

1

�

p;z

M

2

and :(M

2

�

p;z

M

1

).

Let M be the structure of T . Then M is p-minimal model (resp. (p; z)-minimal model) of T if

there exists no model N of T such that N <

p

M (resp. N <

p;z

M).

The models of circumscription can be characterized as follows.

Theorem 3 (McCarthy [8], Lifschitz [7]) Let T be a formula, and p and z be tuples of predicate

symbols.

1. M is a model of CIRC(T (p); p) if and only if M is a p-minimal model of T .

2. M is a model of CIRC(T (p; z); p; z) if and only if M is a (p; z)-minimal model of T .

Example 4 Let P be a formula bird ^ ((bird ^ :ab)! fly). Then P has three models:

M

1

= fbird; flyg, M

2

= fbird; abg, M

3

= fbird; fly; abg.

Hence M

1

and M

2

are ab-minimal models, i.e., models of CIRC(P ; ab). FurthermoreM

1

is an

(ab; fly)-minimal model, i.e., a model of CIRC(P ; ab; fly).

4 Tableau Models of Circumscription

In general, circumscription is said to be true if it is true in all minimal models of a given

formula. In other words, CIRC(T (p; z); p; z) j= T if and only if M j= T for any (p; z)-minimal

model M of T . However, to avoid the di�culty of computing all the minimal models, we

present algorithms to �nd some minimal tableau models in this section. Then we show that

we can obtain the minimal models just by checking the tableaumodels found by the algorithm.

Hence we do not need to check all the models.

First we present an algorithm to �nd p-minimal tableau models. We prove the following

two lemmas.

Lemma 2 Let T be a closed formula and (L

i

� R

i

) be the open branch in ltab(T ). Suppose

that L

j

6�

p

L

i

for any open branch (L

j

�R

j

). If there exists a modelM of T such thatM <

p

L

i

,

then there exists a k such that

1. (L

k

�R

k

) is an open branch,

2. L

k

�M � L

i

,

3. for any � 2 L

i

�M , pred(�) 2 p, and

4. there exists a � 2M � L

k

such that pred(�) 62 p.
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Proof. By the assumption, L

j

6�

p

L

i

for any open branch (L

j

�R

j

), and M <

p

L

i

. Since M is

a model, by Lemma 1, there exists an open branch (L

k

�R

k

) such that L

k

�M and L

k

j= T .

If L

k

= M , then L

k

6�

p

L

i

and L

k

<

p

L

i

. Hence L

k

� M . Furthermore M � L

i

by M <

p

L

i

.

Therefore there exists a k such that (L

k

�R

k

) is open and L

k

�M � L

i

.

Let M = L

k

[ L

1

and L

i

= L

k

[ L

1

[ L

2

. Then the following two facts hold.

1. L

k

[ L

1

<

p

L

k

[ L

1

[ L

2

,

2. L

k

6�

p

L

k

[ L

1

[ L

2

.

Suppose that there exists 
 2 L

2

such that pred(
) 62 p. Then the interpretation of pred(
)

in L

k

[L

1

is di�erent from the interpretation of pred(
) in L

k

[ L

1

[L

2

. This contradicts the

condition 1. Therefore pred(�) 2 p for any � 2 L

2

.

Suppose that pred(�) 2 p for any � 2 L

1

. Then pred(�) 2 p for any � 2 L

2

. L

k

and

L

k

[ L

1

[ L

2

are equal to the interpretation without p, and the interpretation of p in L

k

is

included in the interpretation of p in L

k

[L

1

[L

2

. Hence L

k

<

p

L

k

[L

1

[L

2

. This contradicts

the condition 2. Therefore there exists a � 2 L

1

such that pred(�) 62 p. 2

We can easily prove the following lemma.

Lemma 3 Let T be a closed formula and (L

i

� R

i

) be the open branch in ltab(T ). If there

exists an i such that L

j

6�

p

L

i

for any open branch (L

j

� R

j

), then either of the following

conditions holds.

1. L

i

is a p-minimal model.

2. There exist a k and a model M of T such that

(a) M 6�

p

L

i

,

(b) (L

k

�R

k

) is an open branch,

(c) L

k

�M � L

i

,

(d) for any � 2 L

i

�M , pred(�) 2 p, and

(e) there exists a � 2M � L

k

such that pred(�) 62 p.

By the above lemmas, the following theorem holds.

Theorem 4 Let T be a closed formula and (L

i

�R

i

) be an open branch in ltab(T ). L

i

is not

a p-minimal model if and only if either of the following conditions holds.

1. There exists a j such that (L

j

�R

j

) is an open branch and L

j

�

p

L

i

.

2. L

j

6�

p

L

i

for any open branch (L

j

� R

j

), and there exist a k and a model M of T

such that

(a) (L

k

�R

k

) is an open branch,

(b) L

k

�M � L

i

,

(c) pred(�) 2 p for any � 2 L

i

�M , and

(d) there exists a � 2M � L

k

such that pred(�) 62 p.
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Based on Theorem 4, we can construct an algorithm to �nd the p-minimal models just

by checking the tableau models. By UL

i

, we denote atoms (predicates) to be minimized,

i.e., UL

i

= fq(t) j q 2 p; q(t) 2 L

i

g. We can replace the �rst condition of Theorem 4

by the following three conditions: B

i

is an open branch, L � UL = L

i

� UL

i

, and UL

i

�

UL. The second condition of Theorem 4 means that L

i

� L, and L � L

i

includes � and

� such that pred(�) 2 p and pred(�) 62 p. In other words, this means that L

i

� L, and

neither pred(�) 2 p nor pred(�) 62 p for every � 2 L � L

i

. Hence we can replace the second

condition by the following four conditions: B

i

is an open branch, L

i

� L, UL� UL

i

6= �, and

(L� UL)� (L

i

� UL

i

) 6= �.

By the above notions, p-minimal tableau models are found by the following algorithm.

Algorithm to �nd p-minimal tableau models

input B;B

1

; B

2

; � � � ; B

n

: branches in ltab(T )

/* (L �R) = B; (L

i

�R

i

) = B

i

*/

if B : open then

for i = 1 to n

if f(B

i

: open ) ^ (L 6= L

i

) ^ (L� UL = L

i

� UL

i

) ^ (UL

i

� UL)g then

/* L satis�es the �rst condition of Theorem 4 */

output \L : not p-minimal model of T"

halt

for i = 1 to n

if f(B

i

: open ) ^ (L 6= L

i

) ^ (L

i

� L) ^ (UL� UL

i

6= �)

^((L� UL)� (L

i

� UL

i

) 6= �)g then

/* L satis�es the second condition of Theorem 4 */

output \L : not p-minimal model of T"

halt

output \L : p-minimal model of T"

else

output \L : not model of T"

Example 5 Let P be a formula bird ^ ((bird ^ :ab)! fly). Suppose that ab is a minimized

propositional variable. Then a tree of ltab(P ) is illustrated by Figure 4. Let B

1

, B

2

, and B

3

be (fbirdg � fbirdg), (fbird; abg � �), and (fbird; f lyg � �), respectively. Since B

1

is closed, L

1

is not a model of P . Furthermore

L

2

= fbird; abg; UL

2

= fabg; L

2

� UL

2

= fbirdg,

L

3

= fbird; flyg; UL

3

= �; L

3

� UL

3

= fbird; flyg.

Since L

2

� UL

2

6= L

3

� UL

3

and L

3

6� L

2

, L

2

does not satisfy the conditions in Theorem 4.

Hence L

2

is an ab-minimal model of P . Since L

3

�UL

3

6= L

2

�UL

2

and L

2

6� L

3

, L

3

does not

satisfy the conditions in Theorem 4. Hence L

3

is an ab-minimal model of P . By Theorem 4,

L

2

and L

3

are proved to be ab-minimal models just by checking L

3

and L

2

respectively.

Now, we present an algorithm to �nd (p; z)-minimal tableau models. By M j

z

, we de-

note f� 2 M j pred(�) 2 zg. Then the following lemmas also hold in the case of formula

circumscription.

Lemma 4 Let T be a closed formula and (L

i

� R

i

) be the open branch in ltab(T ). Suppose

that L

j

6�

p;z

L

i

for any open branch (L

j

� R

j

). If there exists a model M of T such that

M <

p;z

L

i

, then there exists a k such that

1. (L

k

�R

k

) is an open branch,

8



→ fly) ∧bird   (bird  ¬ab ∧

→ fly

bird bird bird , ab bird , fly
open closed closed

bird , bird  ¬ab ∧

Figure 5: ltab(bird ^ ((bird ^ :ab)! fly))

2. (L

k

� L

k

j

z

) � (M �M j

z

) � (L

i

� L

i

j

z

),

3. for any � 2 (L

i

� L

i

j

z

)� (M �M j

z

), pred(�) 2 p, and

4. there exists a � 2 (M �M j

z

)� (L

k

� L

k

j

z

) such that pred(�) 62 p.

Proof. By the assumption, L

j

6�

p;z

L

i

for any j, andM <

p;z

L

i

. SinceM is a model, by lemma

1, there exists a k such that L

k

� M . If L

k

= M , then L

k

6�

p;z

L

i

and L

k

<

p;z

L

i

. Hence

L

k

�M . Furthermore (M �M j

z

) � (L

i

�L

i

j

z

) by M <

p;z

L

i

. Therefore there exists a k such

that (L

k

� L

k

j

z

) � (M �M j

z

) � (L

i

� L

i

j

z

).

Let L

0

k

= L

k

�L

k

j

z

, M

0

= M �M j

z

, and L

0

i

= L

i

�L

i

j

z

. Then the following two facts hold.

1. L

0

k

<

p;z

L

0

i

, and

2. M

0

6�

p;z

L

0

i

.

Hence

1. (L

k

� L

k

j

z

) <

p

(L

i

� L

i

j

z

), and

2. (M �M j

z

) 6�

p

(L

i

� L

i

j

z

).

By Lemma 2, this completes the proof. 2

Lemma 5 Let T be a closed formula and (L

i

� R

i

) be the open branch in ltab(T ). If there

exists an i such that L

j

6�

p;z

L

i

for any open branch (L

j

� R

j

), Then either of the following

facts holds.

1. L

i

is a (p; z)-minimal model.

2. There exist a k and a model M of T such that

(a) M 6�

p;z

L

i

,

(b) (L

k

�R

k

) is an open branch,

(c) (L

k

� L

k

j

z

) � (M �M j

z

) � (L

i

� L

i

j

z

),

(d) for any � 2 (L

i

� L

i

j

z

) � (M �M j

z

), pred(�) 2 p, and

(e) there exists a � 2 (M �M j

z

)� (L

k

� L

k

j

z

) such that pred(�) 62 p.

By the above lemmas, the following corollary of Theorem 4 holds for formula circumscription.
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Corollary 1 Let T be a closed formula and (L

i

�R

i

) be the open branch in ltab(T ). L

i

is not

a (p; z)-minimal model if and only if either of the following conditions holds.

1. There exists a j such that (L

j

�R

j

) is an open branch and L

j

�

p;z

L

i

.

2. L

j

6�

p;z

L

i

for any open branch (L

j

� R

j

), and there exist a k and a model M of T

such that

(a) (L

k

�R

k

) is an open branch,

(b) (L

k

� L

k

j

z

) � (M �M j

z

) � (L

i

� L

i

j

z

),

(c) for any � 2 (L

i

� L

i

j

z

) � (M �M j

z

), pred(�) 2 p, and

(d) there exists a � 2 (M �M j

z

)� (L

k

� L

k

j

z

) such that pred(�) 62 p.

Based on Corollary 1, we present an algorithm to �nd the (p; z)-minimal models. By OL

i

,

we denote atoms (predicates) to be allowed to vary, i.e., OL

i

= fq(t) j q 2 z; q(t) 2 L

i

g. We

can replace the �rst condition of Corollary 1 by the following three conditions: B

i

is an open

branch, L�(UL[OL) = L

i

�(UL

i

[OL

i

), and UL

i

� UL. The second condition of Corollary

1 means that L

i

� OL

i

� L � OL, and (L � OL) � (L

i

� OL

i

) includes � and � such that

pred(�) 2 p and pred(�) 62 p. In other words, this means that L

i

�OL

i

� L�OL, and neither

pred(�) 2 p nor pred(�) 62 p for every � 2 (L � OL) � (L

i

� OL

i

). Hence we can replace

the second condition by following four conditions: B

i

is an open branch, L

i

�OL

i

� L�OL,

UL� UL

i

6= �, and (L� (UL [OL))� (L

i

� (UL

i

[OL

i

)) 6= �.

By the above notions, (p; z)-minimal tableau models are found by the following algorithm.

Algorithm to �nd (p; z)-minimal tableau models

input B;B

1

; B

2

; � � � ; B

n

: branches in ltab(T )

/* (L �R) = B; (L

i

�R

i

) = B

i

*/

if B : open then

for i = 1 to n

if f(B

i

: open ) ^ (L 6= L

i

) ^ (L� (UL [OL) = L

i

� (UL

i

[OL

i

))

^(UL

i

� UL)g then

/* L satis�es the �rst condition of Corollary 1 */

output \L : not (p; z)-minimal model of T"

halt

for i = 1 to n

if f(B

i

: open ) ^ (L 6= L

i

) ^ (L

i

�OL

i

� L�OL) ^ (UL� UL

i

6= �)

^f(L� (UL [OL))� (L

i

� (UL

i

[OL

i

)) 6= �)g then

/* L satis�es the second condition of Corollary 1 */

output \L : not (p; z)-minimal model of T"

halt

output \L : (p; z)-minimal model of T"

else

output \L : not model of T"

Example 6 Let P be a formula in Example 5. Suppose that ab is a minimized propositional

variable and fly is a propositional variable allowed to vary. Then a tree of ltab(P ) is illustrated

by Figure 4 in Example 5. Let B

1

, B

2

, and B

3

be (fbirdg � fbirdg), (fbird; abg � �), and

(fbird; flyg � �), respectively. Since B

1

is closed, L

1

is not a model of P . Furthermore

L

2

= fbird; abg, UL

2

= fabg, OL

2

= �, UL

2

[OL

2

= fabg,

L

3

= fbird; flyg, UL

3

= �, OL

3

= ff lyg, UL

3

[OL

3

= fflyg.
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Since L

2

� (UL

2

[ OL

2

) = L

3

� (UL

3

[OL

3

) and L

3

� L

2

, L

2

satis�es the �rst condition of

Corollary 1. Hence L

2

is not an (ab; fly)-minimal model of P . Since L

2

6� L

3

and L

2

�OL

2

6�

L

3

�OL

2

, L

3

does not satisfy the conditions of Corollary 1. Hence L

3

is an (ab; f ly)-minimal

model of P . By Corollary 1, L

3

is proved to be a (ab; fly)-minimal model just by checking L

2

.

5 Conclusion

In this paper, we have de�ned tableau models and presented algorithms to �nd the models of

circumscription just by checking the tableau models.

We have implemented the algorithms in Prolog by applying Fitting's Dual Clause Form

Program [3]. The implemented programs are to �nd propositional tableau models and p- and

(p; z)-minimal tableau models for given formula p and z.

Our algorithms �nd some minimal models, but not all the minimal models. For example,

for the formula

T = bird ^ ((bird ^ :ab)! fly) ^ (ostrich! :fly)

due to Przymusinski [11], M

1

= fbird; f lyg and M

2

= fostrich; bird; abg are (ab; fly)-minimal

models of T . Among them our algorithms only �nd M

1

. Our algorithms cannot �nd all the

models. However we can improve them by using negative inmformation.
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