
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Knowledge Acquisition from Amino Acid Sequences
by Machine Learning System BONSAI

Shimozono, Shinichi
Department of Control Engineering and Science, Kyushu Institute of Technology

Shinohara, Ayumi
Department of Artificial Intelligence, Kyushu Institute of Technology | Research Institute of
Fundamental Information Science, Kyushu Univesity

Shinohara, Takeshi
Department of Artificial Intelligence, Kyushu Institute of Technology | Research Institute of
Fundamental Information Science, Kyushu Univesity

Miyano, Satoru
Research Institute of Fundamental Information Science, Kyushu Univesity

他

https://hdl.handle.net/2324/3064

出版情報：RIFIS Technical Report. 60, 1992-08. Research Institute of Fundamental Information
Science, Kyushu University
バージョン：
権利関係：

Knowledge Acquisition from Amino Acid Sequences byMachine

Learning System BONSAI

Authors

Shinichi Shimozono

1

, Ayumi Shinohara

2

, Takeshi Shinohara

3

,

Satoru Miyano

2

, Satoru Kuhara

4

, Setsuo Arikawa

2

1

Department of Control Engineering and Science,

Kyushu Institute of Technology, Iizuka 820, Japan.

2

Research Institute of Fundamental Information Science,

Kyushu University 33, Fukuoka 812, Japan.

3

Department of Arti�cial Intelligence,

Kyushu Institute of Technology, Iizuka 820, Japan.

4

Graduate School of Genetic Resources Technology,

Kyushu University 46, Fukuoka 812, Japan.

Abstract

We present a machine learning system, called BONSAI, for knowledge ac-

quisition from positive and negative examples of strings, and report some exper-

iments on protein data using the PIR and GenBank databases. This learning

system is constructed with an algorithmic learning theory for decision trees

over regular patterns, which is newly developed for this work. As a hypothesis,

the system tries to �nd a pair of a classi�cation of symbols called an alphabet

indexing and a decision tree over regular patterns, which classi�es given exam-

ples with high accuracy. Through the experiments, the system discovered very

simple hypotheses that exhibit important knowledge about transmembrane do-

mains and signal peptides.

1 Introduction

Algorithmic learning is a process carried out by a computer program that receives

examples and guesses the unknown rule that generates the examples. In general

words, therefore, it is considered as a computational model of induction. When

guessed rules are represented in a way suitable for human understanding, learning

processes can also be viewed as a kind of knowledge acquisition.

This paper shows that the research based on algorithmic learning theory that

made a great success in practical applications in Molecular Biology. As well known,

This work is partly supported by Grant-in-Aid for Scienti�c Research on Priority Areas,

\Genome Informatics" from the Ministry of Education, Science and Culture, Japan.

1

most important information such as genes and proteins are coded in sequences of

symbols from a �nite alphabet. Therefore Molecular Biology should be one of the

most important and suitable �elds to apply algorithmic learning.

The hydropathy index of amino acid residues has been shown to play an essential

role in transmembrane domain identi�cation

1), 2), 9), 21)

. In Ref. 1), 2), we classi�ed

20 symbols of amino acid residues to three categories f*, +, -g according to the hy-

dropathy index of Kyte and Doolittle

9)

. Then we transformed amino acid sequences

to those consisting of three symbols and used them as examples for our learning

algorithms. Interestingly, after this transformation, there are only a few overlaps be-

tween transmembrane domain sequences and non-transmembrane domain sequences.

By experiments using the learning algorithm in Ref. 1), we have veri�ed that this

transformation is very useful for the transmembrane domain identi�cation problem.

In Ref. 2), we also developed another learning system that produces a hypothesis

from a small set P of strings called positive examples and a small set N of strings

called negative examples. As a hypothesis, the system searches for a decision tree over

regular patterns that classi�es P and N completely. The system discovered a very

small hypothesis that distinguishes all transmembrane domain sequences in the PIR

database

12)

from other parts with accuracy more than 91%. With this system, we

have seen that the transformation by the hydropathy index is very successful. In this

paper we consider a transformation from an alphabet to a smaller alphabet which

does not lose any positive and negative information of the original examples. We

shall call such a transformation an alphabet indexing or simply an indexing.

Without using the indexing technique, we have seen in Ref. 2) that the learning

system has found hypotheses with su�ciently high accuracy. However, the biological

knowledge on the hydropathy index greatly increases the accuracy and simpli�es

hypotheses. This observation inspired us to discover such an indexing itself without

any explicit help of biological knowledge just by a learning algorithm with data.

This paper presents a machine learning system BONSAI that has succeeded in

discovering such an indexing together with a decision tree that attains very high accu-

racy. Given positive and negative examples, BONSAI will �nd an alphabet indexing

providing \good" decision trees over regular patterns. The idea behind our method

is to combine the local search technique for alphabet indexings and the learning al-

gorithm developed in Ref. 2). The learning algorithm produces a decision tree over

2

regular patterns for positive and negative examples and the other part works to �nd

a good alphabet indexing. This system is developed with an algorithmic learning the-

ory for decision trees over regular patterns and combinatorial optimization schemes

for alphabet indexings on symbols of strings.

An alphabet indexing is a transformation of symbols to reduce the size of the

alphabet for the positive and negative examples, without missing important informa-

tion in original data. In the case of amino acid residues, an alphabet indexing can be

regarded as a classi�cation of 20 kinds of amino acid residues to a few categories. In

the experiment on transmembrane domain identi�cation from the PIR database, this

system has found an alphabet indexing that is nearly the same as the hydropathy

index of Kyte and Doolittle, without any knowledge on the hydropathy index. It

has also discovered hypotheses with high accuracy for recognition of signal regions on

coding sequences

3), 5), 11), 16) { 18), 20)

.

First we present a learning algorithm for decision trees over regular patterns, and

then we describe a local search algorithm for optimizing the alphabet indexing to

produce good hypotheses. Finally, we report some experiments of our system on

transmembrane domain sequences and signal peptide sequences by using the PIR

and GenBank databases.

2 Learning Algorithm and Combinatorial Opti-

mization Scheme for BONSAI System

This section gives algorithms for constructing decision trees over regular patterns and

�nding indexings that are implemented in our machine learning system.

The whole algorithm consists of two parts: one for constructing a decision tree and

the other for �nding a better indexing (Figure 1). The �rst part is almost the same as

one which we developed in Ref. 2). The only di�erence is that our new algorithm can

deal with inconsistent training examples. In our previous work

2)

, we assumed that

the sets of positive examples P and negative examples N are mutually disjoint, and

the algorithm may not terminate if the examples are not consistent. However, in this

approach combined with searching for an indexing, the sets of indexed examples may

have some overlaps though these overlaps should be small. Thus, our new algorithm

is designed to break o� the recursion when it recognizes that it is impossible to divide

3

the positive and negative examples into smaller fractions.

2.1 Learning Decision Trees over Regular Patterns

First we briey review how to construct decision trees over regular patterns from

positive and negative examples.

A regular pattern � is a string of the form � = w

0

x

1

w

1

x

1

w

2

x

2

� � � x

n

w

n

, where each

w

i

is a constant string and each x

i

is a variable that matches any string. Hence the

above pattern de�nes any string containing substrings w

0

; w

1

; � � � ; w

n

in that order.

L(�) denotes the set of those strings.

A decision tree over regular patterns is a procedural de�nition of rules to determine

the class for any given string. Each internal node is labeled with a regular pattern and

each leaf is labeled with a name of a class (the class name is `Positive' or `Negative').

An internal node has two successors called the left and right children. To classify

a given string, we start from the root. The pattern on the current internal node

examines whether the string matches the pattern or not. Then according to its

answer `yes' or `no', one of the children is chosen to continue the classi�cation. This

continues until the process reaches a leaf. Then we get the classi�cation of the string

by the name of that leaf. For a decision tree T over regular patterns, we de�ne L(T)

to be the set of all strings that are recognized as `Positive' by T .

The machine learning system produces decision trees over regular patterns. On

each trial, it chooses a sample called positive examples and negative examples ran-

domly, and produces a hypothesis described by a decision tree over regular patterns

that classi�es those examples perfectly. To �nd a small decision tree, according to the

widely believed principle \a smaller decision tree involves an essential knowledge," we

employed and modi�ed ID3 algorithm by Quinlan

13)

. The ID3 algorithm assumes ex-

amples speci�ed with explicit attributes in advance. On the other hand, our approach

assumes a space of regular patterns which are simply generated by given positive and

negative examples. Our algorithm tries to �nd appropriate regular patterns from this

space dynamically during the construction of a decision tree in a feasible amount of

time. This is a point which is very suited for our empirical research.

Let P and N be �nite sets of strings. Notice that P and N may have some inter-

section. Using P and N , we deal with regular patterns of the form �

0

x

1

�

1

x

2

� � � x

k

�

k

4

such that �

0

; :::; �

k

are substrings of some strings in P [N . Let �(P;N) be some fam-

ily of such regular patterns made from P and N . The family �(P;N) is appropriately

given and used as a space of attributes.

For a regular pattern � 2 �(P;N), the cost E(�; P;N) is the one de�ned in Ref.

13) by

E(�; P;N) =

p

1

+ n

1

jP j+ jN j

I(p

1

; n

1

) +

p

0

+ n

0

jP j+ jN j

I(p

0

; n

0

);

where p

1

(resp. n

1

) is the number of positive examples in P (resp. negative examples

in N) that match �, i.e., p

1

= jP \ L(�)j, n

1

= jN \ L(�)j, and p

0

(resp. n

0

) is the

number of positive examples in P (resp. negative examples in N) that do not match

�, i.e., p

0

= jP \ L(�)j, n

0

= jN \ L(�)j, L(�) = �

�

� L(�), and

I(x; y) =

8

<

:

0 (if x = 0 or y = 0)

�

x

x + y

log

x

x+ y

�

y

x + y

log

y

x+ y

(otherwise).

Algorithm DecisionTree(P;N) sketches the decision tree algorithm for �(P;N),

where Tree(�; T

0

; T

1

) returns a new tree with a root labeled with � whose left and

right subtrees are T

0

and T

1

, respectively.

function DecisionTree(P , N : sets of strings): node;

begin

if N = ; then return Tree(\P", null, null) /* leaf labeled with \P" */

else if P = ; then return Tree(\N", null, null) /* leaf labeled with \N" */

else begin

Find a shortest pattern � in �(P;N) that minimizes E(�; P;N);

P

1

 P \ L(�); P

0

 P � P

1

;

N

1

 N \ L(�); N

0

 N �N

1

;

if (P

0

= P and N

0

= N) or (P

1

= P and N

1

= N) then

return Tree(\P", null, null)

else

return Tree(�,DecisionTree(P

0

; N

0

), DecisionTree(P

1

; N

1

))

end

end

Algorithm 1: DecisionTree

2.2 Finding Alphabet Indexing by Local Search

In Ref. 2), we have seen that the learning algorithm described in the previous sec-

tion has found hypotheses with su�ciently high accuracy. However, the biological

5

knowledge on the hydropathy index

9)

used for classifying amino acid residues greatly

increases the accuracy and simpli�es hypotheses, even the classi�ed categories are

only three

1), 2)

. Inspired by this observation, we consider the problem of discovering

such an indexing itself without any explicit help of biological knowledge just by a

learning algorithm with data. In this section, we de�ne an indexing for transforming

sequences as a mapping from an alphabet with the large number of symbols to another

alphabet with fewer symbols without losing any positive and negative information of

the original examples.

Generally, an indexing of an alphabet � by another alphabet � is a mapping

from � to �. For disjoint sets P and N of strings over �, an indexing of � for

P and N by � is a mapping : � ! � satisfying

~

 (P) \

~

 (N) = ;, where the

homomorphism

~

 (s) for a string s 2 �

�

is de�ned by the transformation of each

symbols

~

 (c

1

� � � c

n

) = (c

1

) � � � (c

n

).

In the above de�nition, the indexing for the sets of the positive examples P

and the negative examples N must satisfy the condition

~

 (P)\

~

 (N) = ;. Although

the hydropathy index which we used in Ref. 1), 2) satis�ed the above condition, this

is a too strong condition for practical applications since the problem of �nding an

indexing is shown NP-hard

14)

. Thus, in practice, we may relax the condition so that

~

 (P) and

~

 (N) have a few overlaps.

Now we describe the second part of the system, the algorithm FindGoodIndex,

that �nds better indexings. It is a local search algorithm that uses a function

Score() calling DecisionTree. Let 	 be the set of indexings from � by �. We

can consider 	 = �

j�j

by assuming an indexing as the string (�

1

) (�

2

) � � � (�

n

)

for � = f�

1

; : : : ; �

n

g. Let POS be a set of positive examples and NEG be a set

of negative examples. First, the algorithm randomly chooses two small subsets

pos of POS and neg of NEG, and begins with an indexing randomly generated.

Then it searches an indexing � from its neighbors such that its score is the best

among the neighbors of . The neighbors of are the indexings whose distance

from is one, where the distance between and � in 	 is de�ned by d(; �) =

jf� 2 � j (�) 6= �(�)gj. To evaluate the Score() of an indexing , it constructs a

tree T by running the procedure DecisionTree(

~

 (pos);

~

 (neg)) and then evaluates the

success rate that T explains

~

 (POS) and

~

 (NEG) correctly. Then Score() is deter-

6

mined by

s

j

L(T)\

~

 (POS)

j

j

~

 (POS)j

�

j

L(T)\

~

 (NEG)

j

j

~

 (NEG)j

; which represents the geometric mean of the

success rates of the decision tree T for positive examples

~

 (Pos) and negative exam-

ples

~

 (Neg). This search process continues until no better indexing is found from its

neighbors. The strategy of the algorithm is sketched in Algorithm FindGoodIndex.

function FindGoodIndex(POS,NEG: sets of strings) : indexing;

begin

Select small subsets pos of POS and neg of NEG randomly;

Generate randomly in 	;

repeat

Find

0

2 f 2 	 j d(;

0

) = 1g that maximizes Score(

0

);

if Score(

0

) � Score() then return ;

0

;

forever;

end

Algorithm 2: FindGoodIndex

In order to �nd good indexings, other methods than local search may be suc-

cessfully applied. The techniques of simulated annealing and genetic algorithms are

candidates for good searching methods.

However, �nding a locally optimal indexing is computationally hard. This can be

shown by investigating our local search strategy as a polynomial-time local search

problem (PLS-problem for short), which has been de�ned by Johnson et al.

8)

to

formulate and analyze the local search algorithms (see the reference 8) for the details).

For our problem, we have obtained the result that �nding locally optimal index-

ing for the general weighted problem is PLS-complete

14)

. Even in the unweighted

case, �nding an indexing by our algorithm is P-complete. This fact asserts that the

algorithm cannot be e�ciently parallelizable unless NC=P

4)

.

3 Experiments

In this section, we report our experiments on identi�cation problems for transmem-

brane domains and signal peptides.

7

3.1 Method of Experiments

The sets POS and NEG denote the sets of positive and negative examples used as

inputs to the system. In applying our machine learning system to these data sets,

we also have to specify the size of the small sets pos and neg which shall be chosen

from POS and NEG at random. Moreover, we have to specify the size of the indexing

alphabet. If we specify jposj, jneg j and the the size of the indexing alphabet, the

system with POS and NEG will produce a hypothesis (T;) consisting of a decision

tree T over regular patterns and an indexing . The accuracy of (T;) for POS and

NEG is represented by a pair (p%; n%), where p% (resp. n%) of POS (resp. NEG) are

recognized as positive (resp. negative). The score of the hypothesis (T;) is de�ned

by

s

j

L(T)\

~

 (POS)

j

j

~

 (POS)

j

�

j

L(T)\

~

 (NEG)

j

j

~

 (NEG)

j

. The system tries to search a hypothesis with a

higher score by changing the initial indexing � and the sets pos and neg randomly.

After some amount of time, the system shall give the hypotheses with the highest

scores.

In experiments, we assume the size of pos and neg to be

jposj = jneg j = 10

and the indexing alphabet � has 2�3 symbols. Moreover, in order to avoid combina-

torial explosions, we also assume that the regular patterns attached to the nodes of

decision trees are of the form

x�y;

where x and y are variables and � is a substring taken from pos and neg. There is

no other special reason why we used only these regular patterns.

3.2 Positive and Negative Examples

First, we describe the positive and negative examples used for our experiments. The

data for transmembrane domains

7), 19)

are amino acid sequences taken from the PIR

database

12)

. For signal peptides

3), 5), 11), 16) { 18), 20)

, we use the GenBank database

6)

.

Since the PIR database and the GenBank database are not at all complete, the

data we shall mention below may contain some noise.

8

3.2.1 Transmembrane Domains

We use the PIR database, which contains the amino acid sequences with FEATURE

�eld where transmembrane domains are indicated. In this experiment, positive exam-

ples are the amino acid sequences of transmembrane domains. As negative examples,

we use the amino acid sequences located in other parts than transmembrane domains.

Since a transmembrane domain consists of around 30 residues, we selected sequences

of length 30 for negative examples.

For example, if there is an amino acid sequence w in the PIR database whose

FEATURE �eld indicates that two transmembrane domains are contained:

10-45 #Domain transmembrane

100-126 #Domain transmembrane

Then the substrings w[10::45] and w[100::126] are taken as positive examples. The

sequence w[46::75] is a possible negative example, while w[40::60] is not, because the

initial segment of w[40::60] is located in a transmembrane domain w[10::45].

We collect all the positive examples from the PIR database (Table 1). The number

of positive examples is 689. We use 19256 negative examples randomly chosen.

3.2.2 Signal Peptides

We use the GenBank database which contains DNA and RNA sequences with infor-

mation about their features. Signal peptides are indicated in the FEATURE �eld.

A signal peptide is located at N-terminal region, that is at the initial segment of

an amino acid sequence. We collected the signal peptide sequences beginning with

a Methionine (M) and of length at most 32. Such sequences constitute the set of

positive examples. Thus, for the negative examples, we take N-terminal regions of

length 30 obtained from complete sequences that have no signal peptide and begin

with a Methionine.

We made experiments on the following items (Table 2). The entries in the second

and third columns contain the numbers of positive and negative examples.

9

3.3 Results

The following �gures show good indexings and decision trees that our ML system

found from the examples explained in the above section. In the �gures, the node label,

for example, 11 is an abbreviation of x11y that tests if a given sequence contains the

sequence 11.

3.3.1 Transmembrane Domains

The result is shown in Figure 2.

In Ref. 2), we obtained a decision tree over regular patterns from raw sequences

which has three nodes and accuracy (84:8%; 86:9%). This was improved to accuracy

(91:4%; 94:8%) in Ref. 2) by using an indexing by three symbols according to the

hydropathy index of Kyte and Doolittle

9)

. The decision tree in Figure 2 has almost

the same accuracy as the latter. The interesting point of the indexing in Figure 2 is

that all amino acid residues of hydropathy greater than �1:0 are mapped to 1 and

the other amino acid residues are mapped to 0 except Asparagine (N). Thus it almost

exactly corresponds to the hydropathy indices of amino acid residues. Of course, the

system does not assume the hydropathy of amino acid residues inside its program.

3.3.2 Signal Peptides

The results are shown in Figure 3.

As is seen, the indexings in Figure 3 are similar. Decision trees in Figure 3 show

that the amino acid residues corresponding to symbol 2 are important in classi�cation.

3.4 Validity of Hypotheses

Since the hypotheses produced by our machine learning systemmay be largely a�ected

by training sets POS and NEG, we may claim that the results shown in the above

section would be no more accurate for unknown examples. Coping with this claim,

we made the following experiments that will support the validity of the hypotheses

even for unknown examples.

Instead of taking all examples, we divided them into training and testing sets.

Formally, let AllPOS be the set of all known positive examples and AllNEG be the

10

set of all negative examples we have collected. For experiments, we choose, at ran-

dom, subsets POS and NEG of AllPOS and AllNEG, respectively. We assume that

jPOSj=jAllPOSj = jNEGj=jAllNEGj = R. These sets POS and NEG shall be used

as inputs to our system for �nding hypotheses. The sets TestPOS = AllPOS � POS

and TestNEG = AllNEG � NEG are used for testing the validity of the hypothe-

ses. For the ratios R = 0:1, 0:3, 0:5, 0:7, we made experiments for bacterial and

primate sequences. For the hypotheses produced by the system with POS and NEG,

we compared the scores for training sets with those for testing sets TestPOS and

TestNEG.

Figure 4 shows the result of the experiments. We see that the scores for training

sets and testing sets are nearly the same for the ratio R � 0:3. In such case, we can

say that the accuracy of the hypothesis is preserved very well for unknown examples.

Even for R = 0:1, the situation is not so bad.

4 Conclusion

We have presented an approach to bioinformatical knowledge acquisition by using a

machine learning system and con�rmed the e�ectiveness of this approach by some ex-

periments on identi�cation problems of transmembrane domains and signal peptides.

As shown in Ref. 1), 2), hypotheses discovered by our system can be used suc-

cessfully to predict transmembrane domains. In contrast, for predicting regions of

signal peptides, some modi�cations on the setting will be naturally needed. In our

experiments, the positive examples are amino acid sequences of signal peptides and

the negative examples are N-terminal regions of length 30. Therefore, a hypothe-

sis produced by our machine learning system can say whether an N-terminal region

contains signal peptides, but cannot say how long the signal peptide is. This is a

drawback in our system since the view to data is expressed by regular patterns.

The strength of our method is that the system provides a hypothesis in the form of

an indexing and a small decision tree over regular patterns, which may be more under-

standable and suggest key items in classi�cation. It gives a possibility of discovering

important knowledge expressed in the indexing and the decision tree over regular

patterns. We observed that this is the case in transmembrane domain identi�cation.

We believe that our approach will provide a way to evaluate the studies of biology

11

and can open a new frontiers for biologists to study.

References

1) Arikawa, S., Kuhara, S., Miyano, S., Shinohara, A. and Shinohara, T.: A learning

algorithm for elementary formal systems and its experiments on identi�cation of

transmembrane domains, Proc. 25th Hawaii International Conference on System

Sciences, Vol. I, pp. 675{684 (1992).

2) Arikawa, S., Miyano, S., Shinohara, A., Kuhara, S., Mukouchi, Y. and Shinohara,

T.: A machine discovery from amino acid sequences by decision trees over regular

patterns, New Gener. Comput., Vol. 11, pp. 361{375 (1993).

3) Austen, B.: Predicted secondary structures of amino-terminal extension se-

quences of secreted proteins, FEBS Letter, Vol. 103, pp. 308{312 (1979).

4) Cook, S. A.: A taxonomy of problems with fast parallel algorithms, Inf. Control,

Vol. 64, pp. 2{22 (1985).

5) Engelman, D. and Steitz, T.: The spontaneous insertion of proteins into and

across membranes: the helical hairpin hypothesis, Cell, Vol. 23, pp. 441{422

(1981).

6) Genbank, Genetic Sequence Data Bank (1991).

7) Hartmann, E., Rapoport, T. A. and Lodish, H. F.: Predicting the orientation of

eukaryotic membrane-spanning proteins, Proc. National Academy of Science of

the United States of America, Vol. 86, pp. 5786{5790 (1989).

8) Johnson, D., Papadimitriou, C. and Yannakakis, M.: How easy is local search?,

J. Comput. Syst. Sci., Vol. 37, pp. 79{100 (1988).

9) Kyte, J. and Doolittle, R.: A simple method for displaying the hydropathic

character of protein, J. Mol. Biol., Vol. 157, pp. 105{132 (1982).

10) Miyano, S., Shinohara, A. and Shinohara, T.: Which classes of elementary formal

systems are polynomial-time learnable?, Proc. 2nd Workshop on Algorithmic

Learning Theory, pp. 139{150 (1991).

12

11) Perlman, D. and Halvorson, H.: A putative signal peptidase recognition site and

sequence in eukaryotic and prokaryotic signal peptides, J. Mol. Biol., Vol. 167,

pp. 391{409 (1983).

12) Protein identi�cation resource, National Biomedical ResearchFoundation (1991).

13) Quinlan, J.: Induction of decision trees, Machine Learning, Vol. 1, pp. 81{106

(1986).

14) Shimozono, S. and Miyano, S.: Complexity of �nding alphabet indexing, Tech-

nical Report RIFIS-TR-CS-61, Research Institute of Fundamental Information

Science, Kyushu University (1992).

15) Shimozono, S., Shinohara, A., Shinohara, T., Miyano, S., Kuhara, S. and Arikawa,

S.: Finding alphabet indexing for decision trees over regular patterns: an ap-

proach to bioinformatical knowledge acquisition, Proc. 26th Hawaii International

Conference on System Sciences, Vol. I, pp. 763{773 (1993).

16) Von Heijine, G.: Patterns of amino acids near signal-sequence cleavage sites,

Eur. J. Biochem., Vol. 133, pp. 17{21 (1983).

17) Von Heijine, G.: How signal sequences maintain cleavage speci�city, J. Mol.

Biol., Vol. 173, pp. 243{251 (1984).

18) Von Heijine, G.: A new method for predicting signal sequence cleavage sites,

Nuc. Acids. Res., Vol. 14, pp. 4683{4690 (1986).

19) Von Heijine, G.: Transcending the impenetrable: how proteins come to terms

with membranes, Biochimica et Biophysica Acta, Vol. 947, pp. 307{333 (1988).

20) Watson, M.: Compilation of published signal sequences, Nuc. Acids. Res., Vol.

12, pp. 5145{5164 (1984).

21) Yanagihara, N., Suwa, M. and Mitaku, S.: A theoretical method for distinguish-

ing between soluble and membrane proteins, Biophysical Chemistry, Vol. 34, pp.

69{77 (1989).

13

Output of BONSAI System

Indexing Decision Tree Accuracy

BONSAI

Database

POS NEGnegpos

Negative
Examples

Positive
Examples

Accuracy

Evaluation

Decision Tree Accuracy

˜ ψ pos() ˜ ψ neg() ˜ ψ POS() ˜ ψ NEG()

Indexing ψ

Decision
Tree

Generator

Combinatorial
Optimization
Algorithm

Figure 1: The BONSAI System. As an input, the system takes a pair of the sets

of the positive and the negative examples, and computes an indexing, a decision tree

and the accuracy. The �rst part builds a decision tree and evaluates its accuracy

for the examples transformed by the indexing . The second part searches a better

indexing by using the accuracy computed in the �rst part. The interaction of these

two parts repeats until the system reaches to a locally optimal indexing and a decision

tree.

14

Indexing

Amino Acid A C D E F G H I K L M N P Q R S T V W Y

New Symbol 0 0 1 1 0 0 1 0 1 0 0 0 1 1 1 0 0 0 0 0

Hydropathy Index 1.8 2.5 -3.5 -3.5 2.8 -0.4 -3.2 4.5 -3.9 3.8 1.9 -3.5 -1.6 -3.5 -4.5 -0.8 -0.7 4.2 -0.9 -1.3

Decision tree

P
[86.2%, 4.0%]

(total: 93.3%, 92.4%)

N
[4.5%, 86.6%]

P
[7.1%, 3.6%]

yes

no

N
[2.2%, 5.8%]

11 101

111

Figure 2: Transmembrane Domains. The indexing alphabet is f0; 1g of size 2.

We can see that the indexing is closely related to the hydropathy. The leaf label P

(resp. N) is the class name of transmembrane domains (resp. non-transmembrane

domains). The pair [p%; n%] attached to a leaf means that p% of 689 positive (resp.

n% of 19256 negative) examples reached the leaf. The pair (total: p%; n%) means

that p% of 689 positive (resp. n% of 19256 negative) examples are recognized as

transmembrane domains (resp. non-transmembrane domains).

15

22 N
[10.0%, 72.5%]

(total: 89.2, 83.1)

N
[0.8%, 10.6%]

1002

P
[89.2%, 16.9%]

yes

no

(1)

22 N
[20.3%, 85.4%]

P
[64.3%, 9.9%]

yes

no

(total: 79.7%, 85.4%)

12

P
[15.4%, 4.7%]

(5)

220 N
[8.5%, 67.5%]

P
[88.1%, 17.7%]

yes

(total: 88.1%, 82.3%)

212 N
[3.4%, 14.8%]

no

(6)

2 N
[13.7%, 90.6%]

P
[86.3%, 9.4%]

yes

no

(total: 86.3%, 90.6%)

(2)

022 N
[10.1%, 78.7%]

(total: 87.0%, 84.7%)

P
[1.9%, 1.8%]

22

P
[85.1%, 13.5%]

N
[2.9%, 6.0%]

2020

yes

no

(7)

12 N
[11.4%, 85.2%]

P
[52.5%, 4.3%]

yes

no

(total: 88.6%, 85.2%)

22

P
[36.1%, 10.5%]

(3)

22 N
[13.3%, 67.1%]

P
[60.8%, 10.5%]

(total: 85.1%, 77.8%)

00002 N
[1.1%, 8.1%]

202

2002 N
[0.5%, 2.6%]

P
[24.3%, 11.7%]

yes

no

(8)

12 N
[11.3%, 71.9%]

P
[68.8%, 13.4%]

yes

no

(total: 84.7%, 79.9%)

022 N
[4.0%, 8.0%]

02

P
[15.9%, 6.7%]

(4)

Viral
Bacterial
Invertebrate
Primate
Rodent
Other Mammalian
Other Vertebrate
Plant

0022011 0000220 101002 2
1022000 1000011 111000 2
0122022 0210211 011011 2
0022012 0201210 010012 2
0122011 1202122 210002 0
0122022 0211211 000010
0022002 0200012 200100 0
0022002 1001220 000102 2

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

Indexing TreeSequences
ACDEFGH IKLMNPQ RSTVWY X

Figure 3: Signal Peptides. Indexings for amino acid residues and decision trees

classifying signal peptides obtained by the Bonsai system. Each decision tree num-

bered from (1) to (8) with indexings in the table describes the rule (see �g.2) for

various kinds of signal sequences. The amino acid residues corresponding to symbol

2 are important in classi�cation in this result.

16

.5

.6

.7

.8

.9

1

.5 .6 .7 .8 .9 1

R = 0.1 0.3 0.5 0.7

y

x

Figure 4: Experiment for bacterial sequences. Each point (x; y) represents a

result of an experiment with ratio R. x is the score for training sets and y is the score

for testing sets.

17

Sequences Positive Negative

Transmembrane 689 19256

Table 1: Examples taken from PIR database.

Sequences Positive Negative

Viral 120 4882

Bacterial 495 7330

Invertebrate 263 1927

Primate 1032 3162

Rodent 1018 3158

Other Mammalian 235 588

Other Vertebrate 207 1056

Plant 370 3074

Table 2: Examples taken from GenBank database.

18

