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Ahbstract

We present a machine learning system, called BONSAI, for knowledge ac-
quisition from positive and negative examples of strings, and report some exper-
ments on protein data using the PIR and GenBank databases. This learning
system 1s consiructed with an algorithmic learning theory for decision trees
over regular patterns, which 1s newly developed for this work. As a hypothesis,
the system tries to find a pair of a classification of symbols called an alphabet
indering and a decision iree over regular patterns, which classifies given exam-
ples with high accuracy. Through the experiments, the system discovered very
simple hypotheses that exhibit important knowledge about transmembrane do-

mains and signal pepiides.

Introduction

Algorithmic learning 1s a process carried out by a computer program that receives

examples and guesses the unknown rule that generates the examples. In general

words, therefore, 1t 1s considered as a computational model of induction. When

guessed rules are represented i a way suitable for human understanding, learning

processes can also be viewed as a kind of knowledge acquisition.

This paper shows that the research based on algorthrmic learning theory that

made a great success in practical applications in Molecular Biology. As well known,
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most important information such as genes and proteins are coded in sequences of
symbols from a fimite alphabet. Therefore Molecular Biology should be one of the
most important and switable fields to apply algorithmic learning.

The hydropathy index of armno acid residues has been shown to play an essential

role in transmembrane domain identification') *»°)» ?1) In Ref. 1), 2), we classified

)
20 symbols of amino acid residues to three categories {*, +, -} according to the hy-
dropathy index of Kyte and Doolittle®). Then we transformed amino acid sequences
to those consisting of three symbols and used them as examples for our learning
algorithms. Interestingly, after this transformation, there are only a few overlaps be-
tween transmembrane domain sequences and non-transmembrane domain sequences.

By experiments using the learning algorithm in Ref. 1), we have verified that this

)
transformation 1s very useful for the transmembrane domain 1dentification problem.
In Ref. 2), we also developed another learning system that produces a hypothesis
from a small set P of strings called positive esamples and a small set N of strings
called negative ezamples. As a hypothesis, the system searches for a decision tree over
regular patterns that classihes P and N completely. The system discovered a very
small hypothesis that distinguishes all transmembrane domain sequences in the PIR
database'?) from other parts with accuracy more than 91%. With this system, we
have seen that the transformation by the hydropathy index 1s very successful. In this
paper we consider a transformation from an alphabet to a smaller alphabet which
does not lose any positive and negative information of the original examples. We
shall call such a transformation an alphabet indesing or simply an indezing.
Without using the indexing technique, we have seen in Ref. 2) that the learning
system has found hypotheses with sufhciently high accuracy. However, the biological
knowledge on the hydropathy index greatly increases the accuracy and simphfies
hypotheses. This observation inspired us to discover such an indexing itself without
any explicit help of biological knowledge just by a learning algorithm with data.
This paper presents a machine learning system BONSAI that has succeeded
discovering such an indexing together with a decision tree that attains very high accu-
racy. Given positive and negative examples, BONSAI will iind an alphabet mndexing
providing “good” decision trees over regular patterns. The 1dea behind our method
15 to combine the local search technique for alphabet indexings and the learning al-

gorithm developed in Ref. 2). The learning algorithm produces a decision tree over



regular patterns for positive and negative examples and the other part works to find
a good alphabet indexing. This system 1s developed with an algorithmic learning the-
ory for decision trees over regular patterns and combinatonal optirmzation schemes
for alphabet indexings on symbols of strings.

An alphabet imndexing 1s a transformation of symbols to reduce the size of the
alphabet for the positive and negative examples, without missing important informa-
tion 1n original data. In the case of amuno acid residues, an alphabet indexing can be
regarded as a classification of 20 kinds of amino acid residues to a few categories. In
the experiment on transmembrane domain 1dentification from the PIR database, this
system has found an alphabet imndexing that 1s nearly the same as the hydropathy
imndex of Kyte and Doolittle, without any knowledge on the hydropathy index. It
has also discovered hypotheses with high accuracy for recogmtion of signal regions on
coding sequences®) 5 11), 18} 18), 20)

First we present a learning algorithm for decision trees over regular patterns, and
then we describe a local search algorithm for optirmzing the alphabet mndexing to
produce good hypotheses. Finally, we report some experiments of our system on
transmembrane domain sequences and signal peptide sequences by using the PIR

and GenBank databases.

2 Learning Algorithm and Combinatorial Opti-
mization Scheme for BONSAI System

This section gives algorithms for constructing decision trees over regular patterns and
finding indexings that are implemented in our machine learning system.

The whole algorithm consists of two parts: one for constructing a decision tree and
the other for finding a better indexing (Figure 1). The first part 1s almost the same as
one which we developed in Ref. 2). The only difference 1s that our new algorithm can
deal with inconsistent training examples. In our previous work?, we assumed that
the sets of positive examples P and negative examples IV are mutually disjoint, and
the algorithm may not termnate if the examples are not consistent. However, in this
approach combined with searching for an indexing, the sets of indexed examples may
have some overlaps though these overlaps should be small. Thus, our new algorithm

15 designed to break off the recursion when 1t recognizes that 1t 1s 1impossible to divide



the positive and negative examples into smaller fractions.

2.1 Learning Decision Trees over Regular Patterns

First we briefly review how to construct decision trees over regular patterns from
positive and negative examples.

A regular pattern 1 1s a string of the form 7 = wysy vz wezy - - 2, w,, where each
w; 18 a constant string and each z; 1s a vanable that matches any string. Hence the
above pattern defines any string containing substrings wa, wy, - - -, w, 1n that order.
L{m) denotes the set of those strings.

A decision tree over regular patternsis a procedural definition of rules to determne
the class for any given string. Each internal node 15 labeled with a regular pattern and
each leaf 15 labeled with a name of a class (the class name 1s ‘Positive’ or ‘Negative').
An mternal node has two successors called the left and right children. To classify
a given string, we start from the root. The pattern on the current internal node
examines whether the string matches the pattern or not. Then according to 1its
answer ‘yes' or ‘no’, one of the children is chosen to continue the classification. This
continues until the process reaches a leaf. Then we get the classification of the string
by the name of that leaf. For a decision tree T' over regular patterns, we define L(T')
to be the set of all strings that are recognized as ‘Positive’ by 7.

The machine learning system produces decision trees over regular patterns. On
each trial, 1t chooses a sample called positive examples and negative examples ran-
domly, and produces a hypothesis described by a decision tree over regular patterns
that classifies those examples perfectly. To find a small decision tree, according to the
widely believed principle “a smaller decision tree involves an essential knowledge,” we
employed and modified ID3 algorithm by Quinlan'®. The ID3 algorithm assumes ex-
amples specified with explicit attributes in advance. On the other hand, our approach
assumes a space of regular patterns which are simply generated by given positive and
negative examples. Our algorithm tries to find appropriate regular patterns from this
space dynamcally during the construction of a decision tree mn a feasible amount of
time. This 1s a point which 1s very suited for our empirical research.

Let P and N be finite sets of strings. Notice that P and N may have some inter-

section. Using P and N, we deal with regular patterns of the form vz 012, - - - sy



such that «, ..., arp are substrings of some strings in PUN. Let II{ P, V) be some fam-
iy of such regular patterns made from P and N. The famly II( P, N') is appropriately
given and used as a space of attributes.

For a regular pattern « € II( P, N), the cost E(w, P, N) 1s the one defined in Ref.

13) by
P1+ 71 Po + 7
E?T,P,N = — 7 M, —I—ifpn,%n '
(1 P = oy vy 2 T vy )
where p; (resp. n1) 1s the number of positive examples in P (resp. negative examples
in V) that match =, 1.e., py = |P N L{7)|, n, = [N L(r)|, and p, (resp. n,) 1s the

number of positive examples in P (resp. negative examples in N) that do not match

T, Le., py = |P N L(m)|, ny = [N N L(7)|, L{7) = &* — L(r), and

0 (if s = 0or y =0)
I(zs y) =9 __7* lo z Y lo y (otherwise).

r+vy gjs—l—y _:c—l—y grﬂ—l—y
Algorithm DecisionTree( P, N) sketches the decision tree algorithm for II( P, V),

where Tree(?r, 1%, Tl) returns a new tree with a root labeled with v whose left and

right subtrees are 7; and 77, respectively.

function DecisionTree( P, N : sets of strings ): node;
begin
if N =0 then return Tree(“P", null, null) /* leaf labeled with “P"*/
else if P = 0 then return Tree(“N”, null, null) /* leaf labeled with “N”*/
else begin
Find a shortest pattern v in I1{ P, V) that minimmzes E(r, P, N);
P, — PN L(r); P« P—P;
Ny <—NﬂL(?r); Ny — N — Ny
if (A =Pand N, = N)or (P, =P and N, = N) then
return Tree(“P", null, null)
else
return Tree(w,DecisionTree( Py, Ny), DecisionTree( P, N1) )
end
end

Algorithm 1: DecisionTree

2.2 Finding Alphabet Indexing by Local Search

In Ref. 2), we have seen that the learning algorithm described in the previous sec-

tion has found hypotheses with sufhciently high accuracy. However, the biological

5



knowledge on the hydropathy index®) used for classifying amino acid residues greatly
mcreases the accuracy and sumplhfies hypotheses, even the classified categories are
only three'» ). Inspired by this observation, we consider the problem of discovering
such an mmdexing 1tself without any explicit help of biological knowledge just by a
learning algorithm with data. In this section, we define an indexing for transforming
sequences as a mapping from an alphabet with the large number of symbols to another
alphabet with fewer symbols without losing any positive and negative information of
the original examples.

Generally, an indesing of an alphabet ¥ by another alphabet I' 15 a mapping
from ¥ to I'. For disjoint sets P and NV of strings over 2, an indesing ¥ of ¥ for
P and N by I’ 1s a mapping ¢ : ¥ — D satisfymg TE(P) M @(N) — 0, where the
homomorphism wﬁ(s) for a string s € 2* 15 defined by the transformation of each
symbols qjj(cl coven) =W(er) - d(en).

In the above defimtion, the indexing 9 for the sets of the positive examples P
and the negative examples N must satisfy the condition @(P) M @(N) = 0. Although
the hydropathy index which we used in Ref. 1), 2) satisfied the above condition, this
15 a too strong condition for practical applications since the problem of finding an
indexing is shown NP-hard'®*). Thus, in practice, we may relax the condition so that
wH(P) and TLH(N) have a few overlaps.

Now we describe the second part of the system, the algorithm FindGoeodIndex,
that hnds better indexings. It 1s a local search algorithm that uses a function
Score(1) calling DecisionTree. Let ¥ be the set of indexings from ¥ by I'. We
can consider ¥ = I'Fl by agsuming an indexing ¢ as the string Yo )W (o) ¥(o.)
for ¥ = {oy,...,0,}. Let POS be a set of positive examples and NEG be a set
of negative examples. First, the algorithm randomly chooses two small subsets
pos of POS and neg of NEG, and begins with an indexing ¢ randomly generated.
Then 1t searches an idexing ¢ from 1ts neighbors such that its score 1s the best
among the neighbors of . The neighbors of ¢ are the indexings whose distance
from v 1s one, where the distance between ¢ and ¢ in ¥ 15 defined by d(v,¢) =
{o € 2 | ¥(c) # ¢(o)}|. To evaluate the Score() of an indexing ¢, it constructs a
tree 7 by running the procedure DecisionTree(ﬂ;(pos), @(neg)) and then evaluates the
success rate that 7' explains TJ;(POS) and ij(NEG) correctly. Then Score(4)) 1s deter-



mined by \/|L Wﬂ;gSOS )| |L(3F§%FJ| , which represents the geometric mean of the

success rates of the decision tree 7" for positive examples @(Pos) and negative exam-
ples ﬁ(Nﬂg). This search process continues until no better indexing 1s found from its

neighbors. The strategy of the algorithm 1s sketched in Algonithm FindGoodIndex.

function FindGeodIndex(POS,NEG: sets of strings) : indexing;
begin
Select small subsets pos of POS and neg of NEG randomly;
Generate randomly ¢ 1 ¥;
repeat
Find ¢ € {¢ € ¥ | d(¢, ¥") = 1} that maximzes Score(v’);
if Score(9)’) < Score(y) then return ¢;
¥
forever;
end

Algorithm 2: FindGoodIndex

In order to fiind good indexings, other methods than local search may be suc-
cessfully apphed. The techniques of simulated annealing and genetic algorithms are
candidates for good searching methods.

However, fiinding a locally optimal indexing 1s computationally hard. This can be
shown by mmvestigating our local search strategy as a polynommal-time local search
problem (PLS-problem for short), which has been defined by Johnson et al.®) to
formulate and analyze the local search algorithms (see the reference 8) for the details).

For our problem, we have obtained the result that finding locally optimal index-

14)  Even in the unweighted

mg for the general weighted problem 1s PLS-complete
case, inding an indexing by our algorithm 1s P-complete. This fact asserts that the

algorithm cannot be efficiently parallelizable unless NC=P*.

3 Experiments

In this section, we report our experiments on identification problems for transmem-

brane domains and signal peptides.



3.1 Method of Experiments

The sets POS and NEG denote the sets of positive and negative examples used as
mputs to the system. In applying our machine learning system to these data sets,
we also have to specify the size of the small sets pos and neg which shall be chosen
from POS and NEG at random. Moreover, we have to specify the size of the indexing
alphabet. If we specify |pos|, |neg| and the the size of the indexing alphabet, the
system with POS and NEG will produce a hypothesis (T, ¢) consisting of a decision
tree T over regular patterns and an indexing /. The accuracy of (T, %) for POS and
NEG 1s represented by a pair (p%, n%), where p% (resp. n%) of POS (resp. NEG) are

recognized as positive (resp. negative). The score of the hypothesis (T, %) 1s defined

by | E@ONIPOS)|  [LTNYNEG)|
y [9(POS)] [H(NEG)]

higher score by changing the mitial indexing ¢ and the sets pos and neg randomly.

The system tries to search a hypothesis with a

After some amount of time, the system shall give the hypotheses with the highest
scores.

In experiments, we assume the size of pos and neg to be
[pos| = |neg| = 10

and the indexing alphabet I has 2~3 symbols. Moreover, in order to avoid combina-
torial explosions, we also assume that the regular patterns attached to the nodes of
decision trees are of the form

TCEY,

where z and y are variables and « 15 a substring taken from pos and neg. There 1s

no other special reason why we used only these regular patterns.

3.2 Positive and Negative Examples

First, we describe the positive and negative examples used for our experiments. The

7), 19)

data for transmembrane domains are amino acld sequences taken from the PIR

database’®). For signal peptides®) ®b 11} 18] 18),28) "ye yuge the GenBank database®).
Since the PIR database and the GenBank database are not at all complete, the

data we shall mention below may contain some noise.



3.2.1 Transmembrane Domains

We use the PIR database, which contains the amino acid sequences with FEATURE
field where transmembrane domains are indicated. In this experiment, positive exam-
ples are the armno acid sequences of transmembrane domains. As negative examples,
we use the armno acid sequences located in other parts than transmembrane domains.
Since a transmembrane domain consists of around 30 residues, we selected sequences
of length 30 for negative examples.

For example, if there 1s an amino acid sequence w in the PIR database whose

FEATURE field indicates that two transmembrane domains are contained:

10-45 #Domain transmembrane

100-126 #Domain transmembrane

Then the substrings w([10..45] and w[100..126] are taken as positive examples. The
sequence w[46..75] 1s a possible negative example, while w[40..60] 1s not, because the
mitial segment of w[40..60] is located in a transmembrane domain w[10..45].

We collect all the positive examples from the PIR database (Table 1). The number
of positive examples 15 689. We use 19256 negative examples randomly chosen.

3.2.2 Signal Peptides

We use the GenBank database which contains DNA and RNA sequences with infor-
mation about their features. Signal peptides are indicated in the FEATURE field.

A signal peptide 1s located at N-terrminal region, that 1s at the initial segment of
an amino acld sequence. We collected the signal peptide sequences beginning with
a Methionine (H) and of length at most 32. Such sequences constitute the set of
positive examples. Thus, for the negative examples, we take N-termunal regions of
length 30 obtained from complete sequences that have no signal peptide and begin
with a Methionmne.

We made experiments on the following items (Table 2). The entries in the second

and third columns contain the numbers of positive and negative examples.



3.3 Results

The following figures show good indexings and decision trees that our ML system
found from the examples explained in the above section. In the figures, the node label,
for example, 11 15 an abbreviation of 11y that tests if a given sequence contains the

sequence 11.

3.3.1 Transmembrane Domains

The result 1s shown in Figure 2.

In Ref. 2), we obtained a decision tree over regular patterns from raw sequences
which has three nodes and accuracy (84.8%, 86.9%). This was 1mproved to accuracy
(91.4%,94.8%) in Ref. 2) by using an indexing by three symbols according to the
hydropathy index of Kyte and Doolittle®). The decision tree in Figure 2 has almost
the same accuracy as the latter. The mteresting point of the indexing in Figure 2 1s
that all amino acid residues of hydropathy greater than —1.0 are mapped to 1 and
the other amino acid residues are mapped to 0 except Asparagine (). Thus it almost
exactly corresponds to the hydropathy indices of ammno acid residues. Of course, the

system does not assume the hydropathy of ammno acid residues mside its program.

3.3.2 Signal Peptides

The results are shown in Figure 3.
As 15 seen, the indexings in Figure 3 are simular. Decision trees in Figure 3 show

that the amino acid residues corresponding to symbol 2 are important in classithcation.

3.4 Validity of Hypotheses

Since the hypotheses produced by our machine learning system may be largely affected
by tramming sets POS and NEG, we may claim that the results shown mn the above
section would be no more accurate for unknown examples. Coping with this claim,
we made the following experiments that will support the vahdity of the hypotheses
even for unknown examples.

Instead of taking all examples, we divided them nto tramming and testing sets.

Formally, let AIIPOS be the set of all known positive examples and AINEG be the

10



set of all negative examples we have collected. For experiments, we choose, at ran-
dom, subsets POS and NEG of AIPOS and AIINEG, respectively. We assume that
|POS|/|AIIPOS| = |NEG|/|AINEG| = R. These sets POS and NEG shall be used
as mputs to our system for inding hypotheses. The sets TestPOS = AIIPOS — POS
and TestNEG = AIINEG — NEG are used for testing the vahdity of the hypothe-
ses. For the ratios R — 0.1, 0.3, 0.5, 0.7, we made experiments for bacterial and
primate sequences. For the hypotheses produced by the system with POS and NEG,
we compared the scores for tramning sets with those for testing sets TestPOS and
TestNEG.

Figure 4 shows the result of the experiments. We see that the scores for tramning
sets and testing sets are nearly the same for the ratio R > 0.3. In such case, we can
say that the accuracy of the hypothesis i1s preserved very well for unknown examples.

Even for R = 0.1, the situation 1s not so bad.

4 Conclusion

We have presented an approach to bioinformatical knowledge acquisition by using a
machine learning system and confirmed the effectiveness of this approach by some ex-
periments on 1dentification problems of transmembrane domains and signal peptides.

As shown in Ref. 1), 2), hypotheses discovered by our system can be used suc-
cessfully to predict transmembrane domains. In contrast, for predicting regions of
signal peptides, some modifications on the setting will be naturally needed. In our
experiments, the positive examples are ammno acid sequences of signal peptides and
the negative examples are N-terminal regions of length 30. Therefore, a hypothe-
sis produced by our machine learning system can say whether an N-termunal region
contains signal peptides, but cannot say how long the signal peptide 15. This 15 a
drawback 1 our system since the view to data 1s expressed by regular patterns.

The strength of our method 15 that the system provides a hypothesis in the form of
an mdexing and a small decision tree over regular patterns, which may be more under-
standable and suggest key items in classihication. It gives a possibility of discovering
immportant knowledge expressed mn the indexing and the decision tree over regular
patterns. We observed that this 1s the case in transmembrane domain identification.

We believe that our approach will provide a way to evaluate the studies of biology

11



and can open a new frontiers for biologists to study.
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Decision Tree Accuracy

I ndexing Decision Tree Accuracy

Output of BONSAI System

Figure 1: The BONSAI System. As an input, the system takes a pair of the sets
of the positive and the negative examples, and computes an indexing, a decision tree
and the accuracy. The first part builds a decision tree and evaluates its accuracy
for the examples transformed by the indexing . The second part searches a better
mmdexing by using the accuracy computed in the first part. The interaction of these
two parts repeats until the system reaches to a locally optimal indexing and a decision
tree.
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Indexing

Armno Acad i ¢DEVF G HTIEKLHEDNPIQQERSTVWTY
New Symbol 6001 100 101 0001 1 1 0 0000
Hydropathy Index|i1.8 25 35 3.5 2.3 04 3245 3.93.8 1.9 35 1.6 3.5 45 0.8 0.7 42 0.9

Decision tree

Figure 2: Transmembrane Domains. The indexing alphabet is {0, 1} of size 2.
We can see that the indexing 15 closely related to the hydropathy. The leaf label P
(resp. N) 1s the class name of transmembrane domains (resp. non-transmembrane
domains). The pair [p%, n%)] attached to a leaf means that p% of 689 positive (resp.
n% of 19256 negative) examples reached the leaf. The pair (fotal: p%,n% ) means
that p% of 689 positive (resp. 7n% of 19256 negative) examples are recognized as

yes
[11 |—[101]|—»
[4.5%, 86.6%]

[111]—= (D

[2.2%, 5.8%]

no

D)

[86.2%, 4.0%]

D,

[7.1%, 3.6%]

(total: 93.3%, 92.4%)

transmembrane domains (resp. non-transmembrane domains).
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Sequences Indexing

ACDEFGH | KLMNPQ RSTVWY

0022011
1022000
0122022
0022012
0122011
0122022
0022002
0022002

0000220
1000011
0210211
0201210
1202122
0211211
0200012
1001220

101002
111000
011011
010012
210002
000010
200100
000102

Viral

Bacterial
Invertebrate
Primate

Rodent

Other Mammalian
Other Vertebrate
Plant

R N yes
(22 |—>

no + [10.0%, 72.5%)]

1002]—» (N )
+ [0.8%, 10.6%]

@)

[89.2%, 16.9%]
(total: 89.2, 83.1)

yes
@ [2Z]—
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Figure 3: Signal Peptides. Indexings for amuino acid residues and decision trees
classifying signal peptides obtained by the Bonsai system. Each decision tree num-
bered from (1) to (8) with indexings in the table describes the rule (see fig.2) for
various kinds of signal sequences. The amino acid residues corresponding to symbol
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Figure 4: Experiment for bacterial sequences. Each point (z,y) represents a
result of an experiment with ratio R. 2 1s the score for tramning sets and y 1s the score
for testing sets.
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Sequences Positive Negative

Transmembrane 689 19256

Table 1: Examples taken from PIR database.

Sequences Positive Negative
Viral 120 4882
Bacterial 495 7330
Invertebrate 263 1927
Primate 1032 3162
Rodent 1018 3158
Other Mammalian 235 588
Other Vertebrate 207 1056
Flant 370 3074

Table 2: Examples taken from GenBank database.
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