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This paper studies two-dimensional cellular automatma ca�90(m;n) having states

0 and 1 and working on a square lattice of size (m�1)�(n�1). All their dynamics,

driven by the local transition rule 90, can be simply formulated by representing

their con�gurations with Laurent polynomials over a �nite �eld F

2

= f0; 1g. The

initial con�guration takes the next con�guration to a particular con�guration whose

cells all have the state 1. This paper answers the question of whether the initial

con�guration lies on a limit cycle or not, and, if that is the case, some properties

on period lengths of such limit cycles are studied.

I. INTRODUCTION

Dynaimical behaviors of �nite additive cellular automata were investigated by

many authors.

1�3

In their pioneer work

1

Martin, Oldlyzko, and Wolfram studied

many fundamental properties of additive cellular automata with cells arranged

around a circle, by using Laurent polynomials which algebraically represent con�g-

urations of these automata. Guan and He

3

showed formulas for the length of limit

cycles of additive cellular automata of such types using primitive roots of unity

1. Recently dynamical behaviors of cellular automata on square lattices, namely

two-dimensional cellular automata, have been extensively investigated by many au-

thors. For example, Manna and Stau�er

4

analyzed phase transitions of all nearest

neighbor cellular automata on square lattices without memory, and da Silva

5

stud-

ied critical behavior at the transition to chaos of several binary mixtures of cellular

automata and fractal dimensions associated with the damage spreading and the

1



propagation time of damage. Among elementary cellular automata in which the

cells can take the values 0 or 1 and only nearest neighbors interact, there are eight

additive local transition rules, namely, the rules R = 0; 60; 90; 102; 150; 170; 204; 240

by Wolfram's rule labeling scheme. It is well known that elementary additive cel-

lular automata with rules 90 and 150 are the simplest nontrivial ones. Based on

an extensive numerical study of basin and attractor sizes of the 88 distinct ele-

mentary cellular automata, Binder

6

proposed a topological classi�cation of cellular

automata, complementary to that of Wolfram derived from the attractor globality.

Kawahara

7

studied one-dimensional cellular automata ca�90(m) (m > 1) having

states 0 and 1 and working on a linear array of size m� 1 with the local transition

rule 90.

Local Transition Rule 90

111 110 101 100 011 010 001 000

0 1 0 1 1 0 1 0

The global transition function of ca�90(m) computes simultaneously the next state

of a cell by adding the present states of its neighboring cells to the left and right

and taking the result modulo 2 under the null boundary condition. Trivially a

cellular automaton ca�90(m) has 2

m�1

possible con�gurations. Figure 1 illustrates

a con�guration of ca�90(7).
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FIG. 1. A con�guration of ca�90(7).

Formally a con�guration of ca�90(m) is an (m � 1)-dimensional vector

c = (c

1

; c

2

; � � � ; c

m�2

; c

m�1

)

with all entries 0 or 1, and its global transition function �

m

is given by

�

m

(c) = (c

0

+ c

2

; c

1

+ c

3

; � � � ; c

m�3

+ c

m�1

; c

m�2

+ c

m

) mod 2;

where c

0

= c

m

= 0 (the null boundary condition). In a similar fashion the global

transition function �

m

of ca�150(m) is given by �

m

(c) = �

m

(c)+ c mod 2, which is

a reason why ca�90(m) can be considered as more elementary cellular automata.

On the analogy with Ref. 2 all con�gurations of ca�90(m) can be represented by

Laurent polynomials and its global transition function �

m

is given by multiplying

each con�guration by a simple Laurent polynomial x+x

�1

. The notion of Laurent

polynomials discussed here is a modi�cation of those in Ref. 1. Polynomial repre-

sentation of con�gurations of �nite additive cellular automata was systematically

investigated by Nohmi.

8

Usage of Laurent polynomials enables us to e�ectively

compute and analyze iterative transitions of cellular automata ca�90(m). For ex-

ample, it is easy to see that the initial con�guration a

m

of ca�90(m) whose all cells

have the constant state 1 is on a limit cycle if and only if m is odd. Also Ref.7 dealt

with the period length of a limit cycle on which the next con�guration �

m

(a

m

) to

a

m

lies, and gave some formulas concerned with the period length, which is called

2



the characteristic number associated with ca�90(m).

This paper is a continuation of Ref. 7 and we study two-dimensional cellular

automata ca�90(m;n) having states 0 and 1 and working on a square lattice of

size (m � 1) � (n � 1). All their dynamics, driven by the local transition rule

90, can be simply formulated by representing their conifgurations with Laurent

polynomials. Exactly speaking this transition rule computes the next state of a

cell by adding the present states of its neighboring cells to the north, east, south,

west and taking the result modulo 2 under the null boundary condition. Trivially

a cellular automaton ca�90(m;n) has 2

(m�1)(n�1)

possible con�gurations. Figure

2 illustrates a con�guration of ca�90(5; 6).
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FIG. 2. A con�guration of ca�90(5; 6).

This paper is especially concerned with the problem of whether a given initial

con�guration of ca�90(m;n) is on a limit cycle or not, and, if it is the case, certain

possible multiples of the period lengths of such limit cycles will be given.

Now we formally introduce two-dimensional cellular automaton ca�90(m; n)

for integers m; n > 1. A con�guration of ca�90(m; n) is a two-dimensional array,

namely, an (m� 1)� (n� 1) matrix,

c =

0

B

B

B

B

B

B

B

@

c

1;1

c

1;2

� � � c

1;n�2

c

1;n�1

c

2;1

c

2;2

� � � c

2;n�2

c

2;n�1

.

.

.

.

.

.

.

.

.

.

.

.

c

m�2;1

c

m�2;2

� � � c

m�2;n�2

c

m�2;n�1

c

m�1;1

c

m�1;2

� � � c

m�1;n�2

c

m�1;n�1

1

C

C

C

C

C

C

C

A

;

where c

i;j

= 0 or 1 for all i and j. The global transition function �

m;n

of ca�90(m;n)

is de�ned by

�

m;n

(c)

i;j

= c

i�1;j

+ c

i;j�1

+ c

i;j+1

+ c

i+1;j

mod 2

for all integers i; j with 1 6 i 6 m � 1; 1 6 j 6 n � 1, where c

i;0

= c

i;n

= c

0;j

=

c

m;j

= 0 (the null boundary condition). >From the above de�nition two-dimensional

3



automaton ca�90(m; 2) [or ca�90(2;m)] is identical to one-dimensional cellular

automaton ca�90(m), and ca�90(m;n) is isomorphic to ca�90(n;m).

Now let �

m;n

be the next con�guration to a particular con�guration of ca�

90(m;n) whose cells all have the state 1. For example

�

5;6

=

0

B

B

B

@

0 1 1 1 0

1 0 0 0 1

1 0 0 0 1

0 1 1 1 0

1

C

C

C

A

:

Consider another global transition function �̂

m;n

of ca�90(m;n) transforming each

con�guration of ca�90(m;n) into the next con�guration to its reversed con�guration

by �

m;n

, that is, �̂

m;n

(c) = �

m;n

(c) + �

m;n

. Our original problem is as follows.

Problem A: Find a necessary and su�cient condition that there is a positive

integer h such that �̂

h

m;n

(c) = �

h

m;n

(c) for all con�gurations c of ca�90(m; n).

It is easy to see that �̂

h

m;n

(c) = �

h

m;n

(c) for all con�gurations c if and only

if

P

h�1

j=0

�

j

m;n

(�

m;n

) = 0. Hence the above problem is equivalent to the following

problem, which is the subject of this paper.

Problem B: Find a necessary and su�cient condition that the con�guration �

of ca�90(m;n) lies on a limit cycle. (What is the period length of the limit cycle

when that is the case?)

As ca�90(m;n) is a �nite automaton, the con�guration �

m;n

of ca�90(m;n) lies

on a limit cycle if and only if there is a positive integer k such that �

k

m;n

(�

m;n

) =

�

m;n

. If such k exists, the least positive integer k = K(m;n) with �

k

m;n

(�

m;n

) = �

m;n

is the period length of a limit cycle on which �

m;n

lies. Hence we say that the period

length K(m;n) of ca�90(m; n) exists if �

m;n

lies on a limit cycle. And the period

length K(m;n) of ca�90(m; n) does not exist if �

m;n

does not lie on a limit cycle.

With these terminologies the main result of the paper can be stated as follows.

Main Theorem: The period length K(m;n) of ca�90(m;n) exists if and only

if there exists no integer D > 1 such that 2Djm and Djn, or Djm and 2Djn. Sup-

posed that m and n are odd integers > 1 and k is a positive integer, then

(a) K(m; n) j 2

w

� 1,

(b) K(m; 2

k

) j 2

k�1

(2

u

� 1),

(c) K(m; 2

k

n) j 2

k

(2

w

� 1) if m and n are mutually disjoint,

(d) K(2m; 2) j 2(2

u

� 1),

(e) K(2m; 2n) j 2(2

w

� 1) if m and n are mutually disjoint,

where u is the multiplicative suborder of 2 modulo m, v is the multiplicative

suborder of 2 modulo n, and w is the least common multiple of u and v. (The

multiplicative suborder of 2 modulo m is the least positive integer u satisfying

2

u

= �1 mod m.) 2

In Sec. II we recall some fundamentals on one-dimensional cellular automata

ca� 90(m) for the later study of two-dimensional cellular automata ca� 90(m;n).

In Sec. III we provide an algebraic reformulation of ca�90(m;n) using Laurent

polynomials and some results on ca�90(m) needed in the later sections. In Sec.

4



IV we prove the existence theorems of period lengths K(m; n) by explicitly giving

some multiples of the period lengths. In Sec. V nonexistence theorems of the

period lengths are shown. The appendix at the end of the paper is a table of the

period lengths K(m;n) (1 < m < 20; 1 < n < 20) calculated by computers.

II. ONE-DIMENSIONAL CELLULAR AUTOMATA ca�90(m)

In this section we recall some fundamentals on one-dimensional cellular au-

tomata ca � 90(m) for the later study of two-dimensional cellular automata ca �

90(m;n).

In what follows we assume that m is an integer > 1. Let F

2

= f0; 1g(= Z=2Z)

be the prime �eld of characteristic 2, F

2

[x] be the polynomial ring over F

2

with

an indeterminate x, and F

2

[x]=(x

2m

� 1) be the quotient ring of F

2

[x] by the ideal

(x

2m

�1) generated by a polynomial x

2m

�1. For non-negative integers i; k; r with

i = 2mk + r and 0 6 r < 2m it easily follows that x

i

= (x

2m

)

k

x

r

= x

r

. Further,

x

2m�r

x

i

= x

2m(k+1)

= 1 and so x

�i

= x

2m�r

. Thus any monomial x

i

is equal to

one of 1; x; x

2

; � � � ; x

2m�1

. A polynomial in the quotient ring F

2

[x]=(x

2m

� 1) is

sometimes called a Laurent polynomial (cf. Ref. 1). De�ne Laurent polynomials

t

m

(i) = x

i

+ x

�i

in F

2

[x]=(x

2m

� 1) for all integers i. In particular, we set t

m

=

t

m

(1)(= x+x

�1

). The following proposition gives elementary formulas on Laurent

polynomials t

m

(i).

Proposition 2.1: In the quotient ring F

2

[x]=(x

2m

� 1) the following holds for

integers i; j and a non-negative integer k:

(a) t

m

(0) = t

m

(m) = 0,

(b) t

m

(�i) = t

m

(i),

(c) t

2

k

m

= t

m

(2

k

); [t

m

(i)]

2

k

= t

m

(2

k

i),

(d) t

m

(i)t

m

(j) = t

m

(i� j) + t

m

(i+ j),

(e) t

m

(2m+ i) = t

m

(i),

(f) t

m

(m+ i) = t

m

(m� i). 2

The next lemma indicates a fundamental relationship between cellular automata

ca�90(m) and the quotient ring F

2

[x]=(x

2m

� 1).

Lemma 2.2: Let f be a function assigning a Laurent polynomial

f(c) =

m�1

X

i=1

c

i

t

m

(i)

in F

2

[x]=(x

2m

� 1) to each con�guration c = (c

1

; c

2

; � � � ; c

m�2

; c

m�1

) of ca�90(m).

Then f is an additive and injective function such that f(�

m

(c)) = t

m

f(c) for all

con�gurations c.

Proof: First note that the addition on con�gurations of ca�90(m) is trivially

de�ned by component-wise (modulo 2). It is easy to see that f is additive, that

is, f(c + c

0

) = f(c) + f(c

0

). For the injectivity of f it su�ces to show that c = 0

if f(c) = 0. Assume that f(c) = 0 in the quotient ring F

2

[x]=(x

2m

� 1). Since

t

m

(i) = x

i

+ x

2m�i

for an integer i with 1 6 i 6 m� 1 an identity

m�1

X

i=1

c

i

(x

i

+ x

2m�i

) = p(x)(x

2m

� 1)

5



holds in the polynomial ring F

2

[x] for some polynomial p(x). Comparing with the

degrees of x on both sides of the identity, it turns out that it is impossible unless

p(x) = 0. Hence we have c

1

= c

2

= � � � = c

m�2

= c

m�1

= 0. [The injectivity

of f means the linear independence of the family ft

m

(1); t

m

(2); � � � ; t

m

(m � 1)g

of Laurent polynomials.] An easy computation using Proposition 2.1 shows the

following equation:

t

m

m�1

X

i=1

c

i

t

m

(i) =

m�1

X

i=1

(c

i�1

+ c

i+1

)t

m

(i) (c

0

= c

m

= 0);

which claims t

m

f(c) = f(�

m

(c)). 2

The last lemma ensures that the following reformulation of cellular automata

ca�90(m) with Laurent polynomials t

m

(i) is the same as the combinatorial one

stated in the Introduction.

De�nition 2.3: A con�guration c of a cellular automaton ca�90(m) is a Laurent

polynomial

c =

m�1

X

i=1

c

i

t

m

(i)

in the quotient ring F

2

[x]=(x

2m

� 1), where c

i

= 0 or 1 for all integers i with

1 6 i 6 m � 1. The global transition function �

m

of ca�90(m) is de�ned by

�

m

(c) = t

m

c for every con�guration c. A con�guration a

m

of ca� 90(m) is a

particular con�guration whose cells all have the state 1, that is, a

m

=

P

m�1

i=1

t

m

(i).

2

The following is the basic properties of cellular automata ca�90(m) useful for

the later discussion.

Lemma 2.4: The following statements hold in a cellular automaton ca�90(m):

(a) t

m

a

m

= t

m

(m � 1)a

m

= t

m

(1) + t

m

(m � 1). In general, t

m

(i)a

m

= t

m

(i) +

t

m

(m� i) for each integer i.

(b) If m = 2

k

for a positive integer k, then t

2

k�1

m

a

m

= 0. In general, t

m

(m=2)a

m

=

0 if m is even.

(c) If 2Djm for a positive integer D, then t

m

(D)

P

m=2D�1

i=1

t

m

(2iD) = t

m

(D)a

m

:

(d) If m is odd, then t

m

c = 0 is equivalent to c = 0 for a con�guration c of

ca�90(m). [That is, if m is odd, then the global transition function �

m

of

ca�90(m) is a bijection and so all con�gurations are on limit cycles.]

(e) If m is odd and 2

u

= �1 mod m for a positive integer u, then t

2

u

�1

m

a

m

= a

m

.

Proof: (a) Using the formulas 2.1 we have

t

m

a

m

=

m�1

X

i=1

t

m

(i� 1) +

m�1

X

i=1

t

m

(i+ 1)

= t

m

(1) +

m�2

X

i=2

t

m

(i) +

m�2

X

i=2

t

m

(i) + t

m

(m� 1)

= t

m

(1) + t

m

(m� 1);

6



and

t

m

(m � 1)a

m

=

m�1

X

i=1

t

m

(i�m+ 1) +

m�1

X

i=1

t

m

(i+m� 1)

=

�2

X

i=2�m

t

m

(i) + t

m

(�1) + t

m

(m+ 1) +

2m�2

X

i=m+2

t

m

(i)

= t

m

(1) + t

m

(m� 1);

because of

�2

X

i=2�m

t

m

(i) =

2m�2

X

i=m+2

t

m

(i) by 2.1(e).

(b) It follows directly from (a) that t

m

(m=2)a

m

= t

m

(m=2)+ t

m

(m�m=2) = 0.

(c) Using the formulas 2.1 we have

t

m

(D)

m=2D�1

X

i=1

t

m

(2iD) =

m=2D�1

X

i=1

t

m

(2iD �D) +

m=2D�1

X

i=1

t

m

(2iD +D)

= t

m

(D) + t

m

(m�D)

= t

m

(D)a

m

:

(d) Assume that t

m

c = 0 for c =

m�1

X

i=1

c

i

t

m

(i). Then we have c

i�1

= c

i+1

for i = 1; 2; � � � ; m � 1 (where c

0

= c

m

= 0). Hence, noticing that m is odd,

c

0

= c

2

= c

4

= � � � = c

m�1

and c

m

= c

m�2

= c

m�4

= � � � = c

3

= c

1

. This shows that

c = 0.

(e) As 2

u

= �1 mod m there is an integer r such that 2

u

= m(2r + 1) � 1.

Hence by Proposition 2.1 t

2

u

m

= t

m

(2mr + m � 1) = t

m

(m � 1) = t

m

(m � 1)

and so t

2

u

m

a

m

= t

m

(m � 1)a

m

= t

m

(1) + t

m

(m � 1) = t

m

a

m

by (a), which proves

t

m

t

2

u

�1

m

a

m

= t

m

a

m

. Therefore the desired equation follows from (d). 2

Denote a con�guration c of ca�90(m) (with the combinatorial de�nition in the

introduction) by a column vector

c =

0

B

B

B

B

B

B

B

@

c

1

c

2

.

.

.

c

m�2

c

m�1

1

C

C

C

C

C

C

C

A

and de�ne an (m� 1)� (m� 1) matrix

T

m

=

0

B

B

B

B

B

B

B

B

B

@

0 1

1 0 1

1 0 1

.

.

.

.

.

.

.

.

.

1 0 1

1 0

1

C

C

C

C

C

C

C

C

C

A

:
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Then the global transition function �

m

of ca�90(m) is represented by

�

m

(c) =

0

B

B

B

B

B

B

B

B

B

@

0 1

1 0 1

1 0 1

.

.

.

.

.

.

.

.

.

1 0 1

1 0

1

C

C

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

B

B

B

@

c

1

c

2

.

.

.

.

.

.

c

m�2

c

m�1

1

C

C

C

C

C

C

C

C

C

C

A

;

or simply by �

m

(c) = T

m

c. Now let '

m

(z) be the characteristic polynomial (in

F

2

[z]) of T

m

, that is,

'

m

(z) = jT

m

� zE

m�1

j =

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

z 1

1 z 1

1 z 1

.

.

.

.

.

.

.

.

.

1 z 1

1 z

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

;

where E

m�1

is the (m� 1)-dimensional unit matrix.

The following lemma states the important properties of the characteristic poly-

nomial '

m

(z) of T

m

.

Lemma 2.5: (a) '

k+2

(z) = z'

k+1

(z) + '

k

(z) for all non-negative integers k.

(b) '

m

(t

m

)c = 0 for all con�gurations c of ca� 90(m).

Proof: (a) Expanding the determinant jT

k+2

� zE

k+1

j twice by Laplace's ex-

pansion theorem it follows that '

k+2

(z) = z'

k+1

(z)+'

k

(z). A direct computation

shows that '

2

(z) = z and '

3

(z) = z

2

+ 1. [De�ne '

0

(z) = 0 and '

1

(z) = 1. Then

all '

k

(z) are computed by the recursion formula '

k+2

(z) = z'

k+1

(z) + '

k

(z).]

(b) From a well-known theorem of Cayley�Hamilton it follows that '

m

(T

m

) =

0(zero matrix). Recall that the function f de�ned in Lemma 2.2 satis�es an equa-

tion f (T

m

c) = t

m

f (c) for all con�gurations c of ca � 90(m). Generalizing this

equation one can see that f( (T

m

)c) =  (t

m

)f(c) for any polynomial  (z) in

F

2

[z]. fNote that  (T

m

) = b

0

E

m�1

+ b

1

T

m

+ b

2

T

2

m

+ � � � + b

k

T

k

m

for a polynomial

 (z) = b

0

+b

1

z+b

2

z

2

+� � �+b

k

z

k

in F

2

[x].g Hence '

m

(t

m

)c = 0 for all con�gurations

c in ca � 90(m), because '

m

(t

m

)f(c) = f ('

m

(T

m

)c) = f(0) = 0 and f(c) can be

identi�ed with c. 2

The lemma below is a crux for analyzing the kernel of global transition functions

of two-dimensional cellular automata ca�90(m;n).

Lemma 2.6: Let c be a con�guration of ca�90(m).

(a) If '

k

(t

m

)c = 0 for a positive integer k, then '

k+i

(t

m

)c = '

k�i

(t

m

)c for each

integer i with 1 6 i 6 k.

(b) Assume that '

k

(t

m

)c = 0 and r is an integer with 0 6 r < k. If q is odd,

then '

qk+r

(t

m

)c = '

k�r

(t

m

)c, and if q is even, then '

qk+r

(t

m

)c = '

r

(t

m

)c.

(c) Let D be the least positive integer such that '

D

(t

m

)c = 0 in ca�90(m). Then

'

k

(t

m

)c = 0 if and only if Djk. In particular, Djm.

8



Proof: (a) Assume that '

k

(t

m

)c = 0. Then by the recursion formula Lemma

2.5(a) we have

'

k+1

(t

m

)c = t

m

'

k

(t

m

)c+ '

k�1

(t

m

)c = '

k�1

(t

m

)c:

Assume that '

k+i�2

(t

m

)c = '

k�i+2

(t

m

)c and '

k+i�1

(t

m

)c = '

k�i+1

(t

m

)c for an

integer i with 2 6 i 6 k. Then it follows that

'

k+i

(t

m

)c = t

m

'

k+i�1

(t

m

)c+'

k+i�2

(t

m

)c = t

m

'

k�i+1

(t

m

)c+'

k�i+2

(t

m

)c = '

k�i

(t

m

)c:

(b) As '

k

(t

m

)c = 0 it follows from (a) that '

2k

(t

m

)c = '

0

(t

m

)c = 0, '

3k

(t

m

)c =

'

k

(t

m

)c = 0, and so on. Hence '

qk

(t

m

)c = 0 for all positive integers q. If q = 2q

0

+1

(q

0

> 0), then

'

qk+r

(t

m

)c = '

(q

0

+1)k+q

0

k+r

(t

m

)c = '

(q

0

+1)k�q

0

k�r

(t

m

)c = '

k�r

(t

m

)c;

since '

(q

0

+1)k

(t

m

)c = 0. If q = 2q

0

(q

0

> 1), then

'

qk+r

(t

m

)c = '

(q

0

+1)k+(q

0

�1)k+r

(t

m

)c = '

(q

0

+1)k�(q

0

�1)k�r

(t

m

)c = '

k+(k�r)

(t

m

)c

= '

k�(k�r)

(t

m

)c = '

r

(t

m

)c;

since '

(q

0

+1)k

(t

m

)c = 0 and '

k

(t

m

)c = 0.

(c) It has been showed in the proof of (b) that '

k

(t

m

)c = 0 if Djk. Next assume

that '

k

(t

m

)c = 0 and k = qD+ r(0 6 r < D). If q is even, then '

k

(t

m

)c = '

r

(t

m

)c

by (b) and so r = 0 by the minimality of D. If q is odd, then '

k

(t

m

)c = '

D�r

(t

m

)c

by (b) and so r = 0 by the minimality of D. 2

Let D be a positive integer. The substitution operator

�

D

: F

2

[x]=(x

2m

� 1) ! F

2

[x]=(x

2mD

� 1)

is a function de�ned by �

D

(p(x)) = p(x

D

) for all Laurent polynomial p(x) in

F

2

[x]=(x

2m

� 1). Assume that p(x) = q(x) in F

2

[x]=(x

2m

� 1). Then p(x)� q(x) =

u(x)(x

2m

� 1) for some polynomial u(x) and so p(x

D

)� q(x

D

) = u(x

D

)(x

2mD

� 1)

(by substituting x

D

into x), which shows that p(x

D

) = q(x

D

) in F

2

[x]=(x

2mD

� 1).

Hence �

D

is well de�ned. It is easy to see that �

D

is a ring homomorphism, namely,

�

D

(p(x) + q(x)) = �

D

(p(x)) + �

D

(q(x)) and �

D

(p(x)q(x)) = �

D

(p(x))�

D

(q(x)) for

all p(x); q(x) in F

2

[x]=(x

2m

� 1).

The reduction operator

�

D

: F

2

[x]=(x

2mD

� 1) ! F

2

[x]=(x

2m

� 1)

is a function de�ned by �

D

(p(x)) = p(x) for all Laurent polynomial p(x) in F

2

[x]=(x

2mD

�

1). Assume that p(x) = q(x) in F

2

[x]=(x

2mD

�1). Then p(x)�q(x) = u(x)(x

2mD

�1)

for some polynomial u(x) and so

p(x) � q(x) = u(x)(x

2m

� 1)(x

2m(D�1)

+ x

2m(D�2)

+ � � �+ x

2m

+ 1);

which shows that p(x) = q(x) in F

2

[x]=(x

2m

� 1). Hence �

D

is well de�ned. It

is also easy to see that �

D

is a ring homomorphism, namely, �

D

(p(x) + q(x)) =

�

D

(p(x)) + �

D

(q(x)) and �

D

(p(x)q(x)) = �

D

(p(x))�

D

(q(x)) for all p(x); q(x) in

F

2

[x]=(x

2mD

� 1). The following is the basic properties of the substitution and

reduction operators.

Proposition 2.7:
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(a) �

D

(t

m

(i)) = t

mD

(iD) for i = 1; 2; � � � ;m�1. In particular, �

D

(t

m

) = t

mD

(D).

(b) �

D

(a

m

) =

P

m�1

i=1

t

mD

(iD).

(c) If t

k

m

a

m

= a

m

in ca � 90(m), then ft

mD

(D)g

k

�

D

(a

m

) = �

D

(a

m

) in ca �

90(mD).

(d) �

D

(t

mD

(i)) = t

m

(i) for i = 1; 2; � � � ;mD � 1.

(e) If D is even, then �

D

(a

mD

) = 0, and if D is odd, then �

D

(a

mD

) = a

m

.

Proof: The proposition follows from the following simple computations.

(a) �

D

(t

m

(i)) = �

D

(x

i

+ x

2m�i

) = x

Di

+ x

2mD�iD

= t

mD

(iD).

(b) �

D

(a

m

) =

P

m�1

i=1

�

D

(t

m

(i)) =

P

m�1

i=1

t

mD

(iD).

(c) �

D

(a

m

) = �

D

(t

k

m

a

m

) = f�

D

(t

m

)g

k

�

D

(a

m

) = ft

mD

(D)g

k

�

D

(a

m

).

(d) �

D

(t

mD

(i)) = �

D

(x

i

+x

2mD�i

) = x

i

+x

2mD�i

= x

i

+x

2m(D�1)

x

2m�i

= x

i

+x

2m�i

=

t

m

(i).

(e) �

D

(a

mD

) =

P

mD�1

i=1

�

D

(t

mD

(i)) =

P

mD�1

i=1

t

m

(i) = Da

m

. 2

In Ref. 7 the inner product has been found to be a useful tool for not only

vector analysis but also theory of cellular automata. Here we recall some basic

facts on inner product of con�gurations of ca�90(m). Let c =

P

m�1

i=1

c

i

t

m

(i) and

c

0

=

P

m�1

i=1

c

0

i

t

m

(i) be two con�gurations of ca�90(m). The inner product hc; c

0

i of

c and c

0

is de�ned by

hc; c

0

i =

m�1

X

i=1

c

i

c

0

i

mod 2:

Proposition 2.8: The following statements hold for con�gurations c; c

0

and c

00

of

ca�90(m):

(a) hc; c

0

i = hc

0

; ci.

(b) hc; c

0

+ c

00

i = hc; c

0

i+ hc; c

00

i.

(c) hc; t

m

(i)i = c

i

for all i = 1; 2; � � � ;m� 1.

(d) If hc; t

m

(i)i = hc

0

; t

m

(i)i for i = 1; 2; � � � ;m� 1, then c = c

0

.

(e) hc

2

k

; a

m

i = hc; a

m

i for a non-negative integer k.

(f) ht

m

c; c

0

i = hc; t

m

c

0

i.

(g) If hc; t

m

(i)i = hc; t

m

(m � i)i for all i = 1; 2; � � � ;m � 1, then ht

m

c; t

m

(i)i =

ht

m

c; t

m

(m� i)i for all integers i.

(h) ht

k

m

a

m

; t

m

(i)i = ht

k

m

a

m

; t

m

(m� i)i for all integers i and a non-negative integer

k.

Proof: (a)�(d) are clear. (e) If c =

P

m�1

i=1

c

i

t(i), then

hc

2

; a

m

i =

*

m�1

X

i=1

c

i

2

ft(i)g

2

; a

m

+

=

*

m�1

X

i=1

c

i

t(2i); a

m

+

=

m�1

X

i=1

c

i

= hc; a

m

i:

(f) ht

m

c; c

0

i =

P

m�1

i=1

(c

i�1

+ c

i+1

)c

0

i

=

P

m�1

i=1

c

i

(c

0

i�1

+ c

0

i+1

) = hc; t

m

c

0

i.

(g) For an integer i with 0 6 i < m we have

ht

m

c; t

m

(i)i = c

i�1

+ c

i+1

= c

m�i+1

+ c

m�i�1

= ht

m

c; t

m

(m� i)i:
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Otherwise let i = 2mk + r (0 6 r < 2m). Then if 0 6 r < m, then t

m

(i) = t

m

(r)

and t

m

(m� i) = t

m

(m� r) and so ht

m

c; t

m

(i)i = ht

m

c; t

m

(r)i = ht

m

c; t

m

(m� r)i =

ht

m

c; t

m

(m�i)i. Ifm 6 r < 2m, then t

m

(i) = t

m

(2m�r) and t

m

(m�i) = t

m

(r�m)

and so ht

m

c; t

m

(i)i = ht

m

c; t

m

(2m � r)i = ht

m

c; t

m

(r �m)i = ht

m

c; t

m

(m � i)i.

(h) It is simply a corollary of (g). 2

III. TWO-DIMWNSIONAL CELLULAR AUTOMATA ca�90(m;n)

In this section we provide an algebraic reformulation of two-dimensional cellular

automata ca�90(m;n) using Laurent polynomials and some results on ca�90(m)

needed in the later sections.

In what follows we assume that m and n are inetegers > 1. Let F

2

= f0; 1g(=

Z=2Z) be a prime �eld of characteristic 2, F

2

[x; y] be the polynomial ring over F

2

with two indeterminates x and y, and F

2

[x; y]=(x

2m

�1; y

2n

�1) be the quotient ring

of F

2

[x; y] by the ideal (x

2m

�1; y

2n

�1) generated by two polynomials x

2m

�1 and

y

2n

� 1. A polynomial in the quotient ring F

2

[x; y]=(x

2m

� 1; y

2n

� 1) is sometimes

called a Laurent polynomial. De�ne Laurent polynomials t

m

(i) = x

i

+ x

�i

and

s

n

(j) = y

j

+y

�j

for all inetgers i and j. In particular, we set t

m

= t

m

(1)(= x+x

�1

)

and s

n

= s

n

(1)(= y + y

�1

). Further we set a

m

=

P

m�1

i=1

t

m

(i) and b

n

=

P

n�1

j=1

s

n

(j).

The following proposition gives elementary formulae on Laurent polynomials t

m

(i)

and s

n

(j). [We will omit su�xes m and n in t

m

(i), t

m

, s

n

(j), s

n

, a

m

, and b

n

unless

confusion occurs.]

Proposition 3.1: In the quotient ring F

2

[x; y]=(x

2m

� 1; y

2n

� 1) the following

holds for integers i; j and a non-negative integer k:

(a) t(0) = t(m) = 0, s(0) = s(n) = 0;

(b) t(�i) = t(i), s(�j) = s(j);

(c) t

2

k

= t(2

k

); t(i)

2

k

= t(2

k

i), s

2

k

= s(2

k

); s(j)

2

k

= s(2

k

j);

(d) t(i)t(j) = t(i� j) + t(i+ j), s(i)s(j) = s(i� j) + s(i+ j);

(e) t(2m + i) = t(i), s(2n+ j) = s(j);

(f) t(m+ i) = t(m� i), s(n + j) = s(n� j). 2

The following lemma indicates a fundamental relationship between cellular au-

tomata ca�90(m;n) and the quotient ring F

2

[x; y]=(x

2m

� 1; y

2n

� 1).

Lemma 3.2: Let f be a function asigning a Laurent polynomial

f(c) =

m�1;n�1

X

i=1;j=1

c

i;j

t(i)s(j)

in F

2

[x; y]=(x

2m

� 1; y

2n

� 1) to each con�guration c = (c

i;j

)

16i6m�1;16j6n�1

of

ca�90(m; n). Then f is an additive and injective function such that f(� (c)) =

(t+ s)f (c) for all con�gurations c.

Proof: First note that the addition on con�gurations of ca�90(m;n) is trivially

de�ned by component-wise (mod2). It is easy to see that f is additve, that is,

f(c + c

0

) = f(c) + f(c

0

). For the injectivity of f it su�ces to show that c = 0 if

11



f(c) = 0. Assume that f (c) = 0 in the quotient ring F

2

[x; y]=(x

2m

� 1; y

2n

� 1).

Since t(i) = x

i

+ x

2m�i

and s(j) = y

j

+ y

2n�j

an identity

m�1;n�1

X

i=1;j=1

c

i;j

(x

i

+ x

2m�i

)(y

j

+ y

2n�j

) = p(x; y)(x

2m

� 1) + q(x; y)(y

2n

� 1)

holds in the polynomial ring F

2

[x; y] for some polynomials p(x; y) and q(x; y). How-

ever, comparing with the degree of both sides of the last identity with respect to x

and y it turns out that it is impossible unless p(x; y) = q(x; y) = 0. Hence we have

c

i;j

= 0 for all i; j. [The injectivity of f is equivalent to the linear independence of

the family ft(i)s(j) : 1 6 i 6 m� 1; 1 6 j 6 n � 1g of Laurent polynomials.] An

easy computation using Proposition 3.1(d) shows the following equation:

(t+ s)

m�1;n�1

X

i=1;j=1

c

i;j

t(i)s(j) =

m�1;n�1

X

i=1;j=1

(c

i�1;j

+ c

i;j�1

+ c

i;j+1

+ c

i+1;j

)t(i)s(j);

where c

i;0

= c

i;n

= c

0;j

= c

m;j

= 0, and hence this claims f(�(c)) = (t+ s)f (c). 2

Lemma 3.2 ensures that the following reformulation of cellular automata ca�

90(m;n) with Laurent polynomials t(i) and s(j) is the same as the combinatorial

one stated in the Introduction.

De�nition 3.3: A con�guration c of a cellular automaton ca� 90(m;n) is a

Laurent polynomial

c =

m�1;n�1

X

i=1;j=1

c

i;j

t(i)s(j)

in the quotient ring F

2

[x; y]=(x

2m

� 1; y

2n

� 1), where c

i;j

2 F

2

for all i and j with

1 6 i 6 m � 1 and 1 6 j 6 n � 1. The global transition function � (= �

m;n

) of

ca�90(m;n) is de�ned by � (c) = (t+ s)c for every con�guration c. A con�guration

ab of ca�90(m;n) is a particular con�guration whose all cells have the state 1, that

is,

ab =

m�1;n�1

X

i=1;j=1

t(i)s(j):

The next con�guration to ab is denoted by �(= �

m;n

), that is, � = (t+ s)ab. 2

Lemma 3.2 points out that the con�guration space ca�90(m;n) consisting of

all con�gurations is an (m � 1)(n � 1)-dimensional vector space over F

2

with a

basis ft(i)s(j) : 1 6 i 6 m� 1; 1 6 j 6 n� 1g. With the above reformulations our

original problem

7

is as follows.

Problem A: Find a necessary and su�cient condition that there is a positive

integer h such that �̂

h

(c) = �

h

(c) for all con�gurations c of ca�90(m; n).

It is easy to see that

�̂

h

(c) = �

h

(c) +

h�1

X

j=0

�

j

(�);

and so �̂

h

(c) = �

h

(c) for all c (or, equivalently for some c) if and only if

P

h�1

j=0

�

j

(�) =

0. Assume that

P

h�1

j=0

�

j

(�) = 0. Then

�

h

(�) + � = �

0

@

h�1

X

j=0

�

j

(�)

1

A

+

h�1

X

j=0

�

j

(�) = 0;

12



which claims that �

h

(�) = �. Conversely if �

h

(�) = �, then

2h�1

X

j=0

�

j

(�) =

h�1

X

j=0

�

j

(�) +

h�1

X

j=0

�

j

�

h

(�) = 0:

Hence Problem A is equivalent to the following problem, which is the subject of

this paper.

Problem B: Find a necessary and su�cient condition that the initial con�gura-

tion � of ca�90(m; n) lies on a limit cycle. (What is the period length of the limit

cycle when that is the case?)

As ca�90(m; n) is �nite, the initial con�guration � lies on a limit cycle if and

only if there is a positive integer k such that �

k

(�) = �. If such k exists, the least

positive integer k = K(m; n) with �

k

(�) = � is the period length of a limit cycle on

which � lies. Hence we say that the period length K(m;n) of ca�90(m;n) exists if

� lies on a limit cycle. And the period lengthK(m;n) of ca�90(m;n) does not exist

if � does not lie on a limit cycle. It is immediate that K(m; 2) = K(2;m) = K(m),

where K(m) is the period length of one-dimensional cellular automata ca�90(m)

studied in Ref. 7. [Recall that the period length K(m) of one-dimensional cellular

automaton ca�90(m) is the least positive integer k such that t

k

m

t

m

a

m

= t

m

a

m

in

ca�90(m).]

Let D and E be positive integers. The substitution operator

�

D;E

: F

2

[x; y]=(x

2m

� 1; y

2n

� 1) ! F

2

[x; y]=(x

2mD

� 1; y

2nD

� 1)

is a function which assigns a Laurent polynomial p(x

D

; y

E

) in F

2

[x; y]=(x

2mD

�

1; y

2nE

�1) to each Laurent polynomial p(x; y) in F

2

[x; y]=(x

2m

�1; y

2n

�1), that is,

�

D;E

(p(x; y)) = p(x

D

; y

E

). Trivially �

D;E

is well de�ned and a ring homomorphism

such that �

D;E

(p(x)) = �

D

(p(x)) and �

D;E

(q(y)) = �

E

(q(y)).

The reduction operator

�

D;E

: F

2

[x; y]=(x

2mD

� 1; y

2nE

� 1) ! F

2

[x; y]=(x

2m

� 1; y

2n

� 1)

is a function which assigns a Laurent polynomial p(x; y) in F

2

[x; y]=(x

2m

� 1; y

2n

�

1) to each Laurent polynomial p(x; y) in F

2

[x; y]=(x

2mD

� 1; y

2nE

� 1), that is,

�

D;E

(p(x; y)) = p(x; y). Similarly �

D;E

is well de�ned and a ring homomorphism

such that �

D;E

(p(x)) = �

D

(p(x)) and �

D;E

(q(y)) = �

E

(q(y)).

At the end of the section we de�ne inner products of con�gurations of cel-

lular automata ca� 90(m;n). The inner product hc; c

0

i of two con�gurations

c =

P

m�1;n�1

i=1;j=1

c

i;j

t(i)s(j) and c

0

=

P

m�1;n�1

i=1;j=1

c

0

i;j

t(i)s(j) of ca�90(m;n) is de�ned

by

hc; c

0

i =

m�1;n�1

X

i=1;j=1

c

i;j

c

0

i;j

mod 2:

Proposition 3.4: The following statements hold for con�gurations c; c

0

, and c

00

of ca�90(m;n):

(a) hc; c

0

i = hc

0

; ci.

(b) hc; c

0

+ c

00

i = hc; c

0

i+ hc; c

00

i.

(c) hc; t

m

(i)s

n

(j)i = c

i;j

for all i = 1; 2; � � � ;m � 1 and all j = 1; 2; � � � ; n� 1.

13



(d) If hc; t

m

(i)s

n

(j)i = hc

0

; t

m

(i)s

n

(j)i for all i = 1; 2; � � � ;m � 1 and all j =

1; 2; � � � ; n� 1, then c = c

0

. 2

Remark that for a con�guration c of ca�90(m) and a con�guration d of ca�90(n)

the multiplication cd gives a con�guration of ca�90(m;n).

Lemma 3.5: If c; c

0

are con�gurations of ca�90(m) and d; d

0

are con�gurations

of ca�90(n), then hcd; c

0

d

0

i = hc; c

0

ihd; d

0

i.

Proof: Let c =

P

m�1

i=1

c

i

t

m

(i), c

0

=

P

m�1

i=1

c

0

i

t

m

(i), d =

P

n�1

j=1

c

j

s

n

(j), and d

0

=

P

n�1

j=1

d

0

j

s

n

(j). Then

hcd; c

0

d

0

i =

*

m�1;n�1

X

i=1;j=1

c

i

d

j

t

m

(i)s

n

(j);

m�1;n�1

X

i=1;j=1

c

0

i

d

0

j

t

m

(i)s

n

(j)

+

=

m�1;n�1

X

i=1;j=1

c

i

d

j

c

0

i

d

0

j

=

 

m�1

X

i=1

c

i

c

0

i

!

0

@

n�1

X

j=1

d

j

d

0

j

1

A

= hc; c

0

ihd; d

0

i:

2

IV. EXISTENCE OF PERIOD LENGTHS K(m;n)

In this section we disscuss existence theorems on the period lengths K(m; n)

of two-dimensional cellular automata ca�90(m;n). The least positive integer u

satisfying 2

u

= �1 mod m is called the multiplicative suborder of 2 modulo m and

denoted by sord(2;m). It easily follows from the Euler�Fermat theorem that the

multiplicative suborder of 2 modulo m exists if and only if m is odd.

Theorem 4.1: If m and n are odd integers, then K(m; n)j2

w

� 1, where w

denotes the least common multiple of u =sord(2;m) and v =sord(2;n).

Proof: It follows from Lemma 2.4(e) that t

2

u

�1

a = a in ca�90(m) and s

2

v

�1

b = b

in ca�90(n). As 2

u

�1j2

w

�1 and 2

v

�1j2

w

�1 we have t

2

w

�1

a = a and s

2

w

�1

b = b.

Hence

(t+ s)

2

w

�1

� = (t+ s)

2

w

ab = t

2

w

ab+ as

2

w

b = tab+ asb = �

in ca�90(m;n). 2

Theorem 4.2: Let m be odd and k a positive integer. If t

H

m

a

m

= a

m

in ca�

90(m) for a positive integerH, thenK(m; 2

k

)j2

k�1

H. In particular,K(m; 2

k

)j2

k�1

(2

u

�

1) for u =sord(2;m).

Proof: Since t

H

a = a by the hypothesis and s

2

k�1

b = 0 from Lemma 2.4(b) we

have

(t+ s)

2

k�1

H

ab = (t

2

k�1

+ s

2

k�1

)

H

ab = t

2

k�1

H

ab = ab

in ca�90(m; 2

k

). Hence (t + s)

2

k�1

H

� = �. Finally remark that u =sord(2;m)

satis�es t

2

u

�1

a = a by Lemma 2.4(e). 2

Lemma 4.3: LetD be the greatest common divisor ofm and n. If a con�guration

c =

m�1;n�1

X

i=1;j=1

c

i;j

t(i)s(j)

of ca�90(m;n) satis�es (t+ s)c = 0, then

c

i;j

=

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

0 if i

0

= 0 or j

0

= 0

c

i

0

;j

0

if 0 < i

0

; 0 < j

0

; k : even and l : even

c

i

0

;D�j

0

if 0 < i

0

; 0 < j

0

; k : even and l : odd

c

D�i

0

;j

0

if 0 < i

0

; 0 < j

0

; k : odd and l : even

c

D�i

0

;D�j

0
if 0 < i

0

; 0 < j

0

; k : odd and l : odd
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where i = kD + i

0

; j = lD + j

0

(0 6 i

0

< D; 0 6 j

0

< D).

Proof: De�ne a sequence c

0

; c

1

; � � � ; c

n

of con�gurations of ca�90(m) by c

j

=

P

m�1

i=1

c

i;j

t(i) for j = 1; 2; � � � ; n� 1 and c

0

= c

n

= 0. Then a computation

(t+s)c = (t+s)

n�1

X

j=1

c

j

s(j) =

n�1

X

j=1

ftc

j

s(j)+c

j

s(j�1)+c

j

s(j+1)g =

n�1

X

j=1

(tc

j

+c

j+1

+c

j�1

)s(j)

shows that c

j+1

= tc

j

+ c

j�1

(j = 1; 2; � � � ; n � 1) because of (t + s)c = 0. Hence

c

j

= '

j

(t)c

1

for all j = 0; 1; � � � ; n. Let E be the least positive integer such that

c

E

= '

E

(t)c

1

= 0. Then by Lemma 2.6(c) Ejm and Ejn since '

n

(t)c

1

= c

n

= 0

(the null boundary condition). Hence EjD and so c

D

= c

2D

= � � � = 0 by Lemma

2.6(c). Therefore c

i;j

= 0 if j

0

= 0. Moreover, if l is odd, then c

lD+j

0

= c

D�j

0

by

Lemma 2.6(b), and, if l is even, then c

lD+j

0

= c

j

0

. Similarly set ĉ

i

=

P

n�1

j=1

c

i;j

s(j) for

i = 1; 2; � � � ; m� 1 and ĉ

0

= ĉ

m

= 0. Then we have c

i;j

= 0 if i

0

= 0, ĉ

kD+i

0

= ĉ

D�i

0

if k is odd, and ĉ

kD+i

0

= ĉ

i

0

if k is even. Therefore the proof is completed. 2

The following corollary is an important result from the last lemma.

Corollary 4.4: If m and n are mutually disjoint, then an equality (t + s)c = 0

implies c = 0 for a con�guration c of ca�90(m;n), that is, the global transition

function � of ca�90(m;n) is a bijection. 2

Theorem4.5: If m and n are mutually disjoint odd integers and k is a positive

integer, then K(2

k

m; n)j2

k

(2

w

� 1), where w denotes the least common multiple of

u =sord(2;m) and v =sord(2;n).

Proof: We write t, a, s, b and � for t

2

k

m

, a

2

k

m

, s

n

, b

n

and �

2

k

m;n

, respectively.

Applying the substitution operator �

2

k to the equality t

m

2

u

�1

a

m

= a

m

in ca�90(m)

which comes from Lemma 2.4(e) we have t

2

k

(2

u

�1)

�

2

k(a

m

) = �

2

k(a

m

) in ca�90(2

k

m)

by Propsition 2.1(c) and 2.7(c). However, by Lemma 2.4(c) and Propsition 2.7(b)

t

2

k�1

�

2

k(a

m

) = t

2

k�1

a in ca�90(2

k

m) and so t

2

k

(2

u

�1)

t

2

k

a = t

2

k

a in ca�90(2

k

m)

from

t

2

k

(2

u

�1)

t

2

k

a = t

2

k�1

t

2

k

(2

u

�1)

t

2

k�1

a = t

2

k�1

t

2

k

(2

u

�1)

t

2

k�1

�

2

k(a

m

) = t

2

k�1

t

2

k�1

�

2

k(a

m

)

= t

2

k�1

t

2

k�1

a:

Also s

2

v

�1

b = b follows from Lemma 2.4(e). Therefore

(t+ s)

2

k

�1

(t+ s)

2

k

(2

w

�1)

� = (t+ s)

2

k+w

ab = (t

2

k+w

+ s

2

k+w

)ab = t

2

k

(2

w

�1)

t

2

k

ab+ as

2

k

s

2

k

(2

w

�1)

b

= t

2

k

ab+ as

2

k

b = (t+ s)

2

k

�1

�

in ca�90(2

k

m) because of 2

u

� 1j2

w

� 1 and 2

v

� 1j2

w

� 1. As 2

k

m and n are

mutually disjoint, the global transition function � of ca�90(2

k

m;n) is a bijection

by Corollary 4.4. Hence (t+ s)

2

k

(2

w

�1)

� = �. 2

Lemma 4.6: If m and n are odd, then an equation

(t+ s)

2(2

w

�1)

ab = �

2

(a

m

)b+ a�

2

(b

n

) + (t+ s)

2(2

w

�1)

�

2

(a

m

)�

2

(b

n

)

holds in ca�90(2m; 2n), where t = t

2m

, s = s

2n

, a = a

2m

, b = b

2n

, and w denotes

the least common multiple of u =sord(2;m) and v =sord(2;n).

Proof: First note from Lemma 2.4(c), (e) and Propsition 2.7(b), (c) that

t�

2

(a

m

) = ta, t

2(2

w

�1)

�

2

(a

m

) = �

2

(a

m

) in ca�90(2m) and s�

2

(b

n

) = sb, s

2(2

w

�1)

�

2

(b

n

) =
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�

2

(b

n

) in ca�90(2n). Set H = 2(2

w

� 1). Then we have

(t+ s)

H

ab+ (t+ s)

H

�

2

(a

m

)�

2

(b

n

) = t

H

ab+ as

H

b+

H�1

X

j=1

 

H

j

!

t

H�j

s

j

ab+ t

H

�

2

(a

m

)�

2

(b

n

)

+�

2

(a

m

)s

H

�

2

(b

n

) +

H�1

X

j=1

 

H

j

!

t

H�j

s

j

�

2

(a

m

)�

2

(b

n

)

= t

H

�

2

(a

m

)b+ as

H

�

2

(b

n

) +

H�1

X

j=1

 

H

j

!

t

H�j

s

j

ab

+�

2

(a

m

)�

2

(b

n

) + �

2

(a

m

)�

2

(b

n

) +

H�1

X

j=1

 

H

j

!

t

H�j

s

j

ab

= �

2

(a

m

)b+ a�

2

(b

n

)

in ca�90(2m; 2n). 2

Theorem 4.7: Ifm and n are mutually disjoint odd integers, thenK(2m; 2n)j2(2

w

�

1), where w denotes the least common multiple of u =sord(2;m) and v =sord(2;n).

Proof: We write t, s, a, b and � for t

2m

, s

2n

, a

2m

, b

2n

, and �

2m;2n

, respectively.

First note from Lemma 2.4(c) and Proposition 2.7(b) that t�

2

(a

m

) = ta in ca�

90(2m) and s�

2

(b

n

) = sb in ca�90(2n). As m and n are mutually disjoint, the

equality (t

m

+ s

n

)

2

w

�1

a

m

b

n

= a

m

b

n

in ca�90(m; n) follows from Theorem 4.1 and

Corollary 4.4. Applying the substitution operator �

2;2

to this equality we have

(t+ s)

2(2

w

�1)

�

2

(a

m

)�

2

(b

n

) = �

2

(a

m

)�

2

(b

n

)

in ca�90(2m; 2n) and so by Lemma 4.6

(t+ s)

2(2

w

�1)

� = (t+ s)(t + s)

2(2

w

�1)

ab

= (t+ s)f�

2

(a

m

)b+ a�

2

(b

n

) + (t+ s)

2(2

w

�1)

�

2

(a

m

)�

2

(b

n

)g

= (t+ s)f�

2

(a

m

)b+ a�

2

(b

n

) + �

2

(a

m

)�

2

(b

n

)g

= tab+ ta�

2

(b

n

) + ta�

2

(b

n

) + �

2

(a

m

)sb+ asb+ �

2

(a

m

)sb

= (t+ s)ab

= �

in ca�90(2m; 2n). 2

V. NONEXISTENCE OF PERIOD LENGTHS K(m;n)

In this section we will disscuss nonexistence theorems on the period lengths

K(m;n) of two-dimensional cellular automata ca�90(m;n).

Theorem 5.1: If m and n are even and at least one of m and n is a multiple

of 4, then the period length K(m;n) does not exist.

Proof: Assume that n is a a multiple of 4. The m=2th row of a con�guration

(t+s)

k

� (k > 0) in ca�90(m;n) is identical with the con�guration s

k

sb in ca�90(n),

because of the symmetry. Hence, if (t+ s)

k

� = � in ca�90(m;n) for some positive

integer k, then s

k

sb = sb in ca�90(n), which contradicts the fact (Ref. 7, Theorem

2.8) that the period length K(n) of ca�90(n) does not exist if 4jn. 2

Lemma 5.2: If m is odd and a con�guration

c =

m�1;n�1

X

i=1;j=1

c

i;j

t(i)s(j)
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in ca�90(m;m) satis�es (t + s)c = 0, c

1;1

= c

2;2

= � � � = c

m�1;m�1

and c

1;m�1

=

c

2;m�2

= � � � = c

m�1;1

, then c

i;j

= 0 for every pair (i; j) with j 6= i and j 6= m � i.

Proof: The assumption (t+ s)c = 0 means that

c

i�1;j

+ c

i;j�1

+ c

i;j+1

+ c

i+1;j

= 0

for every site (i; j) with 0 < i < m and 0 < j < n. By the induction the followng

(i)�(iv) can be proved:

(i)c

i;i+2j

= 0; (ii)c

i+2j;i

= 0; (iii)c

m�i;i+2j

= 0; and (iv) c

i;m�i�2j

= 0

for 0 < j < m and 0 < i < m � 2j. Here we prove only (i). From the assumption

(t+ s)c = 0 at a site (i; i+ 2j � 1) we have

c

i�1;i�1+2j

+ c

i;i+2(j�1)

+ c

i;i+2j

+ c

i+1;i+1+2(j�1)

= 0:

First set j = 1. Then c

i�1;i+1

= c

i;i+2

(by c

i;i

= c

i+1;i+1

) and so 0 = c

0;2

= c

1;3

=

� � � = c

m�3;m�1

. Hence c

i;i+2j

= 0 for j = 1 and 0 < i < m � 2j. Assume that

c

i;i+2(j�1)

= 0 for 0 < i < m�2(j�1). Then c

i�1;i�1+2j

= c

i;i+2j

for 0 < i < m�2j

[if 0 < i < m � 2j, then i + 1 < m � 2(j � 1) and c

i;i+2(j�1)

= c

i+1;i+1+2(j�1)

= 0

by the induction hypothesis] and so 0 = c

0;2j

= c

1;1+2j

= � � � = c

m�2j�1;m�1

. This

proves (i). Similarly (ii) follows from

c

i+2(j�1);i

+ c

i�1+2j;i�1

+ c

i+1+2(j�1);i+1

+ c

i+2j;i

= 0

at (i+ 2j � 1; i), (iii) follows from

c

m�(i+1);i+1+2(j�1)

+ c

m�i;i+2(j�1)

+ c

m�i;i+2j

+ c

m�(i�1);i�1+2j

= 0

at (m� i; i+ 2j � 1), and (iv) follows from

c

i�1;m�(i�1)�2j

+ c

i;m�i�2j

+ c

i;m�i�2(j�1)

+ c

i+1;i+1�2(j�1)

= 0

at (i; m � i � 2j + 1). Now let (i; j) be a pair of positive integers such that

0 < i < m; 0 < j < m, j 6= i and j 6= m � i. We have to prove c

i;j

= 0. If i + j is

even and i < j, then c

i;j

= c

i;i+2j

0

= 0 by (i), where 2j

0

= j � i. If i+ j is even and

i > j, then c

i;j

= c

i

0

+2j

0

;i

0

= 0 by (ii), where i

0

= j; 2j

0

= i � j. If i+ j is odd and

i+ j > m, then c

i;j

= c

m�i

0

;i

0

+2j

0

= 0 by (iii), where i

0

= m� i and 2j

0

= i+ j�m.

If i+j is odd and i+j < m, then c

i;j

= c

i;m�i�2j

0

= 0 by (iv), where 2j

0

= m� i�j.

This completes the proof. 2

Corollary 5.3: If m is odd, k is a nonnegative integer and u =sord(2;m), then

ab+ (t+ s

2

k

)

2

u

�1

ab =

m�1

X

i=1

t(i)fs(2

k

i) + s(m� 2

k

i)g

in ca�90(m;m).

Proof: Set N = 2

u

� 1 for short. First assume that k = 0. Two con�gurations

t

j

a and s

j

b of ca�90(m) are essentially the same. Hence, if t(i) and s(i) [or s(m�i)]

simultaneously appear in terms t

N�j

a and s

j

b of

(t+ s)

N

ab =

N

X

j=0

 

N

j

!

t

N�j

s

j

ab (1)

17



respectively, then they also simultaneously appear in t

j

a and s

N�j

b, respectively,

and their sum vanishes in (1) since

�

N

j

�

=

�

N

N�j

�

. Thus all the diagonal components

of ab + (t + s)

N

ab are equal to 1. On the other hand, Theorem 4.1 indicates

(t+ s)fab+ (t+ s)

N

abg = 0. Therefore the proof in the case of k = 0 is completed

by Lemma 5.2. Making use of inner products the result in the case of k = 0 can

be restated as for 0 < i; j < m:

hab+ (t+ s)

N

ab; t(i)s(j)i =

(

1 if j = i or j = m� i;

0 otherwise,

in ca�90(m;m). For the desired equality in the case of k > 0 it is enough to see

that for 0 < i; j < m,

hab+ (t+ s

2

k

)

N

ab; t(i)s(j)i =

(

1 if s(j) = s(2

k

i) or s(j) = s(m� 2

k

i)

0 otherwise,

in ca�90(m;m). When s(j) = s(2

k

j

0

) (0 < j

0

< m), making use of Proposition 2.8

we have

L = hab+ (t+ s

2

k

)

N

ab; t(i)s(j)i = 1 +

N

X

r=0

 

N

r

!

ht

N�r

s

2

k

r

ab; t(i)s(j)i

= 1 +

N

X

r=0

 

N

r

!

ht

N�r

a; t(i)ihs

2

k

r

b; s(j)i

= 1 +

N

X

r=0

 

N

r

!

ht

N�r

a; t(i)ihs

2

k

r

b; s(2

k

j

0

)i

= 1 +

N

X

r=0

 

N

r

!

ht

N�r

a; t(i)ihb; s

2

k

r

s(2

k

j

0

)i

= 1 +

N

X

r=0

 

N

r

!

ht

N�r

a; t(i)ihb; (s

r

s(j

0

))

2

k

i

= 1 +

N

X

r=0

 

N

r

!

ht

N�r

a; t(i)ihb; s

r

s(j

0

)i

= 1 +

N

X

r=0

 

N

r

!

ht

N�r

s

r

ab; t(i)s(j

0

)i

= hab+ (t+ s)

N

ab; t(i)s(j

0

)i

=

(

1 if j

0

= i or j

0

= m� i

0 otherwise.

Hence L = 1 if s(j) = s(2

k

i). If s(j) = s(m� 2

k

i), then

hs

2

k

r

b; s(j)i = hs

2

k

r

b; s(m� 2

k

i)i = hs

2

k

r

b; s(2

k

i)i

by the symmetry of s

2

k

r

b [Proposition 2.8(h)] and so L = 1 in the same way.

Now remark that if j is even there is a unique integer j

0

with s(j) = s(2

k

j

0

) and

0 < j

0

< m. [Since 2

k�1

and m are mutually disjoint there are integers P;Q

such that 2

k�1

P + mQ = 1. As jP=2 is an integer there are integers h; j

0

such

that jP=2 = hm + j

0

and 0 6 j

0

< m. Hence s(2

k

j

0

) = s(2

k

(Pj=2 � hm)) =

s(j�jmQ�2

k

hm) = s(j) since j and 2

k

are even.] Assume that s(j) 6= s(2

k

i) and

s(j) 6= s(m� 2

k

i) for 0 < i; j < m. If j is even, we can take an integer j

0

such that

s(j) = s(2

k

j

0

) and 0 < j

0

< m, and obviously j

0

6= i [if j

0

= i then s(j) = s(2

k

j

0

) =

s(2

k

i)] and j

0

6= m� i [if j

0

= m� i then s(j) = s(2

k

j

0

) = s(2

k

(m � i)) = s(2

k

i)],
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and hence L = 0. If j is odd, we can take an integer j

0

such that s(m�j) = s(2

k

j

0

)

and 0 < j

0

< m, and j

0

6= i [if j

0

= i then s(j) = s(m � 2

k

j

0

) = s(m � 2

k

i)] and

m� j

0

6= i [if j

0

= m� i then s(j) = s(m� 2

k

j

0

) = s(m� 2

k

(m� i)) = s(m� 2

k

i)],

and hence L = 0. fNote that t

m

(i) = t

m

(i

0

) implies t

m

(m� i) = t

m

(m� i

0

) because

t

m

(m� i) = t

m

(i)a

m

+ t

m

(i) [by Lemma 2.4(a)] = t

m

(i

0

)a

m

+ t

m

(i

0

) = t

m

(m� i

0

).g

The proof is completed. 2

Theorem 5.4:For an odd integer m the period length K(2m; 2m) does not

exist.

Proof: Applying the substitution operator �

2;2

to the equation (k = 0) obtained

in Corollary 5.3 we have the equality

�

2

(a

m

)�

2

(b

m

) + (t+ s)

2(2

u

�1)

�

2

(a

m

)�

2

(b

m

) =

m�1

X

i=1

t(2i)fs(2i) + s(2m� 2i)g (2)

in ca�90(2m; 2m). Also it follows from Lemma 4.6 that

(t+ s)

2(2

u

�1)

ab = �

2

(a

m

)b+ a�

2

(b

m

) + (t+ s)

2(2

u

�1)

�

2

(a

m

)�

2

(b

m

)

in ca�90(2m; 2m). Hence we have the following equality in ca�90(2m; 2m):

(t+ s)

2

u+1

�1

ab = (t+ s)(t+ s)

2(2

u

�1)

ab

= (t+ s)f�

2

(a

m

)b+ a�

2

(b

m

) + (t+ s)

2(2

u

�1)

�

2

(a

m

)�

2

(b

m

)g

= (t+ s)f�

2

(a

m

)b+ a�

2

(b

m

) + �

2

(a

m

)�

2

(b

m

) +Rg

= tab+ ta�

2

(b

m

) + ta�

2

(b

m

) + �

2

(a

m

)sb+ asb+ �

2

(a

m

)sb+ (t+ s)R

= (t+ s)ab+ (t+ s)R

= �+ (t+ s)R;

where R denotes the right-hand side of (2). As R

1;j

= 0 for j = 1; 2; � � � ; 2m � 1

and R

2;2

= 1 it is easy to see that �(R) = (t+ s)R 6= 0, for example,

R =

0

B

B

B

B

B

B

@

0 0 0 0 0

0 1 0 1 0

0 0 0 0 0

0 1 0 1 0

0 0 0 0 0

1

C

C

C

C

C

C

A

whenm = 3. Hence (t+s)

2

u+1

�1

ab 6= �. On the other hand (t+s)

2

u+1

ab = (t+s)

2

ab

holds in ca�90(2m; 2m) from Theorem 4.1. We now assume that there exists a

positive integer k such that (t+ s)

k

� = �. Then

(t+ s)

2

u+1

�1

ab = (t+ s)

2

u+1

�2

� = (t+ s)

2

u+1

�2

(t+ s)

k

� = (t+ s)

k�1

(t+ s)

2

u+1

ab

= (t+ s)

k�1

(t+ s)

2

ab = (t+ s)

k

� = �;

which is in contradiction to (t+ s)

2

u+1

�1

ab 6= �. 2

corollary 5.5: If m;n are odd integers with the greatest common divisor > 1,

then the period length K(2m; 2n) does not exist.

Proof: Let m;D;E be odd integers such that m > 1; D > 0; E > 0 and D;E are

mutually disjoint. We prove that the period length K(2mD; 2mE) does not exist.

Assume that (t

2mD

+ s

2mE

)

k

�

2mD;2nE

= �

2mD;2nE

in ca�90(2mD; 2mE) for some

positive integer k. Then by applying the reduction operator �

D;E

to this equation

we have (t

2m

+ s

2m

)

k

�

2m;2m

= �

2m;2m

in ca�90(2m;2m) making use of Proposition

2.7(d) and (e), since D;E are odd. This contradicts the result of Theorem 5.4. 2
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Theorem 5.6: If m is odd and k is a positive integer, then the period length

K(2

k

m;m) does not exist.

Proof: We write t; s; a; b and � for t

2

k

m

; s

m

; a

2

k

m

; b

m

and �

2

k

m;m

. Set u =

sord(2;m) and N = 2

u

� 1. As has been seen at the proof of Theorem 4.5 an

equation

(t+ s)

2

k

N

(t+ s)

2

k

�1

� = (t+ s)

2

k

�1

�

holds in ca�90(2

k

m;m). Now assume that (t+ s)

h

� = � in ca�90(2

k

m;m) for a

positive integer h. Choose a positive integer M with hM > 2

k

� 1. Then we have

(t+ s)

2

k

N

� = � in ca�90(2

k

m;m) because

(t+ s)

2

k

N

� = (t+ s)

2

k

N

(t+ s)

hM

� = (t+ s)

hM�(2

k

�1)

(t+ s)

2

k

N

(t+ s)

2

k

�1

�

= (t+ s)

hM�(2

k

�1)

(t+ s)

2

k

�1

� = (t+ s)

hM

� = �:

On the other hand, an equality

a

m

b+ (t

m

+ s

2

k

)

N

a

m

b =

m�1

X

i=1

t

m

(i)fs(2

k

i) + s(m� 2

k

i)g

in ca�90(m;m) is valid by Corollary 5.3. Applying the substitution operator �

2

k

;1

to this equality we have

�

2

k
(a

m

)b+ (t

2

k

+ s

2

k

)

N

�

2

k
(a

m

)b =

m�1

X

i=1

t(2

k

i)fs(2

k

i) + s(m� 2

k

i)g (3)

in ca�90(2

k

m;m). In the proof of Theorem 4.5 it has been seen that t

2

k

N

�

2

k
(a

m

) =

�

2

k(a

m

) and t

2

k

�1

�

2

k(a

m

) = t

2

k

�1

a in ca�90(2

k

m) and s

N

b = b in ca�90(m).

Therefore we have

(t+ s)

2

k

(2

u

�1)

� = (t+ s)(t

2

k

+ s

2

k

)

N

ab = (t+ s)

8

<

:

as

2

k

N

b+

N�1

X

j=0

t

2

k

(N�j)

s

2

k

j

ab

9

=

;

= (t+ s)

8

<

:

ab+

N�1

X

j=0

t

2

k

(N�j)

s

2

k

j

�

2

k
(a

m

)b

9

=

;

= (t+ s)fab+ t

2

k

N

�

2

k(a

m

)b+ (t

2

k

+ s

2

k

)

N

�

2

k(a

m

)bg

= (t+ s)fab+ �

2

k(a

m

)b + (t

2

k

+ s

2

k

)

N

�

2

k(a

m

)bg

= (t+ s)(ab+ S)

= � + (t+ s)S;

where S denotes the right-hand side of (3). As S

2

k

�1;j

= 0 for 0 < j < 2

k

m and

S

2

k

;j

0

= 1 for a unique (even) integer j

0

such that 0 < j

0

< m and s(j

0

) = s(2

k

), it

is clear that (t+ s)S 6= 0. This contradicts (t + s)

2

k

N

� = �. 2

Corollary 5.7: If m;n are odd integers with the greatest common divisor > 1

and k is a positive integer, then the period length K(2

k

m;n) does not exist.

Proof: Let m;D;E be odd integers such that m > 1;D > 0; E > 0 and D;E

are mutually disjoint and k a positive integer. We prove that the period length

K(2

k

mD;mE) does not exist. By Proposition 2.7(e) the reduction operator �

D;E

satis�es �

D;E

(a

2

k

mD

b

mE

) = a

2

k

m

b

m

since D;E are odd. Assume that (t+ s)

k

� = �

in ca�90(2

k

mD;mE) for some positive integer k. Then by applying the reduction

operator �

D;E

it follows that (t + s)

k

� = � in ca�90(2

k

m;m), which contradicts

the result of Theorem 5.6. 2

The following is a summary of our results obtained above.
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Theorem 5.8: The period length K(m;n) of ca�90(m; n) exists if and only

if there exists no integer D > 1 such that 2Djm and Djn, or Djm and 2Djn.

Supposed that m and n are odd integers > 1 and k is a positive integer, then

(a) K(m; n)j2

w

� 1,

(b) K(m; 2

k

)j2

k�1

(2

u

� 1),

(c) K(m; 2

k

n)j2

k

(2

w

� 1) if m and n are mutually disjoint,

(d) K(2m; 2)j2(2

u

� 1),

(e) K(2m; 2n)j2(2

w

� 1) if m and n are mutually disjoint,

where w is the least common multiple of u =sord(2;m) and v =sord(2;n).

Proof: It su�ces to show that if there exists an integer D > 1 such that

(�) 2Djm and Djn; or Djm and 2Djn;

then the period length K(m;n) does not exist, and if there exists no integer D > 1

satisfying the condition (�), then the period length K(m; n) exists. Let m = 2

h

m

0

and n = 2

k

n

0

, where h; k are non-negative integers and m

0

; n

0

are odd integers.

Logically there are the following six cases : (i) h = k = 0, (ii) h = k = 1, (iii)

h = 0 and k > 0, (iii') h > 0 and k = 0, (iv) h > 2 and k > 1, (iv') h > 1 and

k > 2. (i) In this case both of m and n are odd and there exists no D > 1 satisfying

the condition (�). Thus the period length K(m;n) exists by Theorem 4.1, which

proves (a). (ii) An integer D > 0 satis�es (�) if and only if it is a common divisor

of m

0

and n

0

. If m

0

and n

0

are mutually disjoint, then there exists no D > 1 with

(�) and the period length K(m; n) exists by Theorem 4.7 and (Ref. 7, Corollary

3.3 and Theorem 3.6), which proves (e) and (d), respectively. On the other hand

if m

0

and n

0

have a common divisor D > 1, then D satis�es (�) and the period

length K(m;n) does not exist by Corollary 5.5. (iii) An integer D > 0 satis�es (�)

if and only if it is a common divisor of m and n

0

. If m and n

0

are mutually disjoint,

then there exists no D > 1 such that (�) and the period length K(m;n) exists by

Theorems 4.2 and 4.5, which proves (b) and (c), respectively. On the other hand, if

m and n

0

have a common divisor D > 1, then D satis�es (�) and the period length

K(m;n) does not exist by Corollary 5.7. (iv) In this case 4jm and 2jn, in which

case the period length K(m;n) does not exist by Theorem 5.1. This cpmpletes the

proof. 2
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Appendix

A. Table of the period lengths K(m;n) (1 < m < 20; 1 < n 6 10)

m \ n 2 3 4 5 6 7 8 9 10

2 1 1 � 3 2 7 � 7 6

3 1 1 2 3 � 7 4 7 6

4 � 2 � 6 � 14 � 14 �

5 3 3 6 1 6 63 12 63 �

6 2 � � 6 � 14 � � 6

7 7 7 14 63 14 7 28 7 126

8 � 4 � 12 � 28 � 28 �

9 7 7 14 63 � 7 28 7 126

10 6 6 � � 6 126 � 126 �

11 31 31 62 341 62 32767 124 32767 682

12 � � � 12 � 28 � � �

13 63 21 126 63 126 63 252 63 126

14 14 14 � 126 14 � � 14 126

15 15 15 30 15 � 4095 60 4095 �

16 � 8 � 24 � 56 � 56 �

17 15 15 30 15 30 4095 60 4095 30

18 14 � � 126 � 14 � � 126

19 511 511 1022 87381 1022 511 2044 511 174762

B. Table of the period lengths K(m; n) ( 1 < m < 20; 11 6 n < 20

m \ n 11 12 13 14 15 16 17 18 19

2 31 � 63 14 15 � 15 14 511

3 31 � 21 14 15 8 15 � 511

4 62 � 126 � 30 � 30 � 1022

5 341 12 63 126 15 24 15 126 87381

6 62 � 126 14 � � 30 � 1022

7 32767 28 63 � 4095 56 4095 14 511

8 124 � 252 � 60 � 60 � 2044

9 32767 � 63 14 4095 56 4095 � 511

10 682 � 126 126 � � 30 126 174762

11 31 124 2

30

� 1 65534 349525 248 1048575 65534 (2

45

� 1)=7

12 124 � 252 � � � 60 � 2044

13 2

30

� 1 252 63 126 4095 504 4095 126 262143

14 65534 � 126 � 8190 � 8190 14 1022

15 349525 � 4095 8190 15 120 15 � (2

36

� 1)=3

16 248 � 504 � 120 � 120 � 4088

17 1048575 60 4095 8190 15 120 15 8190 2

36

� 1

18 65534 � 126 14 � � 8190 � 1022

19 (2

45

� 1)=7 2044 262143 1022 (2

36

� 1)=3 4088 2

36

� 1 1022 511

(The symbol � denotes the nonexistence of the period lengths.)
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