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Abstract

This note presents a new formalization of graph rewritings which generalizes Ehrig’s
graph derivations and Raoult’s graph rewritings. The graph rewritings, based on a
primitive pushout construction in the category of graphs and partial functions preserving
graph structures, can be always applied without gluing conditions only if a graph has a
matching to a given rewriting rule. A more general sufficient condition for two rewritings
to commute is also proved. The simplicity of our discussion comes from the usage of
relational calculus (theory of binary relations).

1 Introduction

There are many researches [4],[5],[9],{12],[14] on graph rewritings (or reduction) from the view-
point of category theory [10]. An advantage of categorical graph rewritings is to produce a
universal reduction despite how to execut algorithms for applying production rules. '

Ehrig et al. [4],[5] studied graph grammars for a wide class of graphs and functions pre-
serving edges. It is well-known that the category of graphs in [4],[5] is a topos [6] and so it has
pushouts [10, page 65]. However, even if a graph has a matching (or occurrence) to a produc-
tion rule, their derivation of graphs does not work unless an involved pushout-complement [3]
exists. Gluing conditions for the existence of pushout-complements in the category of graphs
were investigated by Ehrig and Kreowski [3] and Kawahara [8].

Raoult [14] proposed another formalization of graph rewritings by regarding produnction
rules as partial functions preserving graph structures. Although his definition of graphs seems
to be easier to implement graph structures on electric computers using pointers, the gluing
condition appears as a complicate problem [14, Proposition 5] whether involved pushouts e}qst
in a category of graphs and partial graph morphisms.



Thus the conventional categorical graph rewritings require strong gluing conditions for
actual execution of graph derivations. In this note we treat of the category of (simple) graphs
(with or without labelled edges) and partial functions preserving graph structures, and present
a new formalization of graph rewritings by using a primitive pushout construction in the
category. Our graph rewritings can be always executed without any gluing conditions, only if
a graph has a matching to a given rewriting rule. Moreover our fomalization of graph rewritings
generalizes Bhrig’s graph derivations [3},[5] and Raoult’s graph rewritings [14] in a reasonable
sense. Therefore our formalization offers a neat foundation of categorical graph rewritings
which releases us from tedious gluing conditions. The framework of the note is elementary and
the simplicity of our discussion comes from relational calculus (theory of binary relations) due
to Kawahara [8].

This note consists of the following sections. In the section 2 we present minimum funda-
mentals on relational calculus for the later calculations. The main subjects of the note are
discussed in the section 3. We set up the framework of our thoery, that is, the notions of
(simple) graphs and partial morphisms between them are defined. For a given pair of partial
functions from a common set into graphs a primitive pushout square is constructed, which
shows the category of graphs and partial morphisms has pushouts. An observation of Ehrig’s
graph reduction [5] suggests our formalization of graph rewritings without gluing conditions.
Moreover we give a more general sufficient condition for two graph rewritings to commute.
Some examples related to graph rewritings are listed in the section 4. In the section 5 we state
how to develope our formalization of graph rewritings for graphs with labelled edges.

2 Fundamentals on Relational Calculus

A relation « of a set A into another set B is a subset of the cartesian product A x B and
denoted by o : A — B. The inverse relation o : B — A of o is a relation such that (b, a) € o
if and only if (a,b) € @. The composite aff: A — C of «: A — B followed by f: B — Cis a
relation such that (a,c) € of if and only if there exists b € B with (a,b) € o and (b,¢) € 8.

As a relation of a set A into a set B is a subset of A x B, the inclusion relation, union,
intersection and difference of them are avialable as usual and denoted by C, U, 1 and —,
respectively. The identity relationid, : A — Ais arelation withid, = {{a,a) € AxA|a € A}
(the diagonal set of A).

The followings are the basic properties of relations and indicate that the totality of sets
and relations forms a category Rel with involution (or shortly I-category).

2.1 I-category Letw, o/ A— B, 3,/ B— C andy:C — D be relations. Then,
(a) {af)y=a(fy) (associative),
(b) idax =oidpg =« (identity),
(¢) oM=aq, (af)f =Bt (involutive),
(d) IfaCld and BT A, then o C o/f and o' T o't (nomotone).

The distributive law for relations is trivial but indespensable in our relational calculus.

2.2 Distributive Law The distributive law a(Usea B2)Y = Lxea @By holds for relations
a:A—B,f:B—C (A€AN)andy:C — D.

A partial function f of a set A into a set B is a relation f: A — B with f!'f C idp and it
is denoted by f: A — B. A (total) function f of a set A into a set B is a relation f: A — B
with fif Cidp and ids T ffY, and it is also denoted by f : A — B. Clearly a function is
a partial function. Note that the identity relation id, of a set A is a function. The readers



easily understand our definitions of partial functions and (total) functions are coincide with
ordinary ones. 1

2.3 Proposition Let a,f: A — B be relations. If f: X — A and g :' Y — B are partial
functions, then f(a M B)gh = fag! N fBg" and f(a— f)g = fag! — fBg".

Given a relation o : A — B, the domain d(a) : A — A of « is a relation defined by
d(c) = aa! Midy. A partial function f: A — B is a function if and only if d(f) = id .
The following proposition is useful for manipulating domains of partial functions.

2.4 Proposition Let o« : A — B and f: B — C be relations and f : A — B a partial
~ function. Then

(a) d(ap)d(a) = d(af) (or d(ap) T d(a)),

(b) d(fB)f = fd(B).

2.5 Proposition Leta: A — A, 0 : B — B be relations and let f : A — B be a partial
function. If T flof, then 8 = fIfOfif.

We denote the category of sets and functions by Set and the category of sets and partial
functions by Pfn. Both of Set and Pfn have all small limits and colimits, so in particular,
they have pushouts [10],[9],[14],[12]. Note that Pfn is equivalent to the category of sets with
a base point (a selected element) and base point preserving functions. We assume that the
readers are familiar with pushout constructions [14],[12] in Pfn.

A singleton set {*} is denoted by 1 and the maximum relation from a set A into 1 by
Qa4 : A — 1, that is, Q4 = {(a,*)|a € A}. For a partial function f : A — B a relation
f'Q, : B — 1 corresponds to the image of f.

2.6 Proposition Let a square f

A — B
i |+
C —— D

, k
be a pushout in Pfn and lett : X — C be a function. Then the composite tk : X — D is a
function if and only if tYQx M g*Q4 T gtgkQp.

3 Rewritings for Simple Graphs

A (simple) graph < A, o > is a pair of a set A and a relation o : A — A. A partial morphism
f of a graph < A, & > into a graph < B, # >, denoted by f :< A, >—< B, >, is a partial
function f : A — B satisfying d(f)af C ff. It is easily seen that a partial morphism among
graphs is a partial function preserving edges on its domain of definitions.

Let f :< A,a >>< B, > and g :< B,f >—< C,v > be partial morphisms of
graphs. Since d(f)af C ff and d(g)Bg C gy, we have d(fg)afg = d(fg)d(f)afg (by 2.4(a))
C d(fg)fBg = fd(g)Bg (by 2.4(b)) T fgry. Hence the composite of two partial morphisms of
graphs is also a partial morphism of graphs. Thus we have the category of (simple) graphs
and partial morphisms between them.

The following theorem constructs a primitive pushout for a pair of partial functions from
a common set into graphs.



3.1 Theorem If< B, >-and < C,~y > are graphs and if the square
: f
A — B

o @ |

¢ — D
k

is a pushout in Pfn, then h :< B,f >—>< D,6 > and k :< C,y >—< D,§ > are partial
morphisms of graphs, where § = h'fh U k'yk. Moreover, if K :< B, >—< D',§' > and
k' :< C,y >—>< D', 8 > are partial morphisms of graphs satisfying fh' = gk', then there
erists a unique partial morphism t :< D,§ >—< D' 8" > of graphs such that k' = ht and
k' = kt.

Proof. First we see that h :< B,f >—< D,§ > and k :< B, >—< D,§ > are partial
morphisms of graphs. It simply follows from d(h)Sh C hh!Sh (by d(k) = hhtMidg) C A6 (by
§ = R!'Bh U k'vk). Next assume that &' :< B, >—< D',§' > and k' :< C,y >—>< D', § >
are partial morphisms of graphs satisfying fh' = gk’. Then we have d(h')Bh' C K¢ and
d(k’)yk' T k'6’. As (1) is a pushout in Pfn, there exists a unique partial function ¢t : D — D'
such that A’ = ht and k' = kt. It suffices to prove that d(¢)ét C ¢§’. But it follows from

dt)st T #'(hBhUklyk)t (d(t) = tt' Midp)
= t(t'AIBRt Utk ykt) (by (2.2))
t(h*BR UK k") (W' = ht, k' = kt)
t(RVd(R)BR UK (B )y (B = d(R)R, K = d(k')K")
t(h"" W8 U RS (d(h)BK T W6, d(k')yk' T k'S
t(8'Ué) (KWW Cidp, Kk T idp)
8’

Ir

This completes the proof.

Note that the graph < D, ¢ > is unique up to isomorphisms. The following is exactly a
corollary of the last theorem.

3.2 Corollary The category of graphs and partial morphisms has pushouts.

A partial morphism f :< A, >—< B, f > is said to be a morphism of graphsif f : A — B
1s a function. It is trivial that the composition of two morphisms of graphs is also a morphism
of graphs and so one can consider the category of graphs and morphisms betweem them.

3.3 Observation Now consider a direct derivation of Ehrig’s fast productions [5], that is,
assume that the following two squares are pushouts in the category of graphs and morphisms
and that m is an injective function.

m f
<Aa> —— <Db> — <B,fg>

| L [»

<G €E> —— < Ee> — < H,n>

Then ém C ma, §s C se, 6f C B, £ = gtag U nlen and n = h!Sh U kfek by 3.1. Since
nn! = idg by the pushout property it is easy to see that stés C e and

n(€ — g!o{g)n' = (ngaagna u nn'snn‘) — ngtagn! (by 2.3)

(ng'agn' Ue) — ngtagn' (nn! =idg)

e — nglagn!

1M

E.



Hence n(€ — glag)nt U s'és C e. Now put € = n(€ — glag)n! U s'6s. From nlen — glag =
nin(nlen — glag)nin (by 2.5) = nl(e — ng'agn!)n (by 2.2) and nn! = idg, we have
glagun'én = glagUnin(é — glag)ntnuntstésn  (by 2.3)
= glagunl(e — nglagn')nUn'stésn
= glagu(nlen — glag) Un'stssn
= glagUnlenUn!s'ésn
dlagUnlen (s'6s C¢)
E.
Thus € : E — FE is the least relation such that s'és C ¢ and € = g'ag U n'én. Hence it is
reasonable to assume that e = € (Cf. 4.1). In this case we have
| n = WBhUKN(E - glag)ntk Uk's'6sk
= AIBhUKWN(E — glag)n'k UA ISR (fh = sk)
— WERUKR(E — glag)nk  (f15f T B).

Therefore we define our graph rewritings in order to include Ehrig’s graph derivations [5].

3.4 Definition A rewriting rule p is a triple of two graphs < A, o« >, < B, 8 > and a partial
function f : A — B. (Note that f need not to be a partial morphism of graphs.) A matching
to p is a morphism ¢ :< A, >—< G, € > of graphs. Then construct a pushout

A, B
gl lh
G — H

k
in Pfn and define n = h!Bh U k*(€ — g*ag)k. The graph < H,n > is the resultant graph after
applying a production rule p along a matching g, and denoted by < G,¢{ >=,,,< H,n>. A
square 1
<Aa> — <B,f>
| J»

< G,€E> — < H,n>

is called the rewriting square for a rewriting rule p along a matching g. (Note that the rewriting
square is not neccessarily a pushout in the category of graphs and partial morphisms.)

3.5 Proposition Let g :< A, >—=< G,€ > be a matching to a rewriting rule p = (<
Aja > < B,f>f:A— B). If f:< Aja >>< B, > 1s a partial morphism of graphs,
then the rewriting square f
<Aa> — < B,f>

| [»
<G, &> — < H,n>
for p along g 1s a pushout in the category of graphs and partial morphisms.

Proof. By the virtue of 3.1 it suffices to show that n = h'Sh U k*¢k. First note that
flaf C f'fB C B since d(f)af C fB. Thus we have
n = RKBhUK(E— g'ag)k
B flafhUENE - g'ag)k
Klglagh UEH(E — glag)k
K {glag U (€ — glag)}k
kYek.

[ |
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and

n = ABRUEN(E - glag)k Ukick
K BR U K.

This complets the proof.

The last proposition suggests that our graph rewritings coincide with those of Raoult [14] if
a production rule is a partial morphism of graphs. Hence our formalization of graph rewritings
includes Ehbrig’s graph derivations [5] and Raoult’s graph rewritings [14] in this sense.

It is easy to understand that analoguos results to Raoult’s work [14] about the confluency
and concurrency of graph rewritings are valid for our case. At the end of the section we state a
general sufficient condition for two graph rewritings to commute (or to be strongly confluent).

3.6 Theorem Letp; = (< Ai, i >,< By, fi >, fi + Ai — B;) be rewriting rules, g; :<
Ai,a; >—=< G, € > maichings to p; and < G, >=p,,,< Hy,m > for i =0,1. If f; <
A; o >—< By, i > is partial morphisms of graphs (1 = 0,1) and ggQAoﬂgiﬂA, C giggkoﬂpol_l
géglklﬁgl, then there exist matchings gl :< A, oy >—< Hi_y,m_; > (i = 0,1) and a graph

< H,n> such that < Hy_j,m—; >=p g< H,n > (1= 0,1).

Proof. As fo, go, f1 and ¢y are partial morphisms of graphs, we can construct the following
three pushouts in the category of graphs and partial morphisms between them by 3.2:

fo
< Ag, 000 > ——— < By, By >

o] (0) | o
<A, > =, <G E> — < Hy,ng >
sl @ [ (2) |
< By, G > T < Hiy,m > T» < H,n>

1
Set g! = g;k1—; (¢ =0,1). Then we can deduces that ¢! (¢ =0, 1) is a function because of 2.8,
and so g! :< A;, o >—< Hy_;j;m—; > is a matching to p; (¢ = 0, 1). Since two squares (0)+(2)
and (1)+(2) are pushouts in the category of graphs and partial morphisms between them, we
have < Hy_i,m_i >=p;g< H,n> (i = 0,1) by means of 3.4, which proves the theorem.

Remark. Rewriting rules can be {reely selected according to aims. Matchings to rewriting
rules might be also restricted sometime. For example, if a matching g :< A, >—< G, & >
top = (< Aja >,< B,f >, f : A — B) is an injective morphism of graphs such that
deg(g(a)) = deg(a) for each a € A on which f is undefined, then the rewritings coincides with
those of boundary graphs (or B-graphs) due to Okada and Hayashi [13].

4 Examples of Graph Rewritings

In this section a few particular examples related to graph rewritings are listed. The first
example shows that pushout-complements are not unique in the category of graphs.

4.1 Let o, f,7: A— A be relations with a C v C . Then because of 3.1 the square

id .
<Aa> — <A L[>
idAl lidA
<Ay> — <AB>

1d 4
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is a pushout in the category of graphs and morphisms between them. Therefore the square is
a pushout for any choice of v satisfying « C v C . The choice of € in 3.3 means the most
ecomomical way to have pushout-complements.

Next we present two simple examples of graph rewritings to which conventional graph
rewritings cannot be applied.

4.2 In Fig.1 g is a neat morphism of graphs in theories of Ehrig [5], Raoult [14] and ours.
But f is not a morphism of graphs and it is not worth to be a rewriting rule in the sense of
Raoult [14].

Figure 1:

On the other hand f means a fast production in [5] but unfornately the necesary pushout-
complement does not exist since the gluing condition is not satisfied. However we have the
following resultant graph applying our formalization:

4.3 In Fig.2 g is a morphism of graphs and f is a partial morphism of graphs in all theories
of Ehrig [5], Raoult [14] and ours. However graph rewritings of Ehrig [5] and Raoult [14] does
not work again because the gluing conditions are not valid. In this case The resultant graph
given by our graph rewritings is one point graph without edges.

The final example indicates a reason why matchings must be morphisms of graphs in the
definition 3.4 of graph rewritings.



—
L - - - - - — — J Lo e - - - J
Vo
r——--~-=-7-71
| |
| [
| |
| |
I g(1)=g(2) |
1 : I
L - - - - - J
Figure 2:

4.4 Recall that matchings to rewriting rules are defined to be morphisms of graphs but not
partial morphisms (Cf. 3.4). We now observe what happens when matchings are allowed
to be partial morphisms of graphs. First we note that any couple of rewriting rules being
partial morphisms of graphs commute, because rewriting squares are pushouts in the category
of graphs and partial morphisms by 3.5. Hence every set of rewriting rules consisting of partial
morphisms of graphs is strongly confluent, which seems to exceed.

Let p = (< A,a >,< B, >,f : A — B) and assume that f(A) = B and there exists
a € A such that fis undeﬁned on a and a has no loops. (This rewriting rule p is not so special.)
For any vertex v of an arbitrary graph < G, ¢ >, define a matching g :< A, a >—< G, € >
such that g(a) = v and undefined otherwise. Then g is in fact a partial morphism of graphs.
The resultant graph H after applying p along g is a graph obtained by subtracting from G the
vertex v and all edges connected with v. Thus this claims that any finite graph is reduced into
the empty graph by iterating applications of p. Therefore these graph rewritings are nonsense.

5 Rewritings for Graphs with Labelled Edges

In this section we first define graphs with labelled edges and partial morphisms between them,
and a primitive pushout construction similar to 3.1 is stated for graphs with labelled edges.
The readers may easily understand anologies with results in the section 3 are also valid in this
case. '

Let £ be a set of labels. A graph < A, o > with X-labelled edges is a pair of a set A and
a collection o = {a, : A — A | 0 € £} of relations indexed by X. A partial morphism f of a
graph < A, o > with ¥ -labelled edges into a graph < B,/ > with Z-labelled edges, denoted
by f:< A, >—=< B, >, is a partial function f : A — B satisfying d(f)a,f C fB, for all
gE .

Similarly we have the category of graphs with ¥-labelled edges and partial morphisms
between them. The following theorem constructs a primitive pushout for a pair of partial
functions from a common set into graphs with labelled edges.

8



5.1 Theorem If< B, > and < C,y > are graphs with X-labelled edges and if the square

A 2. B
gl (1) 1}'

i1s a pushout in Pfn, then h :< B, >—>< D,§ > and k :< C,y >—>< D,§ > are partial
morphisms of graphs with L-labelled edges, where 6, = h'B,hUk'y,k for each 0 € . Moreover,
if B :< B, >=< D')§ > and k' :< C,y >—>< D'/ § > are partial morphisms of graphs
with X-labelled edges satisfying fh' = gk', then there exists a unique partial morphism t :<
D,§ >—< D', § > of graphs with S-labelled edges such that h' = ht and k' = kt.

Similarly we have the following corollary from the last theorem.

5.2 Corollary The category of graphs with X-labelled edges and partial morphisms between
them has pushouts.

Remark. A graph < A,a > with o = « is just an undirected graph. Hence almost all
results in this note are also valid for undirected graphs.
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