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Abstract 

Titis note presents a lietrr formalization of graph rewritings which gellerafizes Elirig's 
graph derivations axd Raouit's graph rewritings. The graph rewritings, based on a 
primitive pusltovt constrvction in the category of gra;~lis and partial functio~is preserving 
graph structures: can be alivays applied without gluing coltditions only if a graph has a 
matching to  a given rewlitir-ig rule. ,I more gerieral suffncient contiltion for two rewritings 
to  commute is also proved. The simplicity of our ciiscussioil cornes from the usage o l  
relational calcnlus (theory of binary relations). 

There are many researches [4],[5],[9],[12],[14] on graph rewritings (or reduction) from the view- 
point of category theory [lo]. An advantage of categorical graph resvritings is to  produce a 
universal reduction despite how to  execut algoritlirns for applying protluction ruies. 

Elirig et al. [4],[5] studied graph granilnars for a wide class of graphs and fuiictions pre- 
serving edges. i t  is well-known that  the category of graphs in [4],[5] is a topos [GI and so it has 
pushouts [ l o ,  page 651. However, even if a graph has a nlatching (or occurrence) t o  a produc- 
tion rule? their derivation of graphs does not at7orl-r unless an involved pusf iout -complen '~~~~i  [3j 
exists. Giving co~ldiiions for the existence of pusl-iout-comple1nents in the calegory of graphs 
were investigated by Ehrig and Kreo~vski 131 and Kawailara [8]. 

Raoult [14] proposed another formalization of graph ~ewri t ings by regarding produnction 
ruies as partial functions preserving graph structures. Altllough his definition of glaplis seerus 
t o  be easier to  implement grapli stiuctuses on electric computers using pointers, tlie gluing 
condition appears as a complicate problem [14, Proposition 51 1%~ he tiler i t l v o l ~ ~ d  pusl~ox~ts exist 
in a category of graphs and partial graph morpliisms. 



Thus the conventional categorical graph rewritings require strong gluing conditions for 
actual execution of graph derivations. In this note we treat of the category of (simple) graphs 
(with or without labelled edges) and partial functions preserving graph structures, aricl present 
a new formalization of graph rewritings by using a primitive pushoul conslruction in the 
category. Our graph re~vritings can be always executed ~ t~ i t i iou t  any gluing co~di t ions ,  orJy if 
a graph has a matching to  a given rewriting luie. Moreover our fomalization of graph rewritings 
generalizes Elrrig's graph derivatioxls [ 3 ] , [ 5 ]  and Ptaoult's graph rewritiiigs [l4] irk a reasoriabfe 
sense. Therefore our formalization offers a neat foundation of categorical graph rewritings 
which releases us from tedious gluing conditions. The framework of the note is elementary and 
the simplicity of our discussion comes from relational calcu!us (theory of binary relaiiornsj c4:le 
t o  Kawahara [S]. 

This note consists of the -foliowing sections. In tile section 2 we present minimum funda- 
mentals on relational calculus for tile later calculations. The main subjects of the note are 
discussed in  tile section 3. VVe set up the framework of our Ihoeny, that is, the notions of 
(simple) graphs and partial ~norphisrns between them are defined. For a given pair of partial 
functions from a common set into graphs a primitive ptlshout sqrzase is constructed, which 
shows the category of graphs anif partial morphisnis has pushouts. AII observation of Ehrig's 
graph reduction [5] suggests our formalization of graph re-rvrilings without gluing conditions. 
Moreover we give a more general sufficient condition for txvo graph rewritiiigs t o  commute. 
Some examples related to  graph rewritings are listed in the section 4. In the section 5 we state 
how t o  develope our forlnaiization of graph rewritings for graphs wit11 labelled edges. 

2 Fundamentals on Relational Calculus 

A reEatzon a! of a set A into another set B is a subset of the cartesian psocluct A x B and 
denoted by a : ,4 7 B. Tlle i n v e r s e  redatzo?z aB : B - A of cv is a relati011 such that  ( b ,  o) E ai 

if and ollly if (a ,  b )  E a. The  carnposzte a @  : A - C of a : A - B followed by : B - C is a 
relation such that  (a, c j  E a@ if and only if there exists b  E B witla ( a ,  3 )  E a and ( b ,  c )  E p .  

As a relation of a set A into a set B is a subsel of A x B,  the inclusion relation, union, 
intersection and difference of them are avidable as l~sua l  and denoted by 5, /A, n and -, 
respectively. The i d e n t i t y  redntzolz idA : A -- -4 is a reiation with idA = ((a, a) E A x A j a E A]) 
( the diagonal set of A).  

Th~fo l lowings  axe the basic propeities of relatiorls and indicate that  the totality of sets 
and relations forms a category Eel with involution (or shortly I-category). 

2.1 I-cakegory L e t  a ,  a' : A -- B, 0, irJ' B - C a n d  . C - D be re ia t tons .  The?,, 
(a) ( a 8 j y  = a(By) (assocza t zve ) ,  
(b) idAn  = a idB  = ~ 3 1  ( ~ d e n t z t ~ ) ,  
(c) all = a,  (apj! = Piad ( z n v o l u t ~ b e ) ,  

(dl  Ij a a' a n d  f i  p', t h e n  a8 5 alP' and at 5 a'' ( : a o m o t o n e ) .  

The  distributive law for relations is trivial but indespensable in our relational caicuius. 

2 .2  Distributive Law The d i s t ~ i b u t ' l u e  baw cu(UxEix@x)-y = U x E n  a f i x y  izolds f o r  ~e6at io?zs  
a : A - B , p x : B - - C  j X ~ A ) a n d y : C - - - 1 3 .  

A partlad f t ~ n c t i o n  f of a set A into a set B is a relaliori f : A -- B with f l j "  idB and it 
is denoted by $ : A -+ B. A jtotndj j u n c t i o n  f of a set A into a set E: is a relation f : A - B 
with f 1  f 5 idB and idA C Sf!: and it is also denoted by f : A + B. Clearly a fuliction i~ 
a partial function. Note that  the identity relation idA of a set il is a lunction. Tile readers 



easily understand our definitions of partial functions and (total) functions are coincide with 
ordinary ones. 

2.3 Proposition L e t  a,$ : A -- B be r e l a t i o n s ,  I f  f : X 4 A a n d  g : Y --, B a r e  ~ a r t i n l  
j u n c t i o n s ,  t h e n  f ( a  f i  P)gl = f ag" .f~ghn.rzd f(a - = fa3' - fpgi. 

Given a relation a : A - B, the d o m a i n  d(aj : A - A of a is a relation defined by 
djr*.) = a d  j7 idA. ii partial fultctioii f : A -+ B is a lurlctiorl i f  and only if d(f) = idA.  

The foilowing proposition is useful f ~ r  manipulating domains of partial functions. 

2.4 Proposition L e t  a, : ,4 - B a n d  /3 : B 7 C be re ta t ions  a n d  f : A t B a part ia l  
j u n c t i o n .  T h e n  

(a) d(aP)d(a) = $(a@ ( O T  d(aP) C d(a)), 
(73) d(SP)f = Sd(9). 

2.5 Propositiolz L e t  cr : A -- A, B : B - B be re la t ions  a n d  d'el f : A 4 B be a part ia l  
J?~nction. If 8 C f iaf ,  t h e n  8 = f "Sejf. 

Vide denote the category of sets and f~ii~ct ions by Set and the category of sets and partial 
functions by Pfn. Both of Set and Pfn have all small lirllits and coLimits, so in particular, 
they have pushouts [10],[9],[14],[l2]. Note that  Pfn is equivalent to the category of sets with 
a base point (a selected element) and base point preserving functions. UTe assume that the 
readers are faniliar with pushout constructions [14],[22] in Pfn. 

A singleton set {*) is denoted by I and the maximum relation from a set A into 1 by 
fiA : A -- I, that  is, aA = ( j a , * ) / a  E A), For a partial function f : A 4 B a relation 
fgOA : B 4 1 corresponds to the image of f. 

2.6 Proposition Lei a square  f 
iZ ----+ B 

c - D  
ic 

be a p u s h o u l  in Pfn a n d  l e t  -t : X 4 C 5e a j"i17?,ctio11. Then t h e  c o m p o s i l e  t k  : X -+ D is  a. 

f u n c t i o n  ij a n d  o n l y  i j  tlC2).IY ri $OA_ C g'gX:RD. 

3 kewritings for Simple Graphs 

A (sinzpde)  g r a p h  < A, a > is a pair of a set A and a relation a : A - A. A par t ia l  n::orphisrn 
f of a graph < A, cr > into a graph < 23, ,D >; denoted Ly f :< A, a, >-+< B, P 3 ,  is a partial 
function f : A. i B satisfying d(f)~f f,8. T i  is easily seen ti-sat a partial rnorphisrn among 
graphs is a pardid function preservi~lg edges on its domain of definitions. 

Let f :< A,a  >-+< B,P > and g :< B,P >-+< C , y  > be partial rnorphisms of 
graphs. Since d(f)crj" C f /3  and djg)Pg C gy, we have d(fg)cr f g = d(fg)d( f )afg (by 2.$(a)) 
c d(fg)fPg = fd(g)Pg (by 2.4(b)) 5 fgy. Hence tile con~posite of two partial rnorpllisnis of 
graphs is also a partial rnorpilisrn of graphs. Thus -isre have the category of (simple) graphs 
and partial morphismi between them. 

The ibilotving theorem constructs a primitive ~;us?sout for a pair of partial functioris from 
a common set into graphs. 



3.1 Theorem If < B,P > and < C,  y > are graphs  a n d  if ithe square  
f 

-4 + B 

C D  
k 

i s  a p u s h o u t  in Pfn, t h e n  h :< B, P >-+< D ,  S > and k :< C, y >+< D,  6 > are  part ia l  
rnorpf i i srns  of graphs ,  w h e r e  S = hlph ii klyk. Aforeover ,  ij hi :< B,P >--+< D', 6' > and 
k' :< &I, y >+< Dl, SS' > are partiad m o r p h i s m s  of graphs  sa t i s f y ing  fh' = gk ' ,  t h e n  there  
e x i s t s  a unique part ia l  m o r p h i s m  t :< D ,  6 >-+< IP; SS' > of graphs  s u c h  t h a t  h' = ht and 
k' = k t .  

Proo f .  First we see that h :< B , p  >-+< D,  6 > and k  :< B, O >+< D, 6 > are partial 
rnorphisllis of graphs. It simply follows from djh)Rh C hhlih (by d(h) = hi.,$ n i d o j  C - izs (by 
S = htPiz U ks y k ) .  Next assume that ;2' :< B, P >+< D', 6 5  and k' :< 6, y >+< Di, Sf > 
are partial morphisms of graphs satisfying fh' = gkk" .  Then we have tZ(h1)/3h' & h h ' S h n d  
d ( k 7 ) y k f  & CIS'. As (1) is a pushoutin Pfn, there exists a unique partial function t : 6, -+ D' 
such that 12% 12 i  and k' = k t .  It sufiices to prove that d(t)6t t6" But it follows fro111 

djt)6f g ttyjh'ph u k"k)c)t jd(tj = iig n idD) 

= i ( t%qht  ~ t ' l c l ~ k i )  (by ( 2 . 2 ) )  

= t u k (h' = hi ,  k' = kt) 

= t (h"d(h')9hi U k"d(k')7k') (h' = d(h') h', k' = d(kf) k ' )  

= i jh'k'b' U k'Q'6') (d(h')Ph9 h'S', d(kh') ?k' E k'6') 

t (6' ii 5') (hi%' C idD!, k" k' C i&,) 
= t6 ' .  

This completes the proof. 

Note that the graph < D ,  S > is unique up to isomorphisms. The following is exactly a 
corollary of the Last theorem. 

3.2 Corollary T h e  ca tegory  of graphs  and. part ia l  n z o r p h i s m s  has pwshouts .  

A partial rnorpl~ism f :< A, cr >+< B, /3 > is said to be a m o r p h i s m  of graphs i f f  : A -+ I3 
is a function. It is trivial that the composition of two morphism of graphs is dso a morphism 
of graphs and so one can consider the category of graphs and morphisms betttreern them. 

3.3 Observation Now consider a direct desitration of Ehrig's fast productions [:I, that is, 
assume that the following two squares are pushouts in the category of graphs and morpk lsms 
and that m is an injective function. 

Then Sm f ma, 6s f se,  Sf 5 fB, J = g r a g  U n1&n and 17 = hiPiz U k f e k  by 3.1. Since 
12nl = idB by the pushout property it is easy to see that s i 6 s  & E and 



Eence n(J  - gFag)n i  U sr6s 5 E .  Now put i = n(J  - giag)n3 U sn&s.  From n r e n  - glag = 
nfin(n3cn - g % a g ) n 8 n  ( b y  2.5) = 72: ( e  - ngiictgnii)n ( b y  2 , 2 )  and nni  = idE, we have 

$ ! a g  U n ' i n  = gBag U nin(f - g$crg)nin i_l n f s i 6 s n  (by 2 . 3 )  

= $ a y  LI n e ( c  - n g J u g n ' ) n  LI n8s:6sn 

= ggag LI ( n i f e n  - gtag) u nls i6sn  

= gliag ii ?z\n hi n g s B 6 s n  

= gYmg u n D e n  ( sQs  g E )  

= [. 

Thus .2 : 23 7 I3 is the least relation such that s i fSs  C i and J = gdag  Li nJin.  Hence it is 
seasonable to assume that E = 2 (Cf. 4.3).  In this case we have 

17 = hg/?h LI khn(J - g s a g ) n i k  u kasit;sk 

= hYPh IJ h-h(,F - g!ag)nDi;  U h g f i S f h  (f h = s k )  
= fi',$h u k%(f - gliug)nik (Sf6 f C P). 

Therefore we def ne our graph rewritings in order to include Ei-nrig's graph derivations 151. 

3.4 Definition A rewriting rule p is s triple of two graphs < A, a >, < B, P > and a partial 
function f : A -+ B. (Note that, f need not to be a partial mnorphism of graphs.) A matching 
to p is a morphism g : < A, a >--+< 6, < > of graphs. Then construct a pushout 

C 

G d W  
k 

in Pfn and define q = hyph U kg([ - g [ a g ) k .  The graph < H, 17 > is the resultant graph after 
applying a production rule p along a matching g ,  and denoted by < G; ( >+,is< N, 17 >. A 
square f 

< A , @ >  < B , p >  

91 l h  

< G ; ( >  + < H , o >  
k 

is called the rewriting square for a rewriting rule p along a matching g. (Note that the rewriting 
square is not neccessariiy a pushout in the category of graphs and partial morpl~sms.) 

3.5 Proposition .Lei g :< A, a >--+< G, J > be a. matching to a rewriting rule p = (< 
A,a >; < B , p  >, f : A -+ 23). If f :< A,a >-+< 3, /3 > is a p a r t i d  rnorphism of graphs, 
t h e n  the ~ezuriting square  f 

< A , u >  - <B, ,E> 

i h  
< G , [ >  - < N , q >  

k 
for p dong g is a pushout in t h e  category of graphs a n d  partiab' rno~yhisms.  

Proof. B y  the virtue of 3.3 it sufiices to show that 77 = h113iz U kli(k. First note that 
fiaf & f ' f P  f ,B since d( f ) a f  5 fP. Thus we have 

7 = hi@h hi kB(t - g p a g ) k  

2 h i f E a  f h U k r ( J  - gPag)k  
= ksg1a3k: ii k i ( J  - gfag)fc 

= k s ( g ' a g  U j J  - g4crg))k 
= k Q k .  



Tkis complets the proof. 

The last proposition suggests that our graph rervritings coincide with those of Raoult [14] if 
a production rule is a partial nlorphism of graphs. Eence our forrxa3ization of graph rewritings 
includes Ehrig's graph derivations 151 and Raoult's graph rewritings [14] in this sense. 

It is easy to understand that anaioguos results to Raouit's work [14] about the confluency 
and concurrency of graph rervritings are valid for our case. At the end of the section we state a 
general sufficient condition for two graph rewritings to commute (or to be strongly confluent). 

3.6 Theorem Lei; p; = (< A;,*; >,< B;,Pi >,fi f; A; -+ B;) be rewriting rubes, g; :< 
A;, a; >+< 6, ( > matchings to p; and < G,  J H i ,  77; > for i = 0,l. IJ" f; :< 

ii A;,  a; >+< B;, ,/!Ii > is parliai nzorphisrns of graphs ( i  = 0,  1) and g ~ ~ a , n s ~ ~ A ,  g,g,konDon 
t! gOg1k1i2~l r  then there exisii matchings g: :< A, a; >+< ll,-;,ql-; (i  = 0, 4)  and a y a p h  

< H ,  q > such that < HI-;, ql-; > J ~ , I ~ ~ <  H; 7 > ( 2  = 0 , l ) .  

Proof. As fo,  go, f1 and gl are partial morphisnls of grzphs, we can construct the following 
three pushouts in the category of graphs and partial morphisms between their1 by 3.2: 

Set g: = g,kl-, ji = 0, I). Then we can deduces that gl ( 2  = 0,  I j  is a function because of 2.6, 
and so gl :< A,, a, >+< HI-,, 171-, > is a matching to p, ( z  = 0, I). Since two squares (0)+(2) 
and (I)$(2) are pushouts in the category sf graphs and partid morphislns between them, we 
have < HI_,, I?:-, >qp,~,;< B, 17 > ( i  = 0, I) by means of 3.4, w11icPI proves the theorem. 

Remark. Rewriting rules can be freely selected according to  a i m .  Matchings to rewriting 
rules might be dso  restricted sometime. For example, if a matching g :< A, cx >+< G,( > 
to  p = (< A, x >, < B, ,8 >, f : A -4 B) is an injective rnorphisrn of graphs such that 
deg(g(a)) = degfa) for each a E A on tvhicfi $ is undefined, then the rewritings coincides with 
those of boundary graphs (or B-graphs) due to Bkada and Hayashi 1131. 

4 Examples of Graph Relvritings 

In this section a few particular examples related to graph rewritings are listed. The first 
example shows that pushout-complements are not unique in the category of graphs. 

4.1 Let a, /3, y : -4 - A be relations with a C y ,B. Then because of 3.1 tile square 

id,[ lid, 
< A , y >  + < A $ >  

id, 



is a pushout in the category of graphs and morphisms between them. Therefore the square is 
a pushout for any choice of y satisfying a C nj C p. The choice of i in 3.3 means the most 
ecomomical way to have pushout-compiernents. 

Next we present two simple examples of graph rewritings to which conventional graph 
rewritings cannot be applied. 

4.2 In Fig.1 g is a neat rnorphism of graphs in theories of Ehrig [5], Raoult [I41 and ours. 
But f is not a rnorpfrism of graphs and it is not worth to be a rewriting rule in the sense of 
Raoult [14]. 

Figure 1: 

Ox the other hand f means a fast production in [5] but unfornately the necesary pushout- 
complement does not exist since the gluing condition is not satisfied. Ho~~eve r  we have the 
following resultant graph applying our forsnalization: 

4,3 In F ig2  g is a rnorphism of graphs and f is a partial rnorphism of graphs in ail theories 
of Ehrig [5], Raoult [I41 and ours. However graph rewritings of Ehrig [5] and Raoult [14] does 
not work again because the gluing conditions are not valid. In this case The resultant graph 
given by our graph rewritings is one point graph without edges. 

The final example indicates a reason why ~natchings must be morphisms of graphs in the 
definition 3.4 of graph rewritings. 



Figure 2: 

4.4 Recall that matchings to rewriting rules are defined to be morphisms of graphs but not 
part id morphisms (Cf. 3.4). X7e now observe what happens when matchirigs are allowed 
to  be partial morphisms of graphs. First we note that any couple of rewriting rules being 
partial morphism of graphs commute, because rewriting squares are pushouts in the category 
of graphs and partial morphisrns by 3.5. Iience every set of rewriting rdes  consisting of partial 
morphisms of graphs is strongly confluent, which seems to exceed. 

Let p = (< A, a >, < B,P >, f : A -+ B) and assume that f 4 A )  = B and there exists 
a E A such that f is undefined on a and a has no loops. (This rewriting rule p is not so special.) 
For any vertex v of an arbitrary graph < G, [ >, define a matching g :< A, a >+< G, J > 
such that g(aj = zi and undefined otherwise. Then g is in fact a partial morphism of graphs. 
The resultant graph H after applying p along g is a graph obtained by subtracting from G the 
vertex v and all edges connected with v .  Thus this claims that ally finite graph is reduced into 
the empty graph by iterating applications of p. Therefore these graph rewritings are nonsense. 

5 Rewritings for Graphs with Labelled Edges 

In this section we first define graphs with labelled edges and partial morphisms between them, 
and a primitive pushout construction similar to 3.1 is stated for graphs with labelled edges. 
The readers may easily understand analogies with results in the section 3 are also valid in this 
case. 

Let C be a set of labels. A g r a p h  < A. a > wzti:, C - iabe l l ed  e d g e s  is a pair of a set A and 
a collection a = (a ,  : A - A 1 a E C) of relations indexed by C. A p a r t i a l  mol;nhism f of a 
graph < A, a > with C -labelled edges into a graph < B, P > with C-labelled edges, denoted 
by f :< A, a >-+< B.P >, is a partial function f : A -+ B satisfying d ( f ) a o f  & fOD for all 
D E C .  

Similarly we have the category of graphs with C-Labelled edges and partial morpkisms 
between them. The following theorem constructs a primitive pushout for a pair of partial 
functions from a common set into graphs tvith labelled edges, 



5.5. Theoren1 If < B, ,R > a n d  < C, y > are graphs  w i i h  C- label led  edges  a n d  if t h e  square  

f 
A - B  

i s  a p u s h o u t  in Pfn, t h e n  h :< B, /3 > 4 <  D ,  E > a n d  Xi :< 6, 7 >-+< D1 S > are  part ia l  
m o r p h i s m s  of graphs  w i t h  C- labei led  edges ,  w h e r e  6, = h ~ ~ , h ~ k ~ ~ ~ k  f o r  e a c h  c~ E C .  ,44oreouer, 
if FL' :< B7 j3 > - + <  D', 6' > and k' :< C; -gi >-+< D', 6' > are part ia l  m o r p h i s m s  of graphs  
w i t h  C-babelded edges  satisJ5iing fhi = gk ' ,  t h e n  there  ex i s t s  a u n i q u e  par t ia i  m o r p h i s m  t :< 
D,  t; >4< D', 6' > of graphs  with C-!abelZed edges  s u c h  t h a t  h' = ht a n d  k' = k t .  

Similarly we have the following corollary from the last theorem. 

5.2 Corollary T h e  ca tegory  of g raphs  w i t h  C- label ied  edges  a n d  p a r t i a i  m o r p h i s m s  be tween  
t h e m  h a s  p u s h o u l s .  

Remark. A g r a p h <  A , a >  w i t h a ! =  a i s j u s t  anundirectedgraph. Hencealmostall 
resuits in this note are also valid for undirected graphs. 
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