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Abstract

This paper discusses some structural conditions under which Russellian propositions

in the sense of J. Barwise and J. Etchemendy [2] are paradoxical, and the computa-

tional complexity of the problems whether or not Russellian proposition is paradoxical,

intrinsically paradoxical, and classical.

1 Introduction

In situation theory, there are at least two kinds of the propositions to be considered ([2], [3]),

Austinian propositions and Russellian propositions. An Austinian proposition is true if the

situation about the proposition is of the type. By contrast, a Russellian proposition is true if

there is a situation such that the proposition is of the type. In general, a Russellian proposition

is simpler than an Austinian one, and uniquely determines its type. So in this paper we deal

with Russellian propositions.

First, we consider the Liar sentence expressed by (�):

(�) This proposition is not true.

Intuitively, we can understand that (�) is paradoxical in the following way:

1. Let f be the proposition expressed by (�), i.e.,

(a) f : the proposition that \f is not true",

(b) claim of f : f is not true.

2. If f were true, what it claims would have to be the case, and hence f would not be

true. So f can not be true.

3. If f were not true, what it claims to be the case is in fact the case, so f must be

true, which is a contradiction.

4. Hence f is neither true nor false; f is paradoxical.

The above f , which is called the Liar paradox, is expressed by a Russellian proposition f =

[Fa f ].

In this paper we deal with the facts expressed by Russellian propositions in [2]. We give the

conditions that a proposition is paradoxical and a proposition connected to a given proposition

is paradoxical. Then, we consider the computational complexity of the problem whether or

not the proposition is paradoxical.
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2 Basic De�nitions

In this section and the next we prepare some basic de�nitions according to Barwise and

Etchemendy [2]. In the de�nitions the term class means the class in the axiomatic set the-

ory. Since we deal with the de�nitions which depend on nonwellfounded sets ([1] and [2]),

we have adopted coinductive de�nitions rather than inductive ones which depend on the well-

foundedness of set inclusion.

De�nition 1

1. The propositional closure �(X) of X is the smallest class containing X and closed

under the operations _;^.

2. The class AtPROP of atomic propositions is the largest class such that if p 2

AtPROP, then p is of one of the following forms:

(a) [a H c] or [a H c](= [a NH c]), where a is Claire or Max, c is a card, i.e.,

c 2 fA|; 2|; � � � ; Q�;K�g;

(b) [a Bel q] or [a Bel q](= [a NBel q]), where q 2 �(AtPROP );

(c) [Tr p] or [Tr p](= [Fa p]).

Then we de�ne that p = p; [_X] = [^fpjp 2 Xg] and [^X] = [_fpjp 2 Xg].

3. PROP = �(AtPROP ).

A member of PROP is called a Russellian proposition. Now we introduce the propositional

indeterminates p;q

1

; q

2

; ... which correspond to the demonstratives this; that

1

; that

2

; ...

respectively. We de�ne the class ParPROP of parametric propositions, a generalized class of

PROP , by allowing additional atomic propositions of the four forms [a Bel z]; [a Bel z]; [Tr z]

and [Tr z], where z is one of the indeterminates.

We now turn to the de�nition of truth for Russellian propositions. Informally a Russellian

proposition is true just in case there are facts which make it true, and not true just in case

there are no such facts. To de�ne the truth, �rst we de�ne a state of a�airs and a situation

which is a set of states of a�airs.

De�nition 2

1. � 2 SOA if and only if � is of one of the following forms:

(a) hH; a; c; ii,

(b) hBel; a; p; ii,

(c) hTr; p; ii,

where i = 0; 1; p 2 M.

2. s 2 SIT if and only if s is a subset of SOA.

A member of SOA is called a state of a�airs (or soa, for short), and a member of SIT a

situation. We call hH; a; c; 1i and hH; a; c; 0i duals of one another (and similarly for soa's

involving Bel and Tr).
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De�nition 3 We de�ne the makes true relation to be the unique relation j=� SIT � PROP

satisfying:

1. s j= [a H c] () hH; a; c; 1i 2 s

2. s j= [a H c] () hH; a; c; 0i 2 s

3. s j= [a Bel p] () hBel; a; p; 1i 2 s

4. s j= [a Bel p] () hBel; a; p; 0i 2 s

5. s j= [Tr p] () hTr; p; 1i 2 s

6. s j= [Tr p] () hTr; p; 0i 2 s

7. s j= [^X] () s j= p for each p 2 X

8. s j= [_X] () s j= p for some p 2 X.

De�nition 4 Let M be a class of soa's.

1. A proposition p is made true byM, denoted byM j= p, if there is a set s �M such

that s j= p; p is made false by M, denoted by M 6j= p, if there is no such s.

2. A proposition p is true in M, denoted by True

M

(p), if hTr; p; 1i 2 M; false in M,

denoted by False

M

(p), if hTr; p; 0i 2 M.

3. M is coherent if no soa and its dual are in M.

4. M is a weak model if it is a coherent class of soa's satisfying:

(a) if hTr; p; 1i 2 M, then M j= p

(b) if hTr; p; 0i 2 M, then M 6j= p

for any p 2 PROP .

De�nition 5 Let M be a weak model.

1. M is T-closed if it satis�es the condition: hTr; p; 1i 2 M () M j= p.

2. M is N-closed if it satis�es the condition: hTr; p; 0i 2 M () M j= p.

3. M is almost semantically closed (asc, for short) if it is both T- and N-closed. We

call almost semantically closed models simply models.

4. M is a maximal model if M is not properly contained in any other model.

Intuitively, the maximal model is a model that necessarily involves each soa or its dual. For

the (asc) model, the following lemma holds.

Lemma 1 (Barwise and Etchemendy)

1. M j= [Tr p] () M j= p

2. M j= [Fa p] () M j= p
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3. M j= [Fa[Fa p]] () M j= p

4. M j= [Tr [p ^ p

0

]] () M j= [Tr p] ^ [Tr p

0

]

5. M j= [Tr [p _ p

0

]] () M j= [Tr p] _ [Tr p

0

]

6. M j= [Fa [p ^ p

0

]] () M j= [Fa p] _ [Fa p

0

]

7. M j= [Fa [p _ p

0

]] () M j= [Fa p] ^ [Fa p

0

]

We will use the above proposition in Theorem 1 in the next section.

3 The Conditions of the Paradox

At �rst, we give the de�nition that the proposition is paradoxical. Any Russellian proposition is

the unique solution p = r(p) of the equation p = r(p), and the uniqueness is guaranteed by our

metatheory ZFC/AFA in [1] and [2]. Here p = r(p) is in PROP and p = r(p) is in ParPROP .

For example, p = [Fa p] has the unique solution p = [Fa p], and p = [Max H A|] has the

unique solution p = [Max H A|]. In this paper, for the simplicity, the Russellian proposition

p = r(p) does not include any q

i

in the right-hand side of p = r(p). That is to say, Russellian

sentences do not include any that

i

. (See [1] and [2] for more details.)

De�nition 6 A proposition p is paradoxical in M if for any maximal model N �M, neither

hTr; p; 1i 2 N nor hTr; p; 0i 2 N , i.e., hTr; p; 1i 62 N and hTr; p; 0i 62 N .

It is clear that p is paradoxical in M if and only if hTr; p; 1i 2 N () hTr; p; 0i 2 N holds

for any maximal model N �M.

Example 1 Let p = [Max H A|]. For any maximal model M, if hH;Max; A|; 1i 2 M

then p is true inM, and if hH;Max;A|; 0i 2 M then p is false in M, and there are only two

cases.

Example 2 p = [Fa p]. As hTr; p; 1i 2 M () hTr; p; 0i 2 M holds for any model M, this

proposition is paradoxical in any model.

Example 3 p = [Max H A|]_[Fa p]. Then for any maximal modelM, if hH;Max;A|; 1i 2

M then p is true in M. If hH;Max; A|; 0i 2 M, by using that p = [Max H A|] ^ [Tr p],

hTr; p; 0i 2 M

() hH;Max;A|; 0i 2 M and hTr:p; 1i 2 M

=) hTr; p; 1i 2 M.

Hence hTr; p; 0i 62 M. On the other hand,

hTr; p; 1i 2 M

() hH;Max;A|; 1i 2 M or hTr; p; 0i 2 M

=) hTr; p; 0i 2 M.

So hTr; p; 1i 62 M. Hence p is paradoxical in M.

De�nition 7

1. A proposition is paradoxical if it is paradoxical in some model.

2. A proposition is intrinsically paradoxical if it is paradoxical in any model.

3. A proposition is classical if it is not paradoxical.
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Example 4 p = [Fa p] is intrinsically paradoxical by Example 2, p = [Max H A|]_ [Fa p] is

paradoxical but not intrinsically by Example 3, and p = [Max H A|] is classical by Example

1.

Notice thatM j= p is not equivalent toM 6j= p in Russellian propositions. In fact, M j= p

implies M 6j= p, but the converse does not always hold. A Russellian proposition p = r(p) is

connective if it includes _ or ^, and it is non-connective if it includes neither _ nor ^.

Theorem 1 If p = r(p) is paradoxical, then one of the following conditions holds:

1. M j= r(p) () M j= [Fa p] for any model M,

2. M j= r(p) () M j= r

1

(p)_ r

2

(p) for any model M, and there is a modelM

0

such

that

M

0

j= r

1

(p) () M

0

j= [Fa p]

M

0

6j= r

2

(p),

3. M j= r(p) () M j= r

1

(p)^ r

2

(p) for any model M, and there is a modelM

0

such

that

M

0

j= r

1

(p) () M

0

j= [Fa p]

M

0

6j= r

2

(p).

Before we prove Theorem 1, we consider the following examples to explain the notation.

Example 5 For p = [Fa p] _ [Tr[Fa p]], r(p) is [Fa p] _ [Tr[Fa p]], r

1

(p) is [Fa p], and r

2

(p)

is [Tr[Fa p]], like the conditions in Theorem 1, where we can replace the subscript 1 with 2.

Example 6 For p = [Fa[Tr[[Fa p] _ [Tr p]]]], it holds that

M j= [Fa[Tr[[Fa p] _ [Tr p]]]] () M j= [Fa[Fa p]] ^ [Fa[Tr p]]

by Lemma 1. Then, the equivalence in Theorem 1,

M j= r(p) () M j= r

1

(p) ^ r

2

(p)

means that r(p) is [Fa[Tr[[Fa p]_ [Tr p]]]], r

1

(p) is [Fa[Fa p]], and r

2

(p) is [Fa[Tr p]], where

we can replace the subscript 1 with 2.

Proof of Theorem 1. Suppose that p = r(p) is paradoxical. Then one of the following holds:

(a) M j= r(p) () M j= [Fa p],

(b) M j= r(p) () M j= r

1

(p) _ r

2

(p),

(c) M j= r(p) () M j= r

1

(p) ^ r

2

(p).

In fact, if not, one of the following holds:

M j= r(p) () M j= [a H(NH) c],

M j= r(p) () M j= [a Bel(NBel) r

0

(p)],

M j= r(p) () M j= [Tr p],

which contradicts the assumption that p = r(p) is paradoxical.

If p = r(p) is non-connective then p = r(p) is intrinsically paradoxical or classical. The non-

connective proposition is paradoxical in some model if and only if it is intrinsically paradoxical.

Hence if the case (a) holds then p = r(p) is paradoxical.

Assume the case (b) holds, and that p = r(p) is paradoxical in someM

0

. If p is paradoxical

in M

0

then hTr; p; 1i 2 M

0

() hTr; p; 0i 2 M

0

holds. Hence

hTr; p; 1i 2 M

0

() M

0

j= r

1

(p) or M

0

j= r

2

(p),

and
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hTr; p; 0i 2 M

0

() M

0

j= r

1

(p) and M

0

j= r

2

(p).

holds. By the supposition, since

(M

0

j= r

1

(p) or M

0

j= r

2

(p)) () (M

0

j= r

1

(p) and M

0

j= r

2

(p))

either 1 or 2 below holds:

1. M

0

j= r

1

(p) () M

0

j= r

1

(p) and M

0

j= r

2

(p),

2. M

0

j= r

2

(p) () M

0

j= r

1

(p) and M

0

j= r

2

(p).

In case of 1 holds,

M

0

j= r

1

(p)

() M

0

j= r

1

(p) and M

0

j= r

2

(p)

() hTr; p; 0i 2 M

0

() M

0

j= [Fa p].

HenceM

0

j= r

1

(p) () M

0

j= [Fa p]. Similarly in case of 2 holds, M

0

j= r

2

(p) () M

0

j=

[Fa p]. Consider the following two cases:

(i) Assume that M

0

j= r

1

(p) () M

0

j= [Fa p] holds. This means that M

0

6j= r

2

(p) does

not hold, i.e., M

0

j= r

2

(p). Then

hTr; p; 0i 2 M

0

() hTr; p; 1i 2 M

0

and M

0

j= r

2

(p)

=) hTr; p; 1i 2 M

0

and M

0

6j= r

2

(p).

Hence hTr; p; 0i 62 M

0

. If hTr; p; 1i 62 M

0

, then hTr; p; 1i 62 M

0

() hTr; p; 0i 62 M

0

and

M

0

6j= r

2

(p). As M

0

6j= r

2

(p) does not hold, hTr; p; 1i 2 M

0

. Hence p = r(p) is true in M

0

,

which contradicts the assumption that p = r(p) is paradoxical in M

0

. Hence M

0

6j= r

2

(p).

(ii) Assume that M

0

j= r

2

(p) () M

0

j= [Fa p] holds. Then we can similarly prove

M

0

6j= r

1

(p) by replacing r

1

(p) with r

2

(p).

Since (M

0

j= r

1

(p) () M

0

j= [Fa p]) () (M

0

j= r

1

(p) () M

0

j= [Tr p]), if the

case (c) holds, then we may have a similar proof to (b). 2

The converse of Theorem 1 does not hold, but the following corollary holds:

Corollary 1 If one of the following conditions holds, then p = r(p) is paradoxical.

1. M j= r(p) () M j= [Fa p] for any model M,

2. M j= r(p) () M j= r

1

(p) _ r

2

(p) for any model, and there is a model M

0

such

that for any maximal model N �M

0

,

N j= r

1

(p) () N j= [Fa p]

N 6j= r

2

(p),

3. M j= r(p) () M j= r

1

(p) ^ r

2

(p) for any model, and there is a model M

0

such

that for any maximal model N �M

0

,

N j= r

1

(p) () N j= [Fa p]

N 6j= r

2

(p).

Let p be a connective proposition. Then by Theorem 1 there are the following two cases

where p is paradoxical.
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De�nition 8

1. p = r(p) is or-paradoxical if p = r(p) is paradoxical such that M j= r(p) () M j=

r

1

(p) _ r

2

(p) for any model M.

2. p = r(p) is and-paradoxical if p = r(p) is paradoxical such that M j= r(p) ()

M j= r

1

(p) ^ r

2

(p) for any model M.

According to De�nition 8 above, we call the paradoxical proposition satisfying the second

condition of Theorem 1 to be or-paradoxical, and the third condition to be and-paradoxical.

On the other hand, the model M

0

in Theorem 1 is not generally arbitrary, but for example if

r

1

(p) = [Fa p], then M

0

j= r

1

(p) () M

0

j= [Fa p] holds for any model M

0

. We de�ne this

case as the special case of or-/and-paradoxical:

De�nition 9

1. p = r(p) is strongly or-paradoxical if p = r(p) is or-paradoxical and M j= r

1

(p) ()

M j= [Fa p] for any model M.

2. p = r(p) is strongly and-paradoxical if p = r(p) is and-paradoxical and M j=

r

1

(p) () M j= [Fa p] for any model M.

By Theorem 1, we can decide whether or not the proposition is paradoxical. Since (M

0

j=

r

1

(p) () M

0

j= [Fa p]) () (M

0

j= r

1

(p) () M j= [Tr p]), we can use one of the

following conditions on r

1

(p)

� M

0

j= r

1

(p) () M

0

j= [Fa p],

� M

0

j= r

1

(p) () M

0

j= [Tr p].

Example 7

p = [Fa p] _ [Max H A|] is strongly or-paradoxical.

p = [Fa p] _ [Max H A|] is strongly or-paradoxical.

p = [Fa p] ^ [Max H A|] is strongly and-paradoxical.

p = [Fa p] ^ [Max H A|] is strongly and-paradoxical.

Example 8

p = [[Fa p] _ [Max H A|]] _ [Max H A|] is or-paradoxical.

p = [[Fa p] ^ [Max H A|]] ^ [Max H A|] is and-paradoxical.

p = [[Fa p] _ [Max H A|]] _ [Max H A|] is not paradoxical.

p = [[Fa p] ^ [Max H A|]] ^ [Max H A|] is not paradoxical.

p = [[Fa p] ^ [Max H A|]] _ [Max H A|] is not paradoxical.

p = [[Fa p] _ [Max H A|]] ^ [Max H A|] is not paradoxical.

p = [[Fa p] ^ [Max H A|]] _ [Max H A|] is or-paradoxical.

p = [[Fa p] _ [Max H A|]] ^ [Max H A|] is and-paradoxical.

Example 9

p = [Fa p] _ [[Max H A|] ^ [Max H A|]] is strongly or-paradoxical.

p = [Fa p] ^ [[Max H A|] _ [Max H A|]] is strongly and-paradoxical.

p = [Fa p] _ [[Max H A|] _ [Max H A|]] is not paradoxical.

p = [Fa p] ^ [[Max H A|] ^ [Max H A|]] is not paradoxical.
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By Theorem 1, it is clear that the following corollary holds.

Corollary 2

1. Suppose that p = r(p) is strongly or-paradoxical. If M 6j= r

2

(p) holds for any model

M, then p = r(p) is intrinsically paradoxical.

2. Suppose that p = r(p) is strongly and-paradoxical. IfM 6j= r

2

(p) holds for any model

M, then p = r(p) is intrinsically paradoxical.

By the above corollary, the �rst two propositions of Example 8 are intrinsically paradoxical.

We consider whether there is an and-paradoxical proposition which is intrinsically para-

doxical but not strong. If p = r(p) is and-paradoxical but not strong, then there is a model

M

0

such that

M

0

j= r

1

(p) () M

0

j= [Fa p]

does not hold, where r

1

(p) is the one in Theorem 1. In the model M

0

, p = r(p) is not

paradoxical, and hence p = r(p) is not intrinsically paradoxical. The above fact holds also

when we replace and- with or- in the above sentence. Therefore the following lemma holds:

Lemma 2 If the or-paradoxical proposition is not strong, then it is not intrinsically paradox-

ical. If the and-paradoxical proposition is not strong, then it is not intrinsically paradoxical.

We have obtained the conditions from the outside of the proposition given so far. Now we

give the conditions from the inside. That is, given paradoxical proposition, we deal with the

conditions that the connected propositions are paradoxical.

Lemma 3

1. Suppose p = r

1

(p) is paradoxical in M

0

. If for any maximal model N �M

0

,

N j= r

2

(p), or

N j= r

2

(p) () N j= [Fa p],

then p = r

1

(p) _ r

2

(p) is paradoxical in M

0

.

2. Suppose p = r

1

(p) is paradoxical in M

0

. If for any maximal model N �M

0

,

N j= r

2

(p), or

N j= r

2

(p) () N j= [Fa p],

then p = r

1

(p) ^ r

2

(p) is paradoxical in M

0

.

Proof . By the supposition, N j= r

1

(p) () N j= r

1

(p). For p = r

1

(p)_ r

2

(p), suppose that

N j= r

2

(p). Then

hTr; p; 1i 2 N

() N j= r

1

(p) _ r

2

(p) () N j= r

1

(p) or N j= r

2

(p)

() N j= r

1

(p) () N j= r

1

(p) () N j= r

1

(p) and N j= r

2

(p)

() N j= r

1

(p) ^ r

2

(p) () N j= r

1

(p) _ r

2

(p)

() hTr; p; 0i 2 N

If N j= r

2

(p) () N j= [Fa p], then trivially p = r

1

(p) _ r

2

(p) is paradoxical. 2

It is obvious that if p = r

1

(p) is intrinsically paradoxical, then p = r

1

(p) _ r

2

(p) is strongly

or-paradoxical, and p = r

1

(p) ^ r

2

(p) is strongly and-paradoxical. By this lemma we can also

check Examples 7 - 9.

8



4 The Computational Complexity

We consider the problem whether or not a Russellian proposition is paradoxical (classical,

intrinsically paradoxical). We deal with this problem by the conditions in Theorem 1, while

Rounds [5] solved it by the AFA graphs.

Let p = r(p) be a Russellian proposition and labels be H;NH;Bel;NBel; T r; Fa;_; and ^.

We say that a proposition p is satis�able if there is a model M such that p is true in M, and

that a proposition p is valid if p is true in any maximal model. If p is satis�able, then there is

a model M such that p is true in any maximal model N � M. The following computational

complexity of the problem on a number of labels have been given by Rounds [5]:

Theorem 2 (Rounds)

1. The satis�ability problem for Russellian propositions is in NP.

2. The validity problem for Russellian propositions is in co-NP.

Note that the Russellian proposition p = r(p) is satis�able if and only if there is a model

M such that M j= r(p), and by Theorem 1 and Corollary 2 the problem whether or not a

Russellian proposition is paradoxical is in NP, and the problem whether or not a Russellian

proposition is intrinsically paradoxical is in co-NP. This has also been given by Rounds [5]

using the AFA graphs.

Theorem 3 (Rounds)

1. The problem whether or not a Russellian proposition is paradoxical is in NP.

2. The problem whether or not a Russellian proposition is intrinsically paradoxical is

in co-NP.

3. The problem whether or not a Russellian proposition is classical is in co-NP.

We can verify the above results by using the Theorem 1. We show have an outline of the

proof. Since a proposition p = r(p) is satis�able if and only if there is some modelM such that

M j= r(p), by Theorem 1 and Corollary 1, we can conclude that the computational complexity

of the problem whether or not a Russellian proposition is paradoxical is the same as that of

Russellian satis�ability problem. Hence this problem is in NP. Since a proposition p = r(p) is

valid if and only ifN j= r(p) for any maximal modelN , we can conclude that the computational

complexity of the problem whether or not a Russellian proposition is intrinsically paradoxical

is also the same as that Russellian validity problem. Hence this problem is in co-NP. Finally,

since a proposition is classical if and only if it is not paradoxical, the computational complexity

of the problem whether or not a Russellian proposition is classical is in co-NP.

5 Conclusion

We have seen that a Russellian proposition is paradoxical depending only on the proposition of

[Fa p]. We have presented conditions under which a Russellian proposition and a connective

proposition are paradoxical. By using the conditions we have considered the various problems

and their computational complexity. However, we have just dealt with Russellian propositions

only including p which corresponds to the parametric proposition p, i.e., to the demonstrative

this, and have not dealt with the propositions including q

i

, and neither the system of the AFA

equations. We will discuss this problem elsewhere in a future.
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Russellian propositions cannot express all of the paradoxes. For example, Nait Abdallah [4]

discussed three kinds of paradoxes, Protagoras paradox, Newcomb's paradox, and the Hangman

paradox. Needless to say, our present study cannot deal with these three paradoxes because

these are the dilemmas rather than the paradoxes. We have left the problem whether or not

we can have the framework to de�ne paradox.
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