
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

A Light-Weight XML Query Processor for a Large
Number of Structural and Textual Patterns

Takeda, Masayuki
Department of Informatics, Kyushu University

Ishino, Akira
Office for Information of University Evaluation Kyushu University

Mitarai, Shuichi
Department of Informatics, Kyushu University

https://hdl.handle.net/2324/3058

出版情報：DOI Technical Report. 226, 2006-07. Department of Informatics, Kyushu University
バージョン：
権利関係：

A Light-Weight XML Query Processor for
a Large Number of Structural and Textual Patterns

Masayuki Takeda
Department of Informatics

Kyushu University
6-10-1 Hakozaki, Fukuoka 812-8581, Japan

takeda@i.kyushu-u.ac.jp

Akira Ishino
Office for Information of University Evaluation

Kyushu University
6-10-1 Hakozaki, Fukuoka 812-8581, Japan

ishino.uoc@mbox.nc.kyushu-u.ac.jp

Shuichi Mitarai
Department of Informatics

Kyushu University
6-10-1 Hakozaki, Fukuoka 812-8581, Japan

mitarai@i.kyushu-u.ac.jp

Abstract

A light-weight XML query processor is presented which
deals with structural and textual pattern queries. Unlike
the existing index-based methods, it builds no indices. Un-
like the existing stream-oriented methods, it preprocesses
the input XML file to yield a path trie and a binary XML
file, which are processed in path-pattern matching stage and
in text-node searching stage, respectively. Our method is
space efficient, and most suited for the situation that the
input XML file is given in advance and not very frequently
updated, and a large number of queries should be processed
at a time. The performance is successfully reported in com-
parisons with existing XML query processors.

1 Introduction

Establishing basic techniques for processing queries
written in XML query languages such as XPath and XQuery
is of great importance from both theoretical and practical
viewpoints. At the early stage of the XML query processing
research, the main stream was the DOM-oriented approach,
where a tree structure of the input XML document, called
the DOM tree, is built and resides in main memory. Since
the DOM tree is huge in size and consumes much time to
build, the approach cannot be applied to XML files of mod-
erate size, say 50-200MB.

The current XML query processing technologies can be
divided into two groups. One is the index-based technique
that concentrates on indexing the relationships between two

XML-tree nodes such as the parent-child and the ancestor-
descendant relations, basing on numbering schemes for el-
ements, attributes, and structures and/or on the relational-
database techniques. (See e.g. [35, 22, 16].) The other is
the stream-oriented approach, where the input XML docu-
ment is given as a data stream. (See e.g. [2, 5, 13, 7, 29, 18,
23, 28, 15, 12, 20, 10, 19, 27].) One important advantage
of stream-oriented methods is space efficiency. The mem-
ory requirement depends only on the query size, not on the
XML document size.

On the other hand, most of the past researches have fo-
cused on processing of structural XML queries and have
paid little attention to a full-text search. However efficient
searching in text nodes has recently emerged as an impor-
tant research topic [34, 3, 33].

This paper presents a light-weight XML query process-
ing method for structural and textual patterns. We concen-
trate on the case where the input XML document is given in
advance and not very frequently updated, but a large num-
ber of queries should be processed at a time. Typical exam-
ples can often be found in Web search services, in which the
update is done a few times a day, and the bulk of requests
from clients arrive at peak time of one day. Simultaneously
processing multiple queries is one good way to respond to a
considerable amount of requests concentrated at peak times.
In this paper, we try to develop a space-economical method
which is suitable for the case.

Similar to the stream-oriented methods, we create no in-
dices. But we are allowed to preprocess them to accelerate
query processing since the input XML document is rela-
tively ‘static’ in our setting. Our preprocessing method is

1

Table 1. Sizes of the path tries for DBLP [21]
and for a randomly generated XML document
using xmlgen [31] are demonstrated. Path
tries are sufficiently smaller than the original
XML documents in practice.

XML document path trie
size (MB) # tags # nodes # nodes

DBLP 324 35 7,947,321 136
random 111 83 2,048,180 549

quite simple. We read once the input XML file to construct
a trie representing all the label strings of the paths from the
root, which is called the path trie. We note that in practice
the path trie is sufficiently small and fits main memory for
moderate XML files. (See Table 1.) During the construction
of path trie, we also build a binary XML file from the input
XML document by replacing every occurrence of the start
tags with a special code followed by a pointer indicating the
corresponding node in the path trie and every occurrence of
the end tags with another special code.

After the preprocessing, the algorithm processes a large
number of queries by exploiting the path trie and the bi-
nary XML file. The query processing has two stages: path-
pattern matching and text-node searching. In the path-
pattern matching stage, we build NFAs from the path pat-
terns, make them run along the paths of the path trie in a
depth-first manner, and add to the path-trie nodes informa-
tion about the loci at which path patterns occur. In the text-
node searching stage, the algorithm reads once the binary
XML file from the left to the right virtually traversing the
corresponding XML tree in a depth-first manner, searches
for keywords in text nodes by using Aho-Corasick’s pat-
tern matching machine [1] (PMM in short), and then re-
ports all occurrences of query patterns by combining the
outputs from PMM with the information added to the path-
trie nodes.

It should be mentioned that, if the path-trie nodes
have the lists of the corresponding regions in XML doc-
ument, then it can serve as an index (see e.g. the strong
DataGuides [11]). On the contrary, the path-trie nodes are
referred to by the integers preceded by special code imply-
ing start tags during a full scan of the binary XML file in
our method.

To evaluate the performance of our algorithm, we com-
pare the performance of our algorithm with the following
XML query processors:

XMLTK. A light-weight XML stream processor which
can process a large number of path expressions at
high throughput. For path-pattern matching, the
“LazyDFA” technique [4] is adopted.

Tamino (ver. 4.1.4.1). A commercial product of native
XML database system developed by Software AG. It
supports a large part of XQuery.

NeoCore XMS (ver. 3.1). Another commercial product of
native XML database system developed by Xpriori,
basing on its patented Digital Pattern Processing (DPP)
technology. It covers a large part of XQuery.

The experimental results show that our algorithm outper-
forms or is competitive with them.

The organization of this paper is as follows. Section 2
presents a formal statement of the problem to be addressed.
Section 3 illustrates the preprocessing part of our algorithm.
Section 4 and Section 5 are, respectively, devoted to de-
scribe the path pattern matching stage and the text node
searching stage. Section 6 discusses how to extend our
method to cope with more complex queries. Section 7 re-
ports successful results in experimental comparisons of our
algorithm with XMLTK, Tamino, and NeoCore XMS. Fi-
nally, Section 8 gives conclusions and future works.

2 Problem definition

Let Σ be a finite set of characters, and denote Σ∗ (resp.
Σ+) be the set of strings (resp. nonempty strings) over Σ.
Let N be a set of tag names. An XML tree is an ordered tree
such that the interior nodes are labeled by tag names in N
and the leaves (called the text nodes) are labeled by strings
in Σ∗.1

A simple path pattern is a sequence consisting of tag
names and *’s, separated by “/” or “//”, where “/” and “//”
correspond to the parent-child and the ancestor-descendant
relationships, respectively. A simple path pattern π is said
to match a path in an XML tree if π matches the sequence
of tag names spelled out by the path when regarding “*”
and “//” as a wildcard (that matches any tag name) and a
variable-length-don’t-care (that matches any string of tag
names), respectively.

A path pattern is an ordered pair of simple path patterns
π1 and π2, often written as π1[π2]. For any node x and
its descendant y (possibly x = y) in an XML tree, a path
pattern π1[π2] is said to occur at locus (x, y) if π1 and π2,
respectively, match the path from the root to x and the path
from x′ to y, where x′ is the node preceded by x on the path
from the root to y.

Let e = e(w1, . . . , wm) be a Boolean expression over
the keywords w1, . . . , wm in Σ+. A text d in Σ∗ is said
to satisfy e if e is true under the truth-value assignment
determined by whether or not the corresponding keywords
w1, . . . , wm occur in the text d.

1In this paper an attribute node corresponding to “name=value” is re-
garded as an interior node labeled “@name” having a unique child (leaf)
labeled “value”.

2

x

y

π1

π2

e=true

Figure 1. An illustration of occurrence of
XPattern π1[π2 : e].

An XPattern is a pair of a path pattern π1[π2] and a
Boolean expression e over keywords w1, . . . , wm in Σ+,
written as π1[π2 : e]. An XPattern π1[π2 : e] is said to oc-
cur at node x of an XML tree if x has a descendant y such
that the path pattern π1[π2] occur at locus (x, y), and the
Boolean expression e is satisfied by at least one text node
that is a child of y. We note that a path pattern π1[π2] can
be viewed as the XPattern π1[π2 : true].

Now, we give a formal definition of the problem.

Definition 1 (XML Document Retrieval)
Given. An XML document T .
Query. A set of XPatterns P1, . . . , P�.
Answer. Pairs of a node x of the XML tree for T and a bit
vector of size � representing the patterns Pi that occur at x.

3 Preprocessing

In the preprocessing part, we read once the given XML
file from the left to the right to build the path trie, a trie rep-
resenting the set of label strings of the paths from the root.
At the same time we also modify the XML file as follows.
We replace every occurrence of the start tags with a special
byte code followed by an integer indicating the correspond-
ing node in the path trie, and every occurrence of the end
tags with another special byte code. We refer to the result-
ing binary file as the binary XML file. It should be noted
that the start tag occurrences are replaced with the corre-
sponding path-trie node IDs, not with the tag IDs. Fig. 2
illustrates the preprocessing part.

Searching a tag name in the list of tag names already
processed (and assigning its ID if it is new) can be done in
O(1) time using standard hashing technique. The prepro-
cessing part thus takes O(n log |N | + |T |) time, where n is
the number of occurrences of start tags in input XML doc-
ument T , N is the set of tag names occurring in T , and |T |
is the length of T .

<a>

 <c>...</c>

 <d>...</d>

 <c>
 <d>...</d>

 <d>...</d>

 </c>

[1
 [2
 [3...]
]
 [2
 [4...]
]
 [2
 [3
 [5...]
 [6
 [7...]
]
]
]
]

a

b

c d

d

d

1

2

3 4

65

7

b

a

b bb

dc

d b

c

d

Input XML file

Binary XML file Path trie

Figure 2. Preprocessing part of the algorithm
is illustrated. An XML file with its tree rep-
resentation is displayed on the upper, where
the squares represent the text nodes. The bi-
nary XML file and the path trie created from
the XML file are shown on the lower-left and
on the lower-right, respectively. The numbers
adjacent to the nodes of the path trie mean
their IDs. We note that the start tags and the
end tags are, respectively, replaced with ‘[’
followed by a node ID, and with ‘]’ in the bi-
nary XML file.

4 Path pattern matching stage

We want to find all loci (x, y) in the input XML tree at
which given path patterns π1[π2] occur. Let v be the label

3

a

b bb

dc

d b

c

d

1

2 2

3

2

3 4

5 6

7

Hit!

Hit!

Hit!
1

2

3

4

5

6

7

8 9

10

a

b

c d

d

d

1

2

3 4

65

7

b

<P1, 1>, <P1, 3>

<P1, 1>

<P1, 2>

Figure 3. On the left, the XML tree of
Fig. 2 is displayed again. The path pat-
tern P1 = a//b[//d] occurs at loci (x, y) =
(4, 5), (6, 8), (6, 10), (9, 10). The loci can be ob-
tained from the information added to the path
trie shown on the right. For instance, the out-
put 〈P1, 2〉 of the path-trie node 5 implies that
the occurrence of P1 at locus (x, y) such that
y = 8 is associated with the path-trie node 5
and x = 6 is the 2nd ancestor of y.

string of the path from the root to y, and let d be the length
of the path from x to y. Our problem is then reduced to
the problem of finding all possible such pairs (v, d). Since
the candidates for v are represented as the nodes of the path
trie, the problem can be stated over the path trie.

Definition 2 (Occurrence Locus Listing in Path Trie)
Given. A trie T representing a finite set of strings over N .
Query. Path patterns P1, . . . , P�.
Compute. All pairs (v, d) of a node v of T and an integer
d ≥ 0 such that Pi occurs at locus (u, v) of T such that u is
the d-th ancestor of v, for each i = 1, . . . , �.

Fig. 3 demonstrates the path trie of Fig. 2 with informa-
tion about the pairs (v, d) for the path pattern P1 = a//b[//d],
where the path-trie node v has an output 〈P1, d〉 for each
(v, d) of the pairs.

Consider the following problem: Given a string t over
N and a path pattern P = π1[π2], to find all the pairs
(i, j) such that 1 ≤ i ≤ j ≤ |t|, and π1 and π2 match
t[1..i] and t[i + 1..j], respectively. Since a quadratic num-
ber of pairs (i, j) could be the answer, at least a quadratic
time is required. One solution would be to build two
NFAs M1

f and M2
f for π1 and π2, respectively. The size

of M i
f is c(πi) + 1, where c(πi) denotes the number of

tag names and *’s appearing in πi. We make M1
f run

on t to find the positions i at which occurrences of π1

end. Whenever the i is found, we make M2
f run to find

b c

N

a b

b c

N

π1 π1π2

N N

Figure 4. The NFAs for the pattern π1[π2] are
displayed, where π1 = a//b// and π2 = b//c. The
forward NFA is displayed on the upper, com-
posed of the NFA M1

f for π1 (on the upper-
left) and the NFA M2

f for π2 (on the upper-
right). The backward NFA Mb is displayed on
the lower, which accepts the set of reversals
of the strings the pattern π2 matches.

the positions j such that π2 matches t[i + 1..j]. By us-
ing the bit-parallel techniques [26], the method requires
O

(|t| · �(c(π1) + 1)/w�+ |t|2 · �(c(π2) + 1)/w�) time us-
ing O

(|N | · (�(c(π1) + 1)/w� + �(c(π2) + 1)/w�)) space
after O

(
(|π1| + |π2|) · |N |) time preprocessing, where w

is the computer word length. The algorithm runs O(|t|2)
time when the NFA sizes fit the computer word length w.
In practice the condition is often satisfied since w is 32 or
64 in current architectures.

Our practically faster solution is as follows. We combine
the NFAs M1

f and M2
f into one NFA called the forward

NFA, by adding an ε-transition from the unique final state
of M1

f to the unique initial state of M2
f . The size of the

forward NFA is c(π1)+c(π2)+1. We note that the forward
NFA has two final states to detect distinctively occurrences
of π1 and π1π2. We also build the backward NFA Mb, the
NFA accepting the set of reversal of the strings π2 matches.
The size of Mb is c(π2)+1. The construction of the forward
and the backward NFAs requres O

(
(|π1|+ |π2|) · |N |) time.

Make the forward NFA run on t, with storing into a one-
dimensional array of size |t|+ 1 the sequence of bit vectors
representing the active states. Whenever the pattern π1π2

is found at position j, we make the backward NFA run on
t in the reverse direction in order to find the start positions
i + 1 of occurrences π2 ending at j. If the backward NFA
finds a match of π2 and the corresponding bit vector stored
in the array contain the final state of M1

f , one of the start
positions is detected. We note that at least one start position
is necessarily found. This method also takes O(|t|2) time,
but runs faster than the above solution in practice.

It should be emphasized that the pattern matching with
the backward NFA cannot be omitted. In general, for any
strings u, v, π2 does not necessarily match v even if π1π2

matches uv and π1 matches u. Consider the case illustrated
in Fig. 5.

4

a

b

b

c

Figure 5. Let π1 = a//b//, π2 = b//c, and t =
a/b/b/c. π1π2 = a//b//b//c matches t and π1

matches the prefixes a/b/b/c, a/b/b, and a/b of t.
Of the corresponding suffixes, b/c is matched
by π2 but c and ε are not matched by π2.

To solve the problem of Definition 2, we perform a
depth-first traversal of the path trie for each of the path pat-
terns P1, . . . , P�. When going down in the path trie, we
simulate the nondeterministic state transitions of the for-
ward NFA in parallel for each node label, with storing a
series of bit-vectors each representing the active states. If
the pattern π1π2 is found, then make the backward NFA run
along the path string of the current node back to the root in
order to detect the occurrence loci.

Processing time (excluding NFA construction) per one
path pattern is proportional to the summation of |path(v)|
over all the nodes v in path trie T , where path(v) denotes
the path from the root to v. Then the path pattern matching
stage totally requires O(|N | · ∑�

i=1 |Pi| + � · h · n) time,
where h and n denote the height of T and the number of
nodes in T , respectively, when the pattern lengths fit the
computer word length.

5 Text-node searching stage

5.1 Index- versus PMM-based methods

The contents of text nodes can be taken as documents.
Then the problem to be considered here is stated as follows.

Definition 3 (Boolean-Model Document Retrieval)
Given. Documents d1, . . . , dk in Σ+.
Query. Boolean expressions e1, . . . , en with variables
w1, . . . , wm in Σ+.
Answer. The lists S1, . . . , Sn, where Si consists of the in-
tegers j such that dj satisfies ei.

Since we are allowed to preprocess the contents of text
nodes, it is natural to consider using text indices. The most
popular indices are the inverted lists. For each word in vo-
cabulary (the set of words in text data), the list of all its
occurrence positions is stored. More sophisticated index
structures are suffix trees and suffix arrays (see e.g. [6]),

which locate all occurrences of any substrings (not neces-
sarily words) of text data. They are superior to the inverted
lists for searching phrases or more complex queries, or in
applications where the concept of word is of no use, such as
computational biology.

One solution would be to (1) build a text index for the
documents, (2) find the set of documents in which key-
word wi occurs, for each i = 1, . . . , m, and then (3) per-
form the set operations required for the Boolean expressions
e1, . . . , en.

Let us consider the following sub-problem: Given docu-
ments d1, . . . , dk in Σ+ and a keyword w in Σ+, to answer
the list L of integers j such that w occurs in dj . Muthukr-
ishnan in [25] presented an optimal algorithm which runs
in O(|w| + |L|) time, after O(N) time and space prepro-
cessing, where N = |d1| + · · · + |dk|. This algorithm uses
the generalized suffix tree (GST) [17] for the set of doc-
uments and additional two integer arrays of size N + k.
The space requirement of GST is at least 10N bytes and the
drawback of the algorithm is thus space inefficiency. Re-
placing the GST with simple binary searches over the suf-
fix array built for the concatenation of documents di each
followed by a special character $i decreases the space re-
quirements without loss of practical search speed (although
O(|w| log(N + k) + |L|) time is needed theoretically), but
the suffix array itself requires 4(N + k) bytes in addition
to N + k bytes for the text data. The Self-indices are com-
pressed index structures including text data. Instances of
the self-indices are the compressed suffix arrays [14, 30]
and the FM-index [8, 9], which are smaller than the text
size. The search speed is, however, much slower than suffix
arrays.

The index-based methods discussed here proceed
pattern-by-pattern, and therefore a considerable amount of
extra working space is needed for set operations. The ap-
proach taken in this paper is to build from the keywords
w1, . . . , wm a PMM and to make it run on the binary XML
file. One advantage is space efficiency. Another impor-
tant advantage is document-by-document processing based
on simultaneous search of multiple keywords w1, . . . , wm.
Thanks to the advantage, no set operations are needed and
Boolean operations for every document are enough.

The main drawback of our approach is search time inef-
ficiency. But the search time per one query is considered
to be relatively small, since we process a large number of
queries at a time in our setting. In fact our preliminary ex-
periments showed that the PMM-based approach is in some
cases only 3–5 times slower than the (uncompresed) suffix
array based approach in solving the Boolean-Model Docu-
ment Retrieval problem with 500-1,000 keywords.

5

5.2 Algorithm

Let W = {w1, . . . , wm} be the set of keywords oc-
curring in the Boolean expressions e of the XPatterns
P1, . . . , P�. We build from W Aho-Corasick’s pattern
matching machine M . We maintain variables offset and
depth respectively representing the offset from the begin-
ning of the binary XML file and the depth of the current
node in XML tree during the scan of the binary XML file.
We use a two-dimensional array Occ of Boolean values
such that Occ[d][i] is true if wi occurs in some text node
that is a child of the current node of depth d. We use an-
other two-dimensional array Q of Boolean values such that
Q[d][q] is true if the XPattern Pq occurs at the current node
of depth d. We repeat the following until reading the end of
binary XML file: Read a one-byte character c from the bi-
nary XML file, and execute the following statements.

• If c is a special code implying a start tag, we read
an integer v, and push (v, offset) into a stack S.
Increment depth by one. Initialize the values of
Occ[depth][1..m] and the values of Q[depth][1..�] by
false. Set the current state of M to the initial state.

• If c is a special code implying an end tag, pop
(v, start) from the stack S. If the path-trie node
v has outputs, then for each output 〈q, d〉 evaluate
the Boolean expression e of the XPattern Pq under
the truth-value assignment determined by the values
Occ[depth][1..m]. If e is true, then set Q[depth −
d][q] to true.

If there is an integer q in {1, . . . , �} such that
Q[depth][q] is true, then outputs the node
(start, offset) and the bit vector representing
Q[depth][1..�]. Decrement depth by one. Set the
current state of M to the initial state.

• Otherwise, make a state-transition of M on c. If the
current state of M has outputs, then update the values
Occ[depth][1..m] appropriately.

6 Extensions

6.1 Permitting references to other queries

Let the input queries in the XPatterns format be:
⎧⎪⎨
⎪⎩

P1 = π1
1 [π1

2 : e1]
...

P� = π�
1[π�

2 : e�]

The expressions ei are Boolean expressions over string pat-
terns w1, . . . , wm. Here we extend ei to be Boolean ex-
pressions over variables w1, . . . , wm and P1, . . . , Pi−1.

The truth-value evaluation of the ei parts can be done
under the truth-value assignment determined by the val-
ues Occ[depth][1..m] and the two dimensional array
Q[depth][1..i − 1] for the current value of depth in the al-
gorithm stated in Section 5.2. This extension enables us to
introduce the logical connectives and the nested predicates
as follows.

Logical connectives. Consider the XPath π[π1 ∧ π2], for
instance. Let P1 = π[π1 : true] and P2 = π[π2 : true],
and let P3 = π[ε : P1 ∧ P2]. The XPath π[π1 ∧ π2] oc-
curs if and only if Q[depth][3] = true after the truth-value
evaluation in the modified algorithm mentioned above.

Nested predicates. Consider the XPath π1[π2[π3 ∧ π4]].
Let P1 = π1π2[π3 : true], P2 = π1π2[π4 : true], and
P3 = π1[π2 : (P1 ∧ P2)]. Then the XPath π1[π2[π3 ∧ π4]]
occurs if and only if the value Q[depth][3] is true.

We remark that, letting P4 = π1[π2π3 : true], P5 =
π1[π2π4 : true], and P6 = π1[ε : (P4 ∧ P5)], the value
Q[depth][6] can be true even when there is no occurrence
of the XPath π1[π2[π3 ∧ π4]].

6.2 From Boolean to arithmetic functions

Each of the queries Pi can be viewed as a mapping that
assigns truth-values to the XML-tree nodes. We extend this
to assign integer values to the XML-tree nodes. First, we
extend the Boolean expressions ei to the arithmetic expres-
sions over the integers. The truth-values true and false
are represented with 1 and 0, and the logical connectives
∧, ∨, and ¬ are interpreted as appropriate arithmetic func-
tions on the integers. Inequations are also viewed as arith-
metic functions that return 1 or 0. Second, if the query
Pi = π1[π2 : ei] occurs at node x, the mapping Pi as-
signs to x the summation of the integer values obtained by
evaluating at node y the arithmetic expressions ei over all
the nodes y such that the pattern Pi occurs at locus (x, y).
To the nodes x at which the query Pi does not occur, the
mapping Pi assigns 0.

Aggregations. Consider the XPath π1[count(π2) > 1].
We replace the statement

If e is true, then set Q[depth − d][q] to true

of the algorithm stated in Section 5.2 with

Increment Q[depth − d][q] by e.

Let P1 = π1[π2 : 1] and P2 = π1[ε : (P1 > 1)].
Then the XPath π1[count(π2) > 1] occurs if and only if
Q[depth][2] > 0.

By a similar idea, we can process the other aggregation
functions such as sum, max, min, and avg (average).

6

0

50

100

150

200

250

300

0 20 40 60 80 100 120

Pr
ep

ro
ce

ss
in

g
tim

e
(s

ec
)

File size (MB)

Our algorithm

NeoCore XMS

Figure 6. Preprocessing times of our algo-
rithm and NeoCore XMS are displayed.

7 Experimental results

We ran a series of experiments to evaluate the perfor-
mances of our algorithm, compared with XMLTK, Tamino
and NeoCore XMS. We chose the Windows 2003 server
edition of NeoCore XMS as it is said to be most finely
tuned. We tested its performances on a PC with a 3.6GHz
Xeon processor and 3.5GB RAM running Windows 2003
server. For comparisons, the performances of our algo-
rithm were tested on the same PC running RedHat Enter-
prise Linux AS v3.0 for EM64T. On the other hand, com-
parisons of our algorithm with XMLTK and with Tamino
were carried out on a PC with a 2.4GHz Intel Pentium 4 pro-
cessor and 2.0GB RAM running RedHat Linux Advanced
Server 2.1. The input XML document files used were ran-
domly generated by xmlgen [31].

7.1 Processing time

First, we measured the preprocessing times (elapsed
time) of our algorithm. The results are shown in Fig. 6,
where the preprocessing times for NeoCore XMS are also
shown for a comparison. The preprocessing of our algo-
rithm thus requires small amount of time.

Second, we measured the path-pattern matching
times against the simple path pattern and path pat-
tern classes. The simple path patterns used here
were randomly generated by a pathgenerator from
“http://yfilter.cs.berkeley.edu/code release.htm”, where the
maximum depth of the simple path patterns was set to 10,
and the probabilities prob(//) and prob(*) of occurring “//”
and “*” were equally set to 0.01, 0.05, and 0.10. The path
patterns were built from the simple path patterns. The path
trie was built from an XML file of size 111MB and had
549 nodes. Table 2 shows the path-pattern matching times
averaged over 100,000 patterns generated for each combi-
nation of a pattern class and a probability value. The times
consumed in the path pattern matching stage are thus quite
small, and stable independently of the probability value.

Table 2. Path-pattern matching times (i.e.
times for building and running NFAs) against
simple path pattern and path pattern classes
are shown, where the probability is varied
prob(//) = prob(*) = 0.01, 0.05, and 0.10.

CPU time (μsec)
build run total

simple path pattern (0.01) 2.62 17.49 20.11
simple path pattern (0.05) 2.59 17.53 20.12
simple path pattern (0.10) 2.63 17.60 20.23
path pattern (0.01) 2.64 20.99 23.63
path pattern (0.05) 2.61 21.22 23.83
path pattern (0.10) 2.68 21.40 24.08

Third, we measured the search times (times for process-
ing binary XML file, excluding the preprocessing times and
the path-pattern matching times) of our algorithm against
patterns in the following four classes.

(1) Simple path patterns with prob(//) = prob(*) = 0.05.

(2) Path patterns built from (1).

(3) XPatterns, which were built by associating each of the
path patterns of (2) with the logical OR of five words
randomly selected from the highly frequent 100 words
occurring in the text nodes.

(4) Path patterns with aggregation, which were built by
associating each of the path patterns of (2) with the
count function.

For each the classes, we created four pattern sets of size 1,
10, 100, and 1000. We generated a series of XML files of
size up to 116MB, and the sizes of corresponding binary
XML files are about 90% of their original ones.

Fig. 7 compares the search times against the pattern set
of size 10 for each of the classes (1)–(4). The differences in
search times due to the pattern classes are quite small except
for (3). (Recall that each pattern in (3) has five keywords to
be searched for.) Table 3 compares the search times against
four pattern sets of size 1,10,100, and 1000 for each of the
four classes, where the input XML file is fixed to the one of
size 116MB. It is observed from the table that, for each pat-
tern class, even if the number of queries increases 10 times,
the search time does not become so: It is even smaller than
10 times the original search time. The difference between
the search times of (2) and (3) depends upon the number of
occurrences of keywords associated with queries. We note
that the number of distinct keywords does not increase ac-
cordingly as the queries increase. For example, the pattern
sets of size 100 and 1000 in (3), respectively, carry 500 key-
words and 5000 keywords but there are at most 100 distinct

7

0

200

400

600

800

1000

0 20 40 60 80 100 120

Se
ar

ch
 ti

m
e

(m
se

c)

File size (MB)

(3)

(1)
(4)

(2)

Figure 7. Search times of our algorithm for all
pattern classes (1)–(4) are displayed against
XML file of varying size. The pattern sets
used are of size 10.

Table 3. Search times of our algorithm for all
classes (1)–(4) are displayed for varying num-
ber of patterns. The XML file used is of size
116MB.

elapsed time (sec)
(1) (2) (3) (4)

#queries = 1 0.560 0.553 1.000 0.663
#queries = 10 0.603 0.600 1.047 0.600
#queries = 100 1.113 1.083 1.550 1.360
#queries = 1000 5.913 5.823 6.203 8.203

keywords. For this reason, the search time for the pattern
set of size 1000 in (3) is relatively small compared to that
for the pattern set of size 1000 in (4).

7.2 Throughput comparison

We compared the throughputs of our algorithm and
XMLTK against a huge number of queries. For a fair com-
parison, we used a modified version of our algorithm that
emits only the maximal regions matched by some pattern
as XMLTK does. We note that XMLTK basically does not
preprocess input XML file and performs the path-pattern
matching during the scan of the input XML file, whereas
our algorithm does the path-pattern matching on the path
trie before scanning the binary XML file. In what follows
we see the effect of preprocessing of our algorithm.

Since XMLTK does not support path patterns nor more
complex patterns, the experiment was performed against
simple path patterns. We used the sets of simple path pat-
terns with prob(//) = prob(*) = 0.05 mentioned above.

The throughputs of our algorithm and XMLTK are com-
pared in Fig. 8. We note that the throughputs of our al-
gorithm are translated values in terms of the original XML
file size. Since XMLTK bases on “the LazyDFA technique”

0

5

10

15

20

25

30

0 50 100 150 200

Th
ro

ug
hp

ut
 (M

B
/s)

File size (MB)

#queries = 100K

#queries = 10K

#queries = 1K

0

5

10

15

20

25

30

0 50 100 150 200

Th
ro

ug
hp

ut
 (M

B
/s)

File size (MB)

#queries = 100K

#queries = 10K

#queries = 1K

Figure 8. Throughputs of our algorithm and
XMLTK are displayed on the upper and on
the lower, respectively. For a fair compari-
son, a modified version of our algorithm was
used which emits only the maximal regions
matched by some pattern as XMLTK does.

[12], a warm-up phase is seen at the beginning of the pro-
cessing. The throughput of XMLTK became stable after
the warm-up phase. It is observed that the throughputs of
XMLTK get worse according to the increase of the number
of queries, whereas those of our algorithm are stable, not
depending on the number of queries.

7.3 Versus commercial products

We extended the implementation of our algorithm to
cope with XQuery. Then we compared the performances of
our algorithm, Tamino, and NeoCore XMS in processing
queries provided by XMark benchmark [31], a tool kit
for evaluating the retrieval performance of XML stores
and query processors. This benchmark includes a suite
of 20 benchmark queries written in the XQuery language.
The current implementation of our algorithm does not
support a full set of XQuery, for example, the join and sort
operations have not been implemented yet. It can process
only the nine queries: Q1, Q6, Q7, Q13–Q17, and Q20. See
“http://www.ins.cwi.nl/projects/xmark/Assets/xmlquery.txt”.

The query processing times of our algorithm and Tamino
against the nine queries are displayed in Fig. 9. We see
that the processing times of our algorithm are linear with

8

Q
ue

ry
 p

ro
ce

ss
in

g
tim

e
(s

ec
)

File size (MB)

Our algorithm

Q17

Q20

Q15

Q16

Q13

Q7

Q6

Q1

Figure 9. Query processing times (elapsed
time) of Tamino and our algorithm against
XMark benchmark queries are displayed. The
times of our algorithm are piled up into a line
near the X-axis, whereas those of Tamino are
scattered depending both on the queries and
on the file size.

respect to the length of input XML data. They are stable
not depending on queries and piled up into a single line near
the X-axis. On the contrary, those of Tamino are scattered
depending on queries and on file size.

The query processing times of NeoCore XMS and our
algorithm against the nine queries are displayed in Fig. 10.
Our algorithm is thus competitive to NeoCore XMS.

Next, we compared the query processing times of our
algorithm with those of NeoCore XMS against multiple
queries. Since NeoCore XMS cannot process multiple
queries at once, we measured the sum of times for repeated
searches by NeoCore XMS. The results are shown in Ta-
ble 4. Concerning this comparison, our algorithm drasti-
cally beats out NeoCore XMS.

8 Conclusion

We have presented a light-weight XML query processor,
which is based on the path-pattern matching against the path
trie, and on the text-node searching using Aho-Corasick’s
pattern matching technique. A series of experiments proved
that our algorithm outperforms or is competitive with exist-
ing XML query processors such as XMLTK, Tamino, and
NeoCore XMS.

In the experiments we dealt with XML file of size up to
about 100MB. To cope with a huge amount of XML data,
we adopt a simple distributed parallel computation tech-
nique: We use one director server and n search servers. The

0

200

400

600

800

1000

0 20 40 60 80 100 120

Q
ue

ry
 p

ro
ce

ss
in

g
tim

e
(m

se
c)

File size (MB)

Q20

Q17

Q16
Q6Q14

Q13

Q7

Q15

Q1

Our algorithm

Figure 10. Query processing times (elapsed
time) of NeoCore XMS and our algorithm
against XMark benchmark queries are dis-
played. The performances of NeoCore XMS
vary depending upon the queries, whereas
those of our algorithm are stable. For five of
the nine queries, our algorithm outperforms
NeoCore XMS.

Table 4. Query processing times of our al-
gorithm and NeoCore XMS against sets with
size 100 of randomly generated simple path
patterns and path patterns. The values are
the processing times per one query. The XML
file used is of size 116MB.

elapsed time (msec)
our algo. NeoCore XMS

simple path pattern (0.01) 8.18 205.11
simple path pattern (0.05) 8.31 924.32
simple path pattern (0.10) 8.61 1668.89
path pattern (0.01) 11.73 5064.00
path pattern (0.05) 15.88 6164.60
path pattern (0.10) 14.57 6546.19

director divides the XML data into n pieces, and distributes
them to the search servers. The search servers preprocess
their distributed XML data to create path tries and binary
XML files. Given queries the search servers respectively
process them and then send the answers to the director.
A similar strategy using 128 CPUs has been successfully
adopted to a bio-database system developed by Fujitsu Ltd.
and Japan’s National Institute of Genetics. We thus con-
centrate on improving time and space efficiencies of query
processing by a respective search server against relatively
small XML data since n can be large.

9

Two techniques for accelerating our algorithm exist. One
is the stream index (SIX for short) [12], which is a list of
pairs of positions at which a start tag and the correspond-
ing end tag occur, respectively. The size of SIX is not large
relatively to the size of the XML document. The SIX is ex-
pected to speed up our algorithm by skipping several sub-
trees in binary XML files. The other technique is speeding-
up by text compression [32, 24] developed by our research
group, which reduces the running time of Aho-Corasick’s
pattern matching machine at nearly the same rate as the
compression ratio.

References

[1] A. V. Aho and M. Corasick. Efficient string matching: An
aid to bibliographic search. Comm. ACM, 18(6):333–340,
1975.

[2] M. Altinel and M. Franklin. Efficient filtering of XML doc-
uments for selective dissemination. In VLDB’00, pages 53–
64, 2000.

[3] S. Amer-Yahia, C. Botev, and J. Shanmugasundaram. TeX-
Query: A full-text search extension to XQuery. In WWW’04,
pages 583–594, 2004.

[4] I. Avila-Campillo, T. J. Green, A. Gupta, M. Onizuka,
D. Raven, and D. Suciu. XMLTK: An XML toolkit for scal-
able XML processing. In PLANX’02, 2002.

[5] C.-Y. Chan, P. Felber, M. Garofalakis, and R. Rastogi. Ef-
ficient filtering of XML documents with XPath expressions.
VLDB Journal, 11(4):354–379, 2002.

[6] M. Crochemore and W. Rytter. Jewels of Stringology. World
Scientific, 2002.

[7] Y. Diao, P. Fisher, M. J. Franklin, and R. To. YFilter: Effi-
cient and scalable filtering of XML documents. In ICDE’02,
pages 341–342, 2002.

[8] P. Ferragina and G. Manzini. Opportunistic data structures
with applications. In FOCS’00, pages 390–398, 2000.

[9] P. Ferragina and G. Manzini. An experimental study of an
opportunistic index. In SODA’01, pages 269–278, 2001.

[10] D. Florescu, C. Hillery, D. Kossmann, P. Lucas, F. Ric-
cardi, T. Westmann, M. J. Carey, and A. Sundararajan. The
BEA streaming XQuery processor. The VLDB Journal,
13(3):294–315, 2004.

[11] R. Goldman and J. Widom. DataGuides: Enabling query
formulation and optimization in semistructured databases.
In VLDB’97, pages 436–445, 1997.

[12] T. J. Green, A. Gupta, G. Miklau, M. Onizuka, and D. Suciu.
Processing XML streams with deterministic automata and
stream indexes. ACM Trans. Database Syst., 29(4):752–788,
2004.

[13] T. J. Green, G. Miklau, M. Onizuka, and D. Suciu. Process-
ing XML streams with deterministic automata. In ICDT’03,
pages 173–189, 2003.

[14] R. Grossi and J. Vitter. Compressed suffix arrays and suffix
trees with applications to text indexing and string matching.
In STOC’00, pages 397–406, 2000.

[15] A. K. Gupta and D. Suciu. Stream processing of XPath
queries with predicates. In SIGMOD’03, pages 431–442,
2003.

[16] P. J. Harding, Q. Li, and B. Moon. XISS/R: XML index-
ing and storage system using RDBMS. In VLDB’03, pages
1073–1076, 2003.

[17] L. C. K. Hui. Color set size problem with application to
string matching. In Combinatorial Pattern Matching, vol-
ume 644 of LNCS, pages 230–243, 1992.

[18] Z. G. Ives, A. Y. Halevy, and D. S. Weld. An XML
query engine for network-bound data. The VLDB Journal,
11(4):380–402, 2002.

[19] V. Josifovski, M. Fontoura, and A. Barta. Querying XML
streams. The VLDB Journal, 14:197–210, 2005.

[20] C. Koch, S. Scherzinger, N. Schweikardt, and B. Stegmaier.
FluXQuery: An optimizing XQuery processor for streaming
XML data. In VLDB’04, pages 1309–1312, 2004.

[21] M. Ley. DBLP computer science bibliography.
http://dblp.uni-trier.de/.

[22] Q. Li and B. Moon. Indexing and querying XML data
for regular path expressions. In VLDB’01, pages 361–370,
2001.

[23] B. Ludäscher, P. Mukhopadhyay, and Y. Papakonstantinou.
A transducer-based XML query processor. In VLDB’02,
2002.

[24] M. Takeda, et al. Speeding up string pattern matching by text
compression: The dawn of a new era. Trans. Information
Processing Society of Japan, 42(3):370–384, 2001. Special
issue for IPSJ 40th anniversary award papers.

[25] S. Muthukrishnan. Efficient algorithms for document re-
trieval problems. In SODA’02, pages 657–666, 2002.

[26] G. Navarro and M. Raffinot. Flexible pattern matching in
strings: Practical on-line search algorithms for texts and
biological sequences. Cambridge University Press, 2002.

[27] D. Olteanu, T. Furche, and F. Bry. An efficient single-pass
query evaluator for XML data streaams. In SAC’04, pages
627–631, 2004.

[28] M. Onizuka. Light-weight XPath processing of XML stream
with deterministic automata. In CIKM’03, pages 342–349,
2003.

[29] F. Peng and S. S. Chawathe. XPath queries on streaming
data. In SIGMOD’03, pages 431–442, 2003.

[30] K. Sadakane. Compressed text databases with efficient
query algorithms based on the compressed suffix array. In
ISAAC’00, LNCS 1969, pages 410–421, 2000.

[31] A. Schmidt, F. Waas, M. L. Kersten, M. J. Carey,
I. Manolescu, and R. Busse. XMark: A benchmark for XML
data management. In VLDB’02, pages 974–985, 2002.

[32] Y. Shibata, T. Kida, S. Fukamachi, M. Takeda, A. Shinohara,
T. Shinohara, and S. Arikawa. Speeding up pattern matching
by text compression. In CIAC’00, LNCS 1767, pages 306–
315, 2000.

[33] T. Shimizu and M. Yoshikawa. Full-text and structural XML
indexing on B+ tree. In DEXA’05, pages 451–460, 2005.

[34] W3C. XQuery 1.0 and XPath 2.0 full-text use cases.
http://www.w3.org/TR/xmlquery-full-text-use-cases.

[35] M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura.
XRel: A path-based approach to storage and retrieval of
XML documents using relational databases. ACM Trans.
on Internet Technology, 1(1):110–141, 2001.

10

