SN KREZZ2MTIER Y R b

Kyushu University Institutional Repository

A Fully Linear-Time Approximation Algorithm for
Grammar-Based Compression

Sakamoto, Hiroshi
Department of Informatics, Kyushu University

https://hdl. handle. net/2324/3054

HhRIE$R : DOI Technical Report. 214, 2003-01. Department of Informatics, Kyushu University
N—=I3

HEFIBAMR

A Fully Linear-Time Approximation Algorithm for
Grammar-Based Compression

Hiroshi Sakamoto*

hiroshi@i.kyushu-u.ac. jp

Abstract

A linear-time approximation algorithm for the grammar-based compression, which
is an optimization problem to minimize the size of a context-free grammar deriving a
given string, is presented. Given a string of length n, the algorithm guarantees O(log” n)
approximation ratio and using the data structures of doubly-linked list, hash table, and
priority queue, it runs in O(n) time even if the size of alphabet is unbounded.

1 Introduction

The grammar-based compression is an optimization problem, given an input string, to find
a small context-free grammar which generates the single string. This problem is known to
be NP-hard and not approximable within a constant factor [9], and due to a relation with
an algebraic problem [6], it is unlikely to found an algorithm approximating this problem
within O(logn/loglogn).

The framework of the grammar-based compression can uniformly describe the dictionary-
based coding schemes which are widely presented for real world text compression. For ex-
ample, LZ78 [16] (including LZW [13]) and BISECTION [5] encodings are considered as
algorithms to find a straight-line program, which is a very restricted CFG. Lehman and
Shelat [9] also showed the lower bounds of the approximation ratio of almost dictionary-
based encodings to the smallest CFG, and unfortunately, these lower bounds are relatively
large to O(logn) ratio.

The first polynomial-time algorithms which guarantee a small approximation ratio were
produced by Charikar, Lehman, Liu, et al. [1], and Rytter [12], independently. In particular,
the latter algorithm is attracted by the simplicity of the algorithm in the view point of its
implementation for large text data.

Rytter’s algorithm runs in O(n log |X|) time for unbounded alphabet ¥ and in linear time
for any constant alphabet. This gap is caused by the construction of a suffix tree in the
algorithm to retrieve whether a string appear in the input in linear time. The edges labeled
by characters leaving a node are lexicographically sorted. Thus, in this representation,
sorting is a lower bound for suffix tree construction and one open problem remains whether
there is a linear-time polylog-approximation algorithm for the grammar-based compression
even in case of unbounded alphabet.

The starting point of this study is RE-PAIR encoding by Larsson and Moffat [7] which
recursively replaces all pairs like ab in an input string according to the frequency. This

*Department of Informatics, Kyushu University, Fukuoka 812-8581, Japan

encoding scheme is also included in the framework of the grammar-based compression,
while only the lower bound O(y/Togn) of its approximation ratio is known [8]. Thus, a
nontrivial upper bound of the approximation ratio of RE-PAIR is still an important open
problem.

Our algorithm is not RE-PAIR in itself but is based on the strategy of the recursive
replacement of pairs. Consider a situation that a string contains nonoverlapping intervals
X and Y which represent a same substring. The aim of our algorithm is to compress X and
Y into some intervals which have a common substring as long as possible. More precisely,
X and Y are aimed to be compressed into X’ = a8y and Y’ = /37’ so that the length
of the total disagreement ary is bounded by a constant. If this encoding is realized for all
such intervals, then the input is expected to be compressed in a sufficiently short string by
successively applying this process to the resulting intervals X’ and Y.

In case that X and Y are partitioned by some delimiter characters on their both sides,
it is easy to compress them into an same string by RE-PAIR strategy. However X (or V) is
generally overlapping with other intervals which represent other different substrings. The
main goal of this paper is that our algorithm executes the required encoding in general case
without suffix tree.

We call our algorithm LEVELWISE since the replacement of pairs is restricted by the level
in which the pairs exist, that is, once an interval is replace by a nonterminal, any interval
containing it is not replaced within the same loop.

In this paper, we assume a standard RAM model for reading any O(logn) bit integer in
constant-time. We additionally assume three data structures, doubly-linked list, hash table,
and priority queue to gain constant-time access to any occurrence of a pair ab. The con-
struction of such data structures for input string is presented in [7]. Using these structures,
the running time of LEVELWISE is reduced to linear-time for unbounded alphabet.

The approximation ratio of LEVELWISE is obtained from the comparison with the size
of the output grammar and the size of the LZ-factorization [15] for an input string. Since
a logarithmic relation between LZ-factorizations and minimum grammars is already shown
in [12], we can conclude a polylogarithmic approximation ratio of our algorithm.

2 Definitions

We assume the following standard notations and definitions concerned with strings. An
alphabet is a finite set of symbols. Let A be an alphabet. The set of all strings of length
over A is denoted by A’ and the length of a string w is denoted by |w|.

The ith symbol of w is denoted by w[i] and wli, j| denotes the interval from wli] to
w(g]. If w[i,j] and w[i’, j'] represent a same substring, it is denoted by wli, j| = w[i’,j']. An
expression f(«, 3) denotes the number of occurrences of a string « in a string 4. A prefix «
of 3 is called proper if |a| < |3| and a proper suffiz is similar.

A substring wli, j] = z¥ for a symbol z is called a repetition. In particular, in case
wli — 1], w[j + 1] # x, we may write wli,j] = x™ if we have no need to specify the length
k. Intervals w[i, j] and w[i’,j'] (i < i') are called to be overlapping if i' < j < j' and to
be independent if j < i'. A substring ab of length two in a string w is called a pair in w.
Similarly, an interval w[i,i + 1] is called a segment of ab if w[i,i + 1] = ab. For a segment
wli, i + 1], two segments w(i — 1,7] and w[i 4+ 1,7 + 2] are called the left and right segments
of w[i, j], respectively.

A context-free grammar (CFG) is a 4-tuple G = (X,N, P, S), where ¥ and N are

alphabets disjoint each other, P is a set of relations, called production rules, between N
and strings over X U N, and S € N is called the start symbol. Elements in N are called
nonterminal. A production rule in P represents a replacement rule, which is written by
A— By---By forsome A€ N and B; € Y UN.

We assume that any grammar considered in this paper is deterministic, that is for each
A € N, exactly one production A — « exists in P. Thus, the language L(G) is defined by
G is a singleton set, i.e., |L(G)| = 1.

The size of G, denoted by |G|, is the total length of right sides of all production rules. In
particular, |G| = 2|N| in case of Chomsky normal form. The grammar-based compression
problem is then defined as follows.

Problem 1 (Grammar-Based Compression)
INSTANCE: A string w

SOLUTION: A deterministic CFG G for w
MEASURE: The size |G| of G

3 An Approximation Algorithm

We present the approximation algorithm, named by LEVELWISE, for the grammar-based
compression in Fig 1. This algorithm calls two procedures repetition and assort presented
in Fig 2 and 3, respectively. We begin with the outline of the algorithm as well as the
procedures below.

Outline of the algorithm: The repetition receives a string w and replaces all repeti-
tions w[i, j] = 21 of length k in w by a nonterminal Az k). A production Ay, py — BC'is
then added to P and nonterminals B, C' are defined recursively such that B = C' = A, ;2
provided k is even, and BC' = A, j, 1)z otherwise. Thus, the interval wli, j| is compressed
by a nonterminal which is the root of a binary derivation tree of depth at most O(logk).

Next the assort receives w and counts the frequency of all pairs in w. All such pairs
are managed by a priority queue in the frequent order, where two different pairs in a same
frequency are ordered by FIFO manner. This queue is indicated by list in line 3 of Fig 3
and this order is fixed until all elements are popped as follows.

In the process of assort, a dictionary D is initialized and a unique index id = {dy,ds}
is created for each pair ab. The aim of the procedure is, for each segment w[i,i + 1] = ab,
to decide whether w(i,i + 1] is added to D and assign d; or dy to w[i,7 + 1] by a decision
rule. All segments in D are finally replaced by appropriate nonterminals.

After all pairs are popped from the priority queue, the algorithm actually replaces all
segments in D; If w[i,i + 1] = w[i’,i" + 1] = ab and they are in D, then they are replaced a
same nonterminal. The resulting string is then given to repetition as a next input and the
algorithm continue this process until there is no more pair ab appearing in w at least twice.

In order to explain the decision rule evaluated in assort we introduce the following
notions.

Definition 1 A set of segments of a pair ab is called a group if all segments are assigned
by the index id = {di,da} for ab. A group consists of at most two disjoint subsets S and
So assigned dy and do, respectively. Such subsets are said to be subgroups of the group. A
subgroup s said to be selected if all segments in the subgroup are in D, unselected if all
segments in the subgroup are not in D, and irreqular otherwise.

Algorithm LEVELWISE(w)
initialize P = N = {;
while(Jab[f(ab, w) > 2]) dof
P « repetition(w, N); (replacing all repetitions)
P « assort(w, N); (replacing frequent pairs)

}

if(Jw| = 1) return P;

else return P U {S — w};
end.

O 00~ SO W N~

notation: X < Y denotes all members in Y are added to X.

Figure 1: The algorithm LEVELWISE. An input is a string and an output is a set of
production rule of an admissible grammar for w.

1 procedure repetition(w, N)

2 initialize P = (;

3 while(Jwl[i,i + j] = a™)do{

4 replace w[i,i + j] by A j);

5 P« {Aq ;) — BC}and N < {A,), B, C} recursively;
6}

7 return P;

8 end.

AL,y ifj >4 s even

, if 7 > 3 is odd
, otherwise

BC = A(a i—1) ca
2 a2

Figure 2: The procedure repetition. An input is a string and a current alphabet. An output
is a set of production rules deriving all repetitions in the input.

1 procedure assort(w,N)

2 initialize D = (;

3 make [ist: the frequency list of all pairs in w;

4 while(list is not empty)do{

5 pop the top pair ab in list;

6 set the unique id = {dy,ds} for ab;

7 compute the following sets based on Cy, = {wli, i + 1] = ab}:
8 Fup={s € Cy| sis free },

9 Loy = {s € Cgp | s is left-fixed },

10 Ra, = {s € Cyp | s is right-fixed };

11 D <« assign(Fyp) U assign(Lgp) U assign(Rep);

12 }

13 replace all segments in D by appropriate nonterminals;

14 return the set P of production rules corresponding to D and update N by P;
15 end.

16 subprocedure assign(X)

17 in case(X = Fy,){ D < F, and set id(s) = d; for all s € Fyp;}
18 in case(X =Ly, (resp. X = Ry,))do{

19 compute the set Y of all left (resp. right) segments of X;
20 for each(yr € YX (resp. zy € XY))do{

21 in case (1): y is a member of an irregular subgroup,
22 set id(z) = dy;

23 in case (2): y is a member of an unselected subgroup,
24 set id(z) = dy and D <+ {z};

25 in case (3): y is a member of a selected subgroup,

26 if the group has an irregular subgroup,

27 set id(x) = dy;

28 else if the group has an unselected subgroup,

29 set id(x) = dy;

30 else if Y contains an irregular subgroup,

31 set id(x) = dy;

32 else set id(xz) = dy;

33 }

34 }

35 return D;

36 end.

notation: yr € Y X in line 20 denotes y = w[i — 1,7] € Y and © = w[i,i + 1] € X,
and zy € XY is similar.

Figure 3: The procedure assort and assign. An input is a string and a current alphabet.
The output is a set of production rules which is selected by the frequency of pairs in the
input string as well as by the levelwise strategy.

Definition 2 A segment is called free if the left and right segments of it are not assigned,
and is called left-fized (right-fixed) if only the left (right) segment of it is assigned, respec-
tively.

Decision rule for assignment: The assignment for segments are decided by assort
as the following manner. Let ab be a current pair popped from the priority queue. At
first, the sets Fyp, Loy, Rap, and C, are computed based on the set C,p of all segments
wli,i + 1] = ab.

F,y, is the set of free segments, that is, the both sides of each w[i,i + 1] € Fy;, are not
assigned. For each segment in Fyy, assort assigns the index dy and add it to the dictionary
D. All segments registered to D are collectively replaced after the process of assort is
finished.

Lgp is the set of the left-fixed segments, that is, the left side of each segment in L is
assigned and the other is not. Let L be the set of such assigned segments. assort decides
the assignments for all w[i,i+1] € Ly, as well as whether wli, i+ 1] is added to D depending
on L. The decision is evaluated as follows'.

Since all segments in L are assigned, L is divided into some disjoint groups like L =
LiULg---ULj such that Ly is assigned by a unique id = {d, d2} and each group L, consists
of some subgroups.

Given L, and L, the procedure assort finds all w[i —1,7] € L belonging to an unselected
subgroup and then adds its all right segments w[i, i + 1] € Lg, to the dictionary D.

Next it decides the assignment for L, as follows. Assign ds to each w[i,i + 1] € Lgy if
the left segment w[i — 1,4] € L is in an irregular subgroup and d; to each w[i,i + 1] € Ly
if w[i —1,4] € L is in an unselected subgroup.

The remained segments are w[i, i + 1] € Ly, such that the corresponding w[i — 1,i] € L
belong to a selected subgroup of a group. In this case, the procedure checks whether the
group contains other subgroups, that is, unselected or irregular. If the group contains an
irregular subgroup, wli,i + 1] is assigned da, else if it contains an unselected subgroup,
wli, i + 1] is assigned dy, and otherwise, the procedure checks whether there is other group
in containing an irregular subgroup; If so, w[i,7 + 1] is assigned ds and else w[i,i + 1] is
assigned d;.

Consequently, a single group for L., assigned di or dy is constructed from k groups
L =1Ly ULgy---ULg. The resulting group is used for further assignment of right segments
of La,b-

The case R is symmetric, that is, the set R of the right assigned segments for R
is computed and the assignment and dictionary for R, are decided by R. The remained
segments in C!, = Cyp \ Fop U Lgp U Ry, are skipped since both sides of any segments in C?,
are already assigned.

We first show that the running time of our algorithm is in at most O(n?). This order is
reduced to a linear time at the next section.

Proposition 1 LEVELWISE runs in at most O(n?) in the length of an input string.

k¥ in w, we can construct all nonterminals in

proof. Using a counter, for each repetition x
the binary derivation for z* in O(k) time. Thus, the required time for repetition(w, N)

is O(n). For other computation, we initially construct a doubly-linked list for w to gain

!This process and all concrete assignments are illustrated in Appendix A

constant-time access to any occurrence of a pair ab in w. Since this technique was already
implemented in [7], we briefly explain the idea.

The length of the linked-list, that is the number of nodes is n such that the ith node
n; contains at most five pointers a(i), suc(i), pre(i), latter(i), and former(i), where a(7)
is w(i), suc(i) and pre(i) are pointers for the nodes n; 1 and n;;1, respectively, latter(i) is
the pointer for the next occurrence of ab for w(i,i + 1] = ab, and the former(i) is similar.
The time to construct this linked-list is O(n).

The priority list of all pairs in w is simultaneously constructed. Whenever the top of the
priority list, say ab, is popped, the total length traced by the algorithm to compute the set
Cabs Fap, Lap, and Ry is at most O(k) for the number k of all occurrences of ab. Similarly,
the sets L for F,, and R for Ry, can be computed in O(k) time.

Using hash table, for each w(i,i+ 1] € Ly, we can decide the group of the w[i —1,i] € L
in O(1) time. Moreover, other conditions can be also computed in O(1) time. Thus, the
running time of assort for a pair ab is also in O(k). Since an output string by assort is
shorter than its input (if not, the algorithm terminates), the number of repetitions of the
outer-loop is at most n. Therefore, the running time of Levelwise is at most O(n?). O

4 Approximation Ratio and Running Time

In the section, we show that LEVELWISE is O(log? n)-approximation algorithm as well as
it runs in linear time in an input length. We first show that repetition compresses two
independent intervals of a same substring into a sufficiently long common string.

Lemma 1 Let w be an input string for repetition and w[iy, j1] = w[iz, j2] be nonoverlapping
intervals of a same substring in w. Let w’ be the resulting string and let I; and I be two
intervals in w' corresponding to w(i1, j1] and w[ig, jo], respectively. Then it holds that
L[2,|k| — 1] = I5[2, |k| — 1], where k is the length of I.

proof. We can assume wli1,j1] = wli1, j1] = usv such that u = a™ and v = b™ for some
a,b € N. The substrings w[iy +|ul, i1 + |us| — 1] = wlia +|ul,ia+ |us| — 1] = s are compressed
into a same string 5. There exist 1 < i; and i’ < iy such that w(i,i1] = w[i’,is] = at are
compressed into a symbol A; and A,, and such indices exist also for j; and js. Thus, the
interval in w’ corresponding to w[iy, j1] and w[ig, jo] are of the form A;3B; and A53Bs,
respectively. They are the same string except one symbols of both sides of them. O

Let p and ¢ be pairs in a priority queue constructed in assort. We define the partial order
> for all pairs such that p > ¢ if p is former element than g in the queue. Then, p is said to be
more frequent than g. Particularly, the top element of a current queue is said to be the most
frequent pair. Similarly, we write w[i,i+ 1] > w[i',i'+ 1] if w[i, i+ 1] = ab, w[i’,i" + 1] = 'V,
and ab > a'b’.

Definition 3 An interval w(i, j] is said to be decreasing if w[k,k + 1] = w[k + 1,k + 2] for
alli < k < j—2, and conversely, is said to be increasing if w[k, k+1] < w[k+1, k+2] for all
pairs. A segment w(i,i+1] is said to be local mazimum if w(i,i+1] = w[i—1,4), w[i+1,i+2]
and said to be local minimum if wli,i + 1] < w[i — 1,4],w[i + 1,7 + 2].

b

Here we note that any repetition like a™ is replaced by a nonterminal by the first
procedure repetition, any input given to assort contains no segment wli,i + 2| satisfying
wliyi+ 1] = w[i + 1,7 + 2], that is, any different segments satisfy w(i, i + 1] > w[i’,i" + 1].

Definition 4 Let w[i,j] and w[i’,j'] be independent occurrences of a substring and D be
a dictionary, that is, a set of segments in w. Let sy, and s}, be the kth segments from the
wli,i + 1] and wli’, 7' + 1], respectively. Then, the segments sy, s, are said to agree with D
if Sk, sy, € D or sg, s, & D, and are said to disagree with D otherwise.

Lemma 2 Let w be an input for assort, w[i,i + j] = w[i’,7 + j] be two independent
occurrences of a same substring in w, and D be a dictionary computed by assort. Then,
the following two conditions hold: (1) the segments w[i +k,i+k+ 1] and w[i' + k, 7' + k +1]
agree with D for any 6 < k < j — 6 and (2) w[i, i + j] contains no interval w[¢, ¢ + 3] whose
three segments are not in D.

proof. proof of condition (1): If wli,i + j] contains a local maximum segment s; = w[i +
k,i+k+1], then s; is the first segment chosen from w[i+k—1,i+k], s1,wli+k+1,i+k+2].
Thus, s; and the corresponding segment s} in w[i’, 7’ + j] are added to D and assigned a

same index.

Similarly it is easy to see that any segments w(i+k,i+k+1] and w[i' +k, '+ k+ 1] agree
with D between the left most and right most local maximum segments in wli, i + j] and
wli’,i" + j]. Thus, the remained intervals are a long decreasing prefix and a long increasing
suffix? of w(i,i+j] and w[i’, ' + j]. In order to prove this case, we need the following claims:

claim 1 Any group computed by assort consists of at most two different subgroups of
selected, unselected, and irregular.

clatm 2 When a segment s is chosen by assort to assign some index, if the left segment
of s belongs to a group containing two different subgroups, then the assignment for s is
decided by only the subgroups.

Claim 1 is directly obtained from Definition 1. Claim 2 is derived from the subprocedure
assign (Appendix A shows all cases of assignments for such s). Let w[i,i + j] contains a
decreasing prefix of length at least six. The segment firstly chosen from the prefix of wli, i+ j]
is w[i, i+ 1], and w[i’, i’ +1] is also chosen simultaneously. They are then classified into some
groups. Since the prefix is decreasing, succeedingly chosen segments are the right segments
s of wli,i + 1] and s’ of w[i’,7' + 1]. Since s and s’ are both left-fixed and represent a same
pair, they are classified into a same group g.

Case 1: The group ¢ consists of a single subgroup. In this case, s and s’ are both
contained in one of (a) selected, (b) unselected, or (c) irregular subgroup. The case (a)
satisfies that s and s’ are assigned a same index and are both added to D. Thus, from the
segments, no disagreement happens within the prefix. The case (b) and (c¢) converge to the
case (a) within at least two right segments from s are chosen.

Case 2: The group ¢ containing s and s’ consists of two different subgroups. By Claim
2, the right segments of s and s’ are assigned by only the condition of this group. The all
combinations of two different subgroups are (i) selected and unselected, (ii) selected and
irregular, and (iii) unselected and irregular. In the first two cases, the right segments are all
classified into a single subgroup. In the last case, any segment are classified into a selected
or unselected subgroup, that is, this case converges to case (i). Thus, each case of (i), (ii),
and (iii) converges to Case 1 within further two right segment from s are chosen.

Consequently, together with Case 1 and 2, it is satisfied that some segments w[i + k, i +
k+1] and w[i' + k, 7' + k+ 1] are assigned a same index and they are added to D within four

2The decreasing prefix case is demonstrated in Appendix B.

right segment from s and s’ are chosen. It follows that any disagreement of w[i, + j] and
w(i',i" + j] in the decreasing prefix happens within only the range w(i, i+ 6] and w[i’, 7' + 6].
The case of an increasing suffix of them can be similarly shown.

proof of condition (2): Since all local maximum segments are added to D, the possibility
for unsatisfying Condition (2) is remained only on a decreasing prefix and increasing suffix
of wli,i + j]. As is already shown in the above, any segment is classified into one of a
selected, unselected, and irregular subgroup, and the last two subgroups must converge to
a selected subgroup within two segments. Thus, w[i,i 4+ j] and w[i’',7 + j] has no three
consecutive segments which are not added to D. O

Finally, we show the main result of this paper by comparing the size of output grammar
G with the LZ-factorization [15] of w. Here we recall its definition: The LZ-factorization
of w denoted by LZ(w) is the decomposition w = fy -+ fx, where f; = w[1] and for each
1 <<k, fyis the longest prefix of f;--- fr which occurs in f7--- fy_1. Each fy is called a
factor. The size of LZ(w), denoted by |LZ(w)], is the number of its factors.

Theorem 1 ([12]) For each string w and its deterministic CFG G, |LZ(w)| < |G].

Theorem 2 For each string w of length n, the approximation ratio of LEVELWISE is
O(log?n) ant it runs in O(n).

proof. By Theorem 1, it is sufficient to prove |G|/|LZ(w)| = O(log?n). For each factor
fe, the prefix fi--- f;_1 contains at least one occurrence of f,. We denote f; by w(i,i + j]
and other occurrence by w[i’, i’ + j], respectively. By Lemma 1 and 2, after one loop of the
algorithm is executed, the substrings represented by w(i, i+ j] and w[i’,i'+ j] are compressed
into some strings a3y and o837, respectively, where |al,|y| < 4. By Lemma 2, |3] < %j.
Since 3 occurs in the compressed string at least twice, we can apply Lemma 1 and 2 to the
strings until they are compressed into sufficiently short strings.

Thus, the interval w[i,i 4+ j] corresponding to f; is compressed into a string of length
at most O(logj). It follows that w compressed into a string of length at most O(klogn),
where k = |LZ(w)|. Hence, we can estimate |G| = 2|N| 4 ¢ - klogn with a constant ¢ and
the set N of all nonterminals of G.

The number of different nonterminals in the compressed string is at most ¢ - klogn. If
A € N occurs in the string and A — BC € P, then the pair BC must occur in the lower
string at least twice. Thus, the number of different nonterminals in the lower level is also at
most ¢-klogn. Since the depth of the loop of the algorithm is O(logn), |[N| < cklogn-logn
Hence, we obtain |G|/|LZ(w)| = O(log?n) 4+ O(logn) = O(log®n).

The running time can be reduced in linear time in n since the number of repetitions of
the outer loop of the algorithm is O(logn) and |3 < 2 - j. O

5 Conclusion

For the grammar-based compression problem, we presented a fully linear time algorithm
which guarantees O(log2 n) approximation ratio for input strings over possibly unbounded
alphabets. The remained open problem is whether this ratio can be reduced to O(logn).
Another important problem is an upper bound of the approximation ratio of RE-PAIR
algorithm [7].

References

1]

[11]

[12]

[13]

[14]

[15]

[16]

M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Rasala, A. Sahai,
and A. Shelat. Approximating the Smallest Grammar: Kolmogorov Complexity in
Natural Models. In Proc. 29th Ann. Sympo. on Theory of Computing, 792-801, 2002.

D. Gusfield. Algorithms on Strings, Trees, and Sequences. Computer Science and
Computational Biology. Cambridge University Press, 1997.

T. Kida, Y. Shibata, M. Takeda, A. Shinohara, and S. Arikawa. Collage System: a
Unifying Framework for Compressed Pattern Matching. Theoret. Comput. Sci. (to

appear).

J. C. Kieffer and E.-H. Yang. Grammar-Based Codes: a New Class of Universal Lossless
Source Codes. IEEE Trans. on Inform. Theory, 46(3):737-754, 2000.

J. C. Kieffer, E.-H. Yang, G. Nelson, and P. Cosman. Universal Lossless Compression
via Multilevel Pattern Matching. IEEE Trans. Inform. Theory, 1T-46(4), 1227 1245,
2000.

D. Knuth. Seminumerical Algorithms. Addison-Wesley, 441-462, 1981.

N. J. Larsson and A. Moffat. Offline Dictionary-Based Compression. Proceedings of
the IEEE, 88(11):1722-1732, 2000.

E. Lehman. Approximation Algorithms for Grammar-Based Compression. PhD thesis,
MIT, 2002.

E. Lehman and A. Shelat. Approximation Algorithms for Grammar-Based Compres-
sion. In Proc. 20th Ann. ACM-SIAM Sympo. on Discrete Algorithms, 205-212, 2002.

M. Farach. Optimal Suffix Tree Construction with Large Alphabets. In Proc. 38th
Ann. Sympo. on Foundations of Computer Science, 137-143, 1997.

C. Nevill-Manning and I. Witten. Compression and Explanation using Hierarchical
Grammars. Computer Journal, 40(2/3):103 116, 1997.

W. Rytter. Application of Lempel-Ziv Factorization to the Approximation of
Grammar-Based Compression. In Proc. 13th Ann. Sympo. Combinatorial Pattern
Matching, 20-31, 2002.

T. A. Welch. A Technique for High Performance Data Compression. IEEE Comput.,
17:8-19, 1984.

E.-H. Yang and J. C. Kieffer. Efficient Universal Lossless Data Compression Algorithms
Based on a Greedy Sequential Grammar Transform Part One: without Context Mod-
els. IEEE Trans. on Inform. Theory, 46(3):755-777, 2000.

J. Ziv and A. Lempel. A Universal Algorithm for Sequential Data Compression. IEEE
Trans. on Inform. Theory, 1T-23(3):337-349, 1977.

J. Ziv and A. Lempel. Compression of Individual Sequences via Variable-Rate Coding.
IEEE Trans. on Inform. Theory, 24(5):530-536, 1978.

10

Appendix A

(1y p=selected + irregular

Yy =X
1+ 5 1+ 5 1+| 5
B | 4|5 1+ 5| |1+|5
=
=
- 25>0§ 25| |25
2+| 5 S 2+ 5 2+ 5
cﬁ %
=] 3 4+ 3+ 5 3|5
8
= 34+j 3+ 5 3+ 5

(2) p=unselected + selected (3) p=unselected +irregular

1 |4+ 1 |4+ 1 |4+ 1 |4+ 1 |4+ 1 |4+
1 |4+ 1 |4+ 1 |4+ 1 |4+ 1 |4+ 1 |4+
244 | [2+/4 | |2+] 4 2|5 2|5 2|5
2+ 4 2+ 4 2+ 4 2+ 5 2+| 5 2+ 5
3|4+ |3+ 4 3|5 34+ |3+ 5 3|5
3|4+ |3+ 4| |3+ 5 3|4+ [3+| 5| |3+ 5

Figure 4: The assignment manner for current segments X. This figure illustrates how the
left-fixed segments X are assigned from its left segments Y. The left segments Y is already
assigned and then classified into some groups, in this case p and q. The group g for X is
obtained from group p and ¢, which are containing several subgroups. The indices of group
p, q, and ¢ are id = {1,2}, {3}, {4,5}. The mark ‘4’ denotes that the marked segments
are added to D. For example, on the first case of (1), there is an unselected subgroup in Y,
then the corresponding segments in X is added to D. Next, there is an irregular subgroup
and an unselected subgroup, then the corresponding segments in X are assigned 4 and 5,
respectively. Finally, the remained selected subgroup is in the same group of the irregular
subgroup, then its corresponding segments are assigned 5. In this figure, only the case of ¢
consisting a single subgroup is shown, but this is sufficiently general since the assignment
for X is invariable even if ¢ contains other subgroups.

11

Appendix B

The direction of assignment =

a b e d e f g

l/'_
2 15+ (10 |11+[12 (13+ -BDF
2 15+ (10 |11+[12 (13+ -BDF
groupp <
1+ 5 |10 (11+({12 13+ AICDF
1+ 5 |10 (11+({12 13+ A cDF
- 2
3+| 6 |9+ |11 |12 13+ A3CeF
3+| 6 |9+ |11 |12 13+ A4CeF
groupg <
4+ 6 |9+ (11|12 13+ ASCeF
g 416 (9411 12 13+ bCeF
T+ 110 |11+ 12 |13+ BDF
T+ 110 |11+ 12 |13+ BDF
group r
8+ 110 11+|12 |13+ BDF
8 |10 |11+{12 [13+ cDF

b e d e f g
The convergence point Iﬁ

Figure 5: The convergence of assignment for a long decreasing prefix case. We assume that
a string w contains 8 independent intervals which have the same prefix ‘abcdefg’, where this
prefix is decreasing. The 1-8 rows represent such 8 intervals. Assume that the set of segments
of ab are already classified into two group p and ¢q. The last 4 rows denote other intervals in
w which have the same prefix ‘bedefg’. All 12 rows are merged on the column of ¢d in a same
group. All segments of this group converge to a same selected subgroup on the indicated
column within the pairs de, ef, and fg are chosen. We note that the convergence of 1-8 rows
are guaranteed regardless of the last 4 rows since for each group ¢', the assignment for right
segments of ¢’ is not affected by other groups as long as ¢’ contains 2 subgroups. Finally
each interval is compressed in the string shown in its right side. Nonterminals B, C, D, E, F’
correspond to the production rules B — bc, C' — ¢d, D — de, E — ef, F' — fg, respectively.
The ‘—’ and ‘A;’ are indefinite since they depend on their left sides.

12

