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A Fully Linear-Time Approximation Algorithm forGrammar-Based CompressionHiroshi Sakamoto�hiroshi�i.kyushu-u.a
.jpAbstra
tA linear-time approximation algorithm for the grammar-based 
ompression, whi
his an optimization problem to minimize the size of a 
ontext-free grammar deriving agiven string, is presented. Given a string of length n, the algorithm guaranteesO(log2 n)approximation ratio and using the data stru
tures of doubly-linked list, hash table, andpriority queue, it runs in O(n) time even if the size of alphabet is unbounded.1 Introdu
tionThe grammar-based 
ompression is an optimization problem, given an input string, to �nda small 
ontext-free grammar whi
h generates the single string. This problem is known tobe NP-hard and not approximable within a 
onstant fa
tor [9℄, and due to a relation withan algebrai
 problem [6℄, it is unlikely to found an algorithm approximating this problemwithin O(log n= log log n).The framework of the grammar-based 
ompression 
an uniformly des
ribe the di
tionary-based 
oding s
hemes whi
h are widely presented for real world text 
ompression. For ex-ample, LZ78 [16℄ (in
luding LZW [13℄) and BISECTION [5℄ en
odings are 
onsidered asalgorithms to �nd a straight-line program, whi
h is a very restri
ted CFG. Lehman andShelat [9℄ also showed the lower bounds of the approximation ratio of almost di
tionary-based en
odings to the smallest CFG, and unfortunately, these lower bounds are relativelylarge to O(logn) ratio.The �rst polynomial-time algorithms whi
h guarantee a small approximation ratio wereprodu
ed by Charikar, Lehman, Liu, et al. [1℄, and Rytter [12℄, independently. In parti
ular,the latter algorithm is attra
ted by the simpli
ity of the algorithm in the view point of itsimplementation for large text data.Rytter's algorithm runs in O(n log j�j) time for unbounded alphabet � and in linear timefor any 
onstant alphabet. This gap is 
aused by the 
onstru
tion of a suÆx tree in thealgorithm to retrieve whether a string appear in the input in linear time. The edges labeledby 
hara
ters leaving a node are lexi
ographi
ally sorted. Thus, in this representation,sorting is a lower bound for suÆx tree 
onstru
tion and one open problem remains whetherthere is a linear-time polylog-approximation algorithm for the grammar-based 
ompressioneven in 
ase of unbounded alphabet.The starting point of this study is Re-pair en
oding by Larsson and Mo�at [7℄ whi
hre
ursively repla
es all pairs like ab in an input string a

ording to the frequen
y. This�Department of Informati
s, Kyushu University, Fukuoka 812-8581, Japan1



en
oding s
heme is also in
luded in the framework of the grammar-based 
ompression,while only the lower bound O(plogn) of its approximation ratio is known [8℄. Thus, anontrivial upper bound of the approximation ratio of Re-pair is still an important openproblem.Our algorithm is not Re-pair in itself but is based on the strategy of the re
ursiverepla
ement of pairs. Consider a situation that a string 
ontains nonoverlapping intervalsX and Y whi
h represent a same substring. The aim of our algorithm is to 
ompress X andY into some intervals whi
h have a 
ommon substring as long as possible. More pre
isely,X and Y are aimed to be 
ompressed into X 0 = ��
 and Y 0 = �0�
0 so that the lengthof the total disagreement �
 is bounded by a 
onstant. If this en
oding is realized for allsu
h intervals, then the input is expe
ted to be 
ompressed in a suÆ
iently short string bysu

essively applying this pro
ess to the resulting intervals X 0 and Y 0.In 
ase that X and Y are partitioned by some delimiter 
hara
ters on their both sides,it is easy to 
ompress them into an same string by Re-pair strategy. However X (or Y ) isgenerally overlapping with other intervals whi
h represent other di�erent substrings. Themain goal of this paper is that our algorithm exe
utes the required en
oding in general 
asewithout suÆx tree.We 
all our algorithm Levelwise sin
e the repla
ement of pairs is restri
ted by the levelin whi
h the pairs exist, that is, on
e an interval is repla
e by a nonterminal, any interval
ontaining it is not repla
ed within the same loop.In this paper, we assume a standard RAM model for reading any O(logn) bit integer in
onstant-time. We additionally assume three data stru
tures, doubly-linked list, hash table,and priority queue to gain 
onstant-time a

ess to any o

urren
e of a pair ab. The 
on-stru
tion of su
h data stru
tures for input string is presented in [7℄. Using these stru
tures,the running time of Levelwise is redu
ed to linear-time for unbounded alphabet.The approximation ratio of Levelwise is obtained from the 
omparison with the sizeof the output grammar and the size of the LZ-fa
torization [15℄ for an input string. Sin
ea logarithmi
 relation between LZ-fa
torizations and minimum grammars is already shownin [12℄, we 
an 
on
lude a polylogarithmi
 approximation ratio of our algorithm.2 De�nitionsWe assume the following standard notations and de�nitions 
on
erned with strings. Analphabet is a �nite set of symbols. Let A be an alphabet. The set of all strings of length iover A is denoted by Ai and the length of a string w is denoted by jwj.The ith symbol of w is denoted by w[i℄ and w[i; j℄ denotes the interval from w[i℄ tow[j℄. If w[i; j℄ and w[i0; j0℄ represent a same substring, it is denoted by w[i; j℄ = w[i0; j0℄. Anexpression ℄(�; �) denotes the number of o

urren
es of a string � in a string �. A pre�x �of � is 
alled proper if j�j < j�j and a proper suÆx is similar.A substring w[i; j℄ = xk for a symbol x is 
alled a repetition. In parti
ular, in 
asew[i � 1℄; w[j + 1℄ 6= x, we may write w[i; j℄ = x+ if we have no need to spe
ify the lengthk. Intervals w[i; j℄ and w[i0; j0℄ (i < i0) are 
alled to be overlapping if i0 � j < j0 and tobe independent if j < i0. A substring ab of length two in a string w is 
alled a pair in w.Similarly, an interval w[i; i + 1℄ is 
alled a segment of ab if w[i; i + 1℄ = ab. For a segmentw[i; i+ 1℄, two segments w[i� 1; i℄ and w[i+ 1; i+ 2℄ are 
alled the left and right segmentsof w[i; j℄, respe
tively.A 
ontext-free grammar (CFG) is a 4-tuple G = (�; N; P; S), where � and N are2



alphabets disjoint ea
h other, P is a set of relations, 
alled produ
tion rules, between Nand strings over � [ N , and S 2 N is 
alled the start symbol . Elements in N are 
allednonterminal . A produ
tion rule in P represents a repla
ement rule, whi
h is written byA! B1 � � �Bk for some A 2 N and Bi 2 � [N .We assume that any grammar 
onsidered in this paper is deterministi
, that is for ea
hA 2 N , exa
tly one produ
tion A! � exists in P . Thus, the language L(G) is de�ned byG is a singleton set, i.e., jL(G)j = 1.The size of G, denoted by jGj, is the total length of right sides of all produ
tion rules. Inparti
ular, jGj = 2jN j in 
ase of Chomsky normal form. The grammar-based 
ompressionproblem is then de�ned as follows.Problem 1 (Grammar-Based Compression)Instan
e: A string wSolution: A deterministi
 CFG G for wMeasure: The size jGj of G3 An Approximation AlgorithmWe present the approximation algorithm, named by Levelwise, for the grammar-based
ompression in Fig 1. This algorithm 
alls two pro
edures repetition and assort presentedin Fig 2 and 3, respe
tively. We begin with the outline of the algorithm as well as thepro
edures below.Outline of the algorithm: The repetition re
eives a string w and repla
es all repeti-tions w[i; j℄ = x+ of length k in w by a nonterminal A(x;k). A produ
tion A(x;k) ! BC isthen added to P and nonterminals B;C are de�ned re
ursively su
h that B = C = A(x;k=2)provided k is even, and BC = A(x;k�1)x otherwise. Thus, the interval w[i; j℄ is 
ompressedby a nonterminal whi
h is the root of a binary derivation tree of depth at most O(log k).Next the assort re
eives w and 
ounts the frequen
y of all pairs in w. All su
h pairsare managed by a priority queue in the frequent order, where two di�erent pairs in a samefrequen
y are ordered by FIFO manner. This queue is indi
ated by list in line 3 of Fig 3and this order is �xed until all elements are popped as follows.In the pro
ess of assort , a di
tionary D is initialized and a unique index id = fd1; d2gis 
reated for ea
h pair ab. The aim of the pro
edure is, for ea
h segment w[i; i + 1℄ = ab,to de
ide whether w[i; i + 1℄ is added to D and assign d1 or d2 to w[i; i + 1℄ by a de
isionrule. All segments in D are �nally repla
ed by appropriate nonterminals.After all pairs are popped from the priority queue, the algorithm a
tually repla
es allsegments in D; If w[i; i+ 1℄ = w[i0; i0 + 1℄ = ab and they are in D, then they are repla
ed asame nonterminal. The resulting string is then given to repetition as a next input and thealgorithm 
ontinue this pro
ess until there is no more pair ab appearing in w at least twi
e.In order to explain the de
ision rule evaluated in assort we introdu
e the followingnotions.De�nition 1 A set of segments of a pair ab is 
alled a group if all segments are assignedby the index id = fd1; d2g for ab. A group 
onsists of at most two disjoint subsets S1 andS2 assigned d1 and d2, respe
tively. Su
h subsets are said to be subgroups of the group. Asubgroup is said to be sele
ted if all segments in the subgroup are in D, unsele
ted if allsegments in the subgroup are not in D, and irregular otherwise.3



1 Algorithm Levelwise(w)2 initialize P = N = ;;3 while( 9ab[℄(ab; w) � 2℄ ) dof4 P  repetition(w;N); (repla
ing all repetitions)5 P  assort(w;N); (repla
ing frequent pairs)6 g7 if(jwj = 1) return P ;8 else return P [ fS ! wg;9 end.notation: X  Y denotes all members in Y are added to X.Figure 1: The algorithm Levelwise. An input is a string and an output is a set ofprodu
tion rule of an admissible grammar for w.
1 pro
edure repetition(w;N)2 initialize P = ;;3 while( 9w[i; i+ j℄ = a+ )dof4 repla
e w[i; i + j℄ by A(a;j);5 P  fA(a;j) ! BCg and N  fA(a;j); B;Cg re
ursively;6 g7 return P ;8 end. BC = 8<: A2(a;j=2); if j � 4 is evenA(a;j�1) � a; if j � 3 is odda2; otherwiseFigure 2: The pro
edure repetition. An input is a string and a 
urrent alphabet. An outputis a set of produ
tion rules deriving all repetitions in the input.
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1 pro
edure assort(w;N)2 initialize D = ;;3 make list: the frequen
y list of all pairs in w;4 while( list is not empty )dof5 pop the top pair ab in list;6 set the unique id = fd1; d2g for ab;7 
ompute the following sets based on Cab = fw[i; i + 1℄ = abg:8 Fab = fs 2 Cab j s is free g,9 Lab = fs 2 Cab j s is left-�xed g,10 Rab = fs 2 Cab j s is right-�xed g;11 D  assign(Fab) [ assign(Lab) [ assign(Rab);12 g13 repla
e all segments in D by appropriate nonterminals;14 return the set P of produ
tion rules 
orresponding to D and update N by P ;15 end.16 subpro
edure assign(X)17 in 
ase( X = Fab )f D  Fab and set id(s) = d1 for all s 2 Fab;g18 in 
ase( X = Lab (resp. X = Rab) )dof19 
ompute the set Y of all left (resp. right) segments of X;20 for ea
h( yx 2 Y X (resp. xy 2 XY ) )dof21 in 
ase (1): y is a member of an irregular subgroup,22 set id(x) = d2;23 in 
ase (2): y is a member of an unsele
ted subgroup,24 set id(x) = d1 and D  fxg;25 in 
ase (3): y is a member of a sele
ted subgroup,26 if the group has an irregular subgroup,27 set id(x) = d2;28 else if the group has an unsele
ted subgroup,29 set id(x) = d1;30 else if Y 
ontains an irregular subgroup,31 set id(x) = d2;32 else set id(x) = d1;33 g34 g35 return D;36 end.notation: yx 2 Y X in line 20 denotes y = w[i� 1; i℄ 2 Y and x = w[i; i + 1℄ 2 X,and xy 2 XY is similar.Figure 3: The pro
edure assort and assign. An input is a string and a 
urrent alphabet.The output is a set of produ
tion rules whi
h is sele
ted by the frequen
y of pairs in theinput string as well as by the levelwise strategy.5



De�nition 2 A segment is 
alled free if the left and right segments of it are not assigned,and is 
alled left-�xed (right-�xed) if only the left (right) segment of it is assigned, respe
-tively.De
ision rule for assignment: The assignment for segments are de
ided by assortas the following manner. Let ab be a 
urrent pair popped from the priority queue. At�rst, the sets Fab, Lab, Rab, and C 0ab are 
omputed based on the set Cab of all segmentsw[i; i + 1℄ = ab.Fab is the set of free segments, that is, the both sides of ea
h w[i; i + 1℄ 2 Fab are notassigned. For ea
h segment in Fab, assort assigns the index d1 and add it to the di
tionaryD. All segments registered to D are 
olle
tively repla
ed after the pro
ess of assort is�nished.Lab is the set of the left-�xed segments, that is, the left side of ea
h segment in Lab isassigned and the other is not. Let L be the set of su
h assigned segments. assort de
idesthe assignments for all w[i; i+1℄ 2 Lab as well as whether w[i; i+1℄ is added to D dependingon L. The de
ision is evaluated as follows1.Sin
e all segments in L are assigned, L is divided into some disjoint groups like L =L1[L2 � � �[Lk su
h that L` is assigned by a unique id = fd1; d2g and ea
h group L` 
onsistsof some subgroups.Given Lab and L, the pro
edure assort �nds all w[i�1; i℄ 2 L belonging to an unsele
tedsubgroup and then adds its all right segments w[i; i + 1℄ 2 Lab to the di
tionary D.Next it de
ides the assignment for Lab as follows. Assign d2 to ea
h w[i; i + 1℄ 2 Lab ifthe left segment w[i � 1; i℄ 2 L is in an irregular subgroup and d1 to ea
h w[i; i + 1℄ 2 Labif w[i � 1; i℄ 2 L is in an unsele
ted subgroup.The remained segments are w[i; i+ 1℄ 2 Lab su
h that the 
orresponding w[i� 1; i℄ 2 Lbelong to a sele
ted subgroup of a group. In this 
ase, the pro
edure 
he
ks whether thegroup 
ontains other subgroups, that is, unsele
ted or irregular. If the group 
ontains anirregular subgroup, w[i; i + 1℄ is assigned d2, else if it 
ontains an unsele
ted subgroup,w[i; i+ 1℄ is assigned d1, and otherwise, the pro
edure 
he
ks whether there is other groupin 
ontaining an irregular subgroup; If so, w[i; i + 1℄ is assigned d2 and else w[i; i + 1℄ isassigned d1.Consequently, a single group for Lab assigned d1 or d2 is 
onstru
ted from k groupsL = L1 [ L2 � � � [ Lk. The resulting group is used for further assignment of right segmentsof Lab.The 
ase Rab is symmetri
, that is, the set R of the right assigned segments for Rabis 
omputed and the assignment and di
tionary for Rab are de
ided by R. The remainedsegments in C 0ab = Cab nFab [Lab [Rab are skipped sin
e both sides of any segments in C 0abare already assigned.We �rst show that the running time of our algorithm is in at most O(n2). This order isredu
ed to a linear time at the next se
tion.Proposition 1 Levelwise runs in at most O(n2) in the length of an input string.proof. Using a 
ounter, for ea
h repetition xk in w, we 
an 
onstru
t all nonterminals inthe binary derivation for xk in O(k) time. Thus, the required time for repetition(w;N)is O(n). For other 
omputation, we initially 
onstru
t a doubly-linked list for w to gain1This pro
ess and all 
on
rete assignments are illustrated in Appendix A6




onstant-time a

ess to any o

urren
e of a pair ab in w. Sin
e this te
hnique was alreadyimplemented in [7℄, we brie
y explain the idea.The length of the linked-list, that is the number of nodes is n su
h that the ith nodeni 
ontains at most �ve pointers a(i), su
(i), pre(i), latter(i), and former(i), where a(i)is w(i), su
(i) and pre(i) are pointers for the nodes ni�1 and ni+1, respe
tively, latter(i) isthe pointer for the next o

urren
e of ab for w[i; i + 1℄ = ab, and the former(i) is similar.The time to 
onstru
t this linked-list is O(n).The priority list of all pairs in w is simultaneously 
onstru
ted. Whenever the top of thepriority list, say ab, is popped, the total length tra
ed by the algorithm to 
ompute the setCab, Fab, Lab, and Rab is at most O(k) for the number k of all o

urren
es of ab. Similarly,the sets L for Fab and R for Rab 
an be 
omputed in O(k) time.Using hash table, for ea
h w[i; i+1℄ 2 Lab we 
an de
ide the group of the w[i� 1; i℄ 2 Lin O(1) time. Moreover, other 
onditions 
an be also 
omputed in O(1) time. Thus, therunning time of assort for a pair ab is also in O(k). Sin
e an output string by assort isshorter than its input (if not, the algorithm terminates), the number of repetitions of theouter-loop is at most n. Therefore, the running time of Levelwise is at most O(n2). 24 Approximation Ratio and Running TimeIn the se
tion, we show that Levelwise is O(log2 n)-approximation algorithm as well asit runs in linear time in an input length. We �rst show that repetition 
ompresses twoindependent intervals of a same substring into a suÆ
iently long 
ommon string.Lemma 1 Let w be an input string for repetition and w[i1; j1℄ = w[i2; j2℄ be nonoverlappingintervals of a same substring in w. Let w0 be the resulting string and let I1 and I2 be twointervals in w0 
orresponding to w[i1; j1℄ and w[i2; j2℄, respe
tively. Then it holds thatI1[2; jkj � 1℄ = I2[2; jkj � 1℄, where k is the length of I1.proof. We 
an assume w[i1; j1℄ = w[i1; j1℄ = usv su
h that u = a+ and v = b+ for somea; b 2 N . The substrings w[i1+ juj; i1+ jusj�1℄ = w[i2+ juj; i2+ jusj�1℄ = s are 
ompressedinto a same string ~s. There exist i � i1 and i0 � i2 su
h that w[i; i1℄ = w[i0; i2℄ = a+ are
ompressed into a symbol A1 and A2, and su
h indi
es exist also for j1 and j2. Thus, theinterval in w0 
orresponding to w[i1; j1℄ and w[i2; j2℄ are of the form A1~sB1 and A2~sB2,respe
tively. They are the same string ex
ept one symbols of both sides of them. 2Let p and q be pairs in a priority queue 
onstru
ted in assort . We de�ne the partial order� for all pairs su
h that p � q if p is former element than q in the queue. Then, p is said to bemore frequent than q. Parti
ularly, the top element of a 
urrent queue is said to be the mostfrequent pair. Similarly, we write w[i; i+1℄ � w[i0; i0+1℄ if w[i; i+1℄ = ab; w[i0; i0+1℄ = a0b0,and ab � a0b0.De�nition 3 An interval w[i; j℄ is said to be de
reasing if w[k; k + 1℄ � w[k + 1; k + 2℄ forall i � k � j�2, and 
onversely, is said to be in
reasing if w[k; k+1℄ � w[k+1; k+2℄ for allpairs. A segment w[i; i+1℄ is said to be lo
al maximum if w[i; i+1℄ � w[i�1; i℄; w[i+1; i+2℄and said to be lo
al minimum if w[i; i + 1℄ � w[i� 1; i℄; w[i + 1; i+ 2℄.Here we note that any repetition like a+ is repla
ed by a nonterminal by the �rstpro
edure repetition, any input given to assort 
ontains no segment w[i; i + 2℄ satisfyingw[i; i + 1℄ = w[i+ 1; i+ 2℄, that is, any di�erent segments satisfy w[i; i + 1℄ � w[i0; i0 + 1℄.7



De�nition 4 Let w[i; j℄ and w[i0; j0℄ be independent o

urren
es of a substring and D bea di
tionary, that is, a set of segments in w. Let sk and s0k be the kth segments from thew[i; i + 1℄ and w[i0; i0 + 1℄, respe
tively. Then, the segments sk; s0k are said to agree with Dif sk; s0k 2 D or sk; s0k 62 D, and are said to disagree with D otherwise.Lemma 2 Let w be an input for assort, w[i; i + j℄ = w[i0; i0 + j℄ be two independento

urren
es of a same substring in w, and D be a di
tionary 
omputed by assort. Then,the following two 
onditions hold: (1) the segments w[i+k; i+k+1℄ and w[i0+k; i0+k+1℄agree with D for any 6 � k � j � 6 and (2) w[i; i+ j℄ 
ontains no interval w[`; `+3℄ whosethree segments are not in D.proof. proof of 
ondition (1): If w[i; i + j℄ 
ontains a lo
al maximum segment s1 = w[i +k; i+k+1℄, then s1 is the �rst segment 
hosen from w[i+k�1; i+k℄; s1; w[i+k+1; i+k+2℄.Thus, s1 and the 
orresponding segment s01 in w[i0; i0 + j℄ are added to D and assigned asame index.Similarly it is easy to see that any segments w[i+k; i+k+1℄ and w[i0+k; i0+k+1℄ agreewith D between the left most and right most lo
al maximum segments in w[i; i + j℄ andw[i0; i0 + j℄. Thus, the remained intervals are a long de
reasing pre�x and a long in
reasingsuÆx2 of w[i; i+j℄ and w[i0; i0+j℄. In order to prove this 
ase, we need the following 
laims:
laim 1 Any group 
omputed by assort 
onsists of at most two di�erent subgroups ofsele
ted, unsele
ted, and irregular.
laim 2 When a segment s is 
hosen by assort to assign some index, if the left segmentof s belongs to a group 
ontaining two di�erent subgroups, then the assignment for s isde
ided by only the subgroups.Claim 1 is dire
tly obtained from De�nition 1. Claim 2 is derived from the subpro
edureassign (Appendix A shows all 
ases of assignments for su
h s). Let w[i; i + j℄ 
ontains ade
reasing pre�x of length at least six. The segment �rstly 
hosen from the pre�x of w[i; i+j℄is w[i; i+1℄, and w[i0; i0+1℄ is also 
hosen simultaneously. They are then 
lassi�ed into somegroups. Sin
e the pre�x is de
reasing, su

eedingly 
hosen segments are the right segmentss of w[i; i+ 1℄ and s0 of w[i0; i0 + 1℄. Sin
e s and s0 are both left-�xed and represent a samepair, they are 
lassi�ed into a same group g.Case 1: The group g 
onsists of a single subgroup. In this 
ase, s and s0 are both
ontained in one of (a) sele
ted, (b) unsele
ted, or (
) irregular subgroup. The 
ase (a)satis�es that s and s0 are assigned a same index and are both added to D. Thus, from thesegments, no disagreement happens within the pre�x. The 
ase (b) and (
) 
onverge to the
ase (a) within at least two right segments from s are 
hosen.Case 2: The group g 
ontaining s and s0 
onsists of two di�erent subgroups. By Claim2, the right segments of s and s0 are assigned by only the 
ondition of this group. The all
ombinations of two di�erent subgroups are (i) sele
ted and unsele
ted, (ii) sele
ted andirregular, and (iii) unsele
ted and irregular. In the �rst two 
ases, the right segments are all
lassi�ed into a single subgroup. In the last 
ase, any segment are 
lassi�ed into a sele
tedor unsele
ted subgroup, that is, this 
ase 
onverges to 
ase (i). Thus, ea
h 
ase of (i), (ii),and (iii) 
onverges to Case 1 within further two right segment from s are 
hosen.Consequently, together with Case 1 and 2, it is satis�ed that some segments w[i+ k; i+k+1℄ and w[i0+k; i0+k+1℄ are assigned a same index and they are added to D within four2The de
reasing pre�x 
ase is demonstrated in Appendix B.8



right segment from s and s0 are 
hosen. It follows that any disagreement of w[i; i + j℄ andw[i0; i0+ j℄ in the de
reasing pre�x happens within only the range w[i; i+6℄ and w[i0; i0+6℄.The 
ase of an in
reasing suÆx of them 
an be similarly shown.proof of 
ondition (2): Sin
e all lo
al maximum segments are added to D, the possibilityfor unsatisfying Condition (2) is remained only on a de
reasing pre�x and in
reasing suÆxof w[i; i + j℄. As is already shown in the above, any segment is 
lassi�ed into one of asele
ted, unsele
ted, and irregular subgroup, and the last two subgroups must 
onverge toa sele
ted subgroup within two segments. Thus, w[i; i + j℄ and w[i0; i0 + j℄ has no three
onse
utive segments whi
h are not added to D. 2Finally, we show the main result of this paper by 
omparing the size of output grammarG with the LZ-fa
torization [15℄ of w. Here we re
all its de�nition: The LZ-fa
torizationof w denoted by LZ(w) is the de
omposition w = f1 � � � fk, where f1 = w[1℄ and for ea
h1 � ` � k, f` is the longest pre�x of f` � � � fk whi
h o

urs in f1 � � � f`�1. Ea
h f` is 
alled afa
tor . The size of LZ(w), denoted by jLZ(w)j, is the number of its fa
tors.Theorem 1 ([12℄) For ea
h string w and its deterministi
 CFG G, jLZ(w)j � jGj.Theorem 2 For ea
h string w of length n, the approximation ratio of Levelwise isO(log2 n) ant it runs in O(n).proof. By Theorem 1, it is suÆ
ient to prove jGj=jLZ(w)j = O(log2 n). For ea
h fa
torf`, the pre�x f1 � � � f`�1 
ontains at least one o

urren
e of f`. We denote f` by w[i; i + j℄and other o

urren
e by w[i0; i0 + j℄, respe
tively. By Lemma 1 and 2, after one loop of thealgorithm is exe
uted, the substrings represented by w[i; i+j℄ and w[i0; i0+j℄ are 
ompressedinto some strings ��
 and �0�
0, respe
tively, where j�j; j
j � 4. By Lemma 2, j�j � 34j.Sin
e � o

urs in the 
ompressed string at least twi
e, we 
an apply Lemma 1 and 2 to thestrings until they are 
ompressed into suÆ
iently short strings.Thus, the interval w[i; i + j℄ 
orresponding to f` is 
ompressed into a string of lengthat most O(log j). It follows that w 
ompressed into a string of length at most O(k log n),where k = jLZ(w)j. Hen
e, we 
an estimate jGj = 2jN j + 
 � k log n with a 
onstant 
 andthe set N of all nonterminals of G.The number of di�erent nonterminals in the 
ompressed string is at most 
 � k log n. IfA 2 N o

urs in the string and A ! BC 2 P , then the pair BC must o

ur in the lowerstring at least twi
e. Thus, the number of di�erent nonterminals in the lower level is also atmost 
 �k log n. Sin
e the depth of the loop of the algorithm is O(log n), jN j � 
k log n � lognHen
e, we obtain jGj=jLZ(w)j = O(log2 n) +O(log n) = O(log2 n).The running time 
an be redu
ed in linear time in n sin
e the number of repetitions ofthe outer loop of the algorithm is O(logn) and j�j � 34 � j. 25 Con
lusionFor the grammar-based 
ompression problem, we presented a fully linear time algorithmwhi
h guarantees O(log2 n) approximation ratio for input strings over possibly unboundedalphabets. The remained open problem is whether this ratio 
an be redu
ed to O(log n).Another important problem is an upper bound of the approximation ratio of Re-pairalgorithm [7℄. 9
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Appendix A

Figure 4: The assignment manner for 
urrent segments X. This �gure illustrates how theleft-�xed segments X are assigned from its left segments Y . The left segments Y is alreadyassigned and then 
lassi�ed into some groups, in this 
ase p and q. The group g for X isobtained from group p and q, whi
h are 
ontaining several subgroups. The indi
es of groupp, q, and g are id = f1; 2g, f3g, f4; 5g. The mark `+' denotes that the marked segmentsare added to D. For example, on the �rst 
ase of (1), there is an unsele
ted subgroup in Y ,then the 
orresponding segments in X is added to D. Next, there is an irregular subgroupand an unsele
ted subgroup, then the 
orresponding segments in X are assigned 4 and 5,respe
tively. Finally, the remained sele
ted subgroup is in the same group of the irregularsubgroup, then its 
orresponding segments are assigned 5. In this �gure, only the 
ase of q
onsisting a single subgroup is shown, but this is suÆ
iently general sin
e the assignmentfor X is invariable even if q 
ontains other subgroups.
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Appendix B

Figure 5: The 
onvergen
e of assignment for a long de
reasing pre�x 
ase. We assume thata string w 
ontains 8 independent intervals whi
h have the same pre�x `ab
defg ', where thispre�x is de
reasing. The 1-8 rows represent su
h 8 intervals. Assume that the set of segmentsof ab are already 
lassi�ed into two group p and q. The last 4 rows denote other intervals inw whi
h have the same pre�x `b
defg '. All 12 rows are merged on the 
olumn of 
d in a samegroup. All segments of this group 
onverge to a same sele
ted subgroup on the indi
ated
olumn within the pairs de, ef , and fg are 
hosen. We note that the 
onvergen
e of 1-8 rowsare guaranteed regardless of the last 4 rows sin
e for ea
h group g0, the assignment for rightsegments of g0 is not a�e
ted by other groups as long as g0 
ontains 2 subgroups. Finallyea
h interval is 
ompressed in the string shown in its right side. Nonterminals B;C;D;E; F
orrespond to the produ
tion rules B ! b
; C ! 
d;D ! de;E ! ef; F ! fg, respe
tively.The `�' and `Ai' are inde�nite sin
e they depend on their left sides.
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