
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

A Fully Linear-Time Approximation Algorithm for
Grammar-Based Compression

Sakamoto, Hiroshi
Department of Informatics, Kyushu University

https://hdl.handle.net/2324/3054

出版情報：DOI Technical Report. 214, 2003-01. Department of Informatics, Kyushu University
バージョン：
権利関係：

A Fully Linear-Time Approximation Algorithm forGrammar-Based CompressionHiroshi Sakamoto�hiroshi�i.kyushu-u.a.jpAbstratA linear-time approximation algorithm for the grammar-based ompression, whihis an optimization problem to minimize the size of a ontext-free grammar deriving agiven string, is presented. Given a string of length n, the algorithm guaranteesO(log2 n)approximation ratio and using the data strutures of doubly-linked list, hash table, andpriority queue, it runs in O(n) time even if the size of alphabet is unbounded.1 IntrodutionThe grammar-based ompression is an optimization problem, given an input string, to �nda small ontext-free grammar whih generates the single string. This problem is known tobe NP-hard and not approximable within a onstant fator [9℄, and due to a relation withan algebrai problem [6℄, it is unlikely to found an algorithm approximating this problemwithin O(log n= log log n).The framework of the grammar-based ompression an uniformly desribe the ditionary-based oding shemes whih are widely presented for real world text ompression. For ex-ample, LZ78 [16℄ (inluding LZW [13℄) and BISECTION [5℄ enodings are onsidered asalgorithms to �nd a straight-line program, whih is a very restrited CFG. Lehman andShelat [9℄ also showed the lower bounds of the approximation ratio of almost ditionary-based enodings to the smallest CFG, and unfortunately, these lower bounds are relativelylarge to O(logn) ratio.The �rst polynomial-time algorithms whih guarantee a small approximation ratio wereprodued by Charikar, Lehman, Liu, et al. [1℄, and Rytter [12℄, independently. In partiular,the latter algorithm is attrated by the simpliity of the algorithm in the view point of itsimplementation for large text data.Rytter's algorithm runs in O(n log j�j) time for unbounded alphabet � and in linear timefor any onstant alphabet. This gap is aused by the onstrution of a suÆx tree in thealgorithm to retrieve whether a string appear in the input in linear time. The edges labeledby haraters leaving a node are lexiographially sorted. Thus, in this representation,sorting is a lower bound for suÆx tree onstrution and one open problem remains whetherthere is a linear-time polylog-approximation algorithm for the grammar-based ompressioneven in ase of unbounded alphabet.The starting point of this study is Re-pair enoding by Larsson and Mo�at [7℄ whihreursively replaes all pairs like ab in an input string aording to the frequeny. This�Department of Informatis, Kyushu University, Fukuoka 812-8581, Japan1

enoding sheme is also inluded in the framework of the grammar-based ompression,while only the lower bound O(plogn) of its approximation ratio is known [8℄. Thus, anontrivial upper bound of the approximation ratio of Re-pair is still an important openproblem.Our algorithm is not Re-pair in itself but is based on the strategy of the reursivereplaement of pairs. Consider a situation that a string ontains nonoverlapping intervalsX and Y whih represent a same substring. The aim of our algorithm is to ompress X andY into some intervals whih have a ommon substring as long as possible. More preisely,X and Y are aimed to be ompressed into X 0 = �� and Y 0 = �0�0 so that the lengthof the total disagreement � is bounded by a onstant. If this enoding is realized for allsuh intervals, then the input is expeted to be ompressed in a suÆiently short string bysuessively applying this proess to the resulting intervals X 0 and Y 0.In ase that X and Y are partitioned by some delimiter haraters on their both sides,it is easy to ompress them into an same string by Re-pair strategy. However X (or Y) isgenerally overlapping with other intervals whih represent other di�erent substrings. Themain goal of this paper is that our algorithm exeutes the required enoding in general asewithout suÆx tree.We all our algorithm Levelwise sine the replaement of pairs is restrited by the levelin whih the pairs exist, that is, one an interval is replae by a nonterminal, any intervalontaining it is not replaed within the same loop.In this paper, we assume a standard RAM model for reading any O(logn) bit integer inonstant-time. We additionally assume three data strutures, doubly-linked list, hash table,and priority queue to gain onstant-time aess to any ourrene of a pair ab. The on-strution of suh data strutures for input string is presented in [7℄. Using these strutures,the running time of Levelwise is redued to linear-time for unbounded alphabet.The approximation ratio of Levelwise is obtained from the omparison with the sizeof the output grammar and the size of the LZ-fatorization [15℄ for an input string. Sinea logarithmi relation between LZ-fatorizations and minimum grammars is already shownin [12℄, we an onlude a polylogarithmi approximation ratio of our algorithm.2 De�nitionsWe assume the following standard notations and de�nitions onerned with strings. Analphabet is a �nite set of symbols. Let A be an alphabet. The set of all strings of length iover A is denoted by Ai and the length of a string w is denoted by jwj.The ith symbol of w is denoted by w[i℄ and w[i; j℄ denotes the interval from w[i℄ tow[j℄. If w[i; j℄ and w[i0; j0℄ represent a same substring, it is denoted by w[i; j℄ = w[i0; j0℄. Anexpression ℄(�; �) denotes the number of ourrenes of a string � in a string �. A pre�x �of � is alled proper if j�j < j�j and a proper suÆx is similar.A substring w[i; j℄ = xk for a symbol x is alled a repetition. In partiular, in asew[i � 1℄; w[j + 1℄ 6= x, we may write w[i; j℄ = x+ if we have no need to speify the lengthk. Intervals w[i; j℄ and w[i0; j0℄ (i < i0) are alled to be overlapping if i0 � j < j0 and tobe independent if j < i0. A substring ab of length two in a string w is alled a pair in w.Similarly, an interval w[i; i + 1℄ is alled a segment of ab if w[i; i + 1℄ = ab. For a segmentw[i; i+ 1℄, two segments w[i� 1; i℄ and w[i+ 1; i+ 2℄ are alled the left and right segmentsof w[i; j℄, respetively.A ontext-free grammar (CFG) is a 4-tuple G = (�; N; P; S), where � and N are2

alphabets disjoint eah other, P is a set of relations, alled prodution rules, between Nand strings over � [N , and S 2 N is alled the start symbol . Elements in N are allednonterminal . A prodution rule in P represents a replaement rule, whih is written byA! B1 � � �Bk for some A 2 N and Bi 2 � [N .We assume that any grammar onsidered in this paper is deterministi, that is for eahA 2 N , exatly one prodution A! � exists in P . Thus, the language L(G) is de�ned byG is a singleton set, i.e., jL(G)j = 1.The size of G, denoted by jGj, is the total length of right sides of all prodution rules. Inpartiular, jGj = 2jN j in ase of Chomsky normal form. The grammar-based ompressionproblem is then de�ned as follows.Problem 1 (Grammar-Based Compression)Instane: A string wSolution: A deterministi CFG G for wMeasure: The size jGj of G3 An Approximation AlgorithmWe present the approximation algorithm, named by Levelwise, for the grammar-basedompression in Fig 1. This algorithm alls two proedures repetition and assort presentedin Fig 2 and 3, respetively. We begin with the outline of the algorithm as well as theproedures below.Outline of the algorithm: The repetition reeives a string w and replaes all repeti-tions w[i; j℄ = x+ of length k in w by a nonterminal A(x;k). A prodution A(x;k) ! BC isthen added to P and nonterminals B;C are de�ned reursively suh that B = C = A(x;k=2)provided k is even, and BC = A(x;k�1)x otherwise. Thus, the interval w[i; j℄ is ompressedby a nonterminal whih is the root of a binary derivation tree of depth at most O(log k).Next the assort reeives w and ounts the frequeny of all pairs in w. All suh pairsare managed by a priority queue in the frequent order, where two di�erent pairs in a samefrequeny are ordered by FIFO manner. This queue is indiated by list in line 3 of Fig 3and this order is �xed until all elements are popped as follows.In the proess of assort , a ditionary D is initialized and a unique index id = fd1; d2gis reated for eah pair ab. The aim of the proedure is, for eah segment w[i; i + 1℄ = ab,to deide whether w[i; i + 1℄ is added to D and assign d1 or d2 to w[i; i + 1℄ by a deisionrule. All segments in D are �nally replaed by appropriate nonterminals.After all pairs are popped from the priority queue, the algorithm atually replaes allsegments in D; If w[i; i+ 1℄ = w[i0; i0 + 1℄ = ab and they are in D, then they are replaed asame nonterminal. The resulting string is then given to repetition as a next input and thealgorithm ontinue this proess until there is no more pair ab appearing in w at least twie.In order to explain the deision rule evaluated in assort we introdue the followingnotions.De�nition 1 A set of segments of a pair ab is alled a group if all segments are assignedby the index id = fd1; d2g for ab. A group onsists of at most two disjoint subsets S1 andS2 assigned d1 and d2, respetively. Suh subsets are said to be subgroups of the group. Asubgroup is said to be seleted if all segments in the subgroup are in D, unseleted if allsegments in the subgroup are not in D, and irregular otherwise.3

1 Algorithm Levelwise(w)2 initialize P = N = ;;3 while(9ab[℄(ab; w) � 2℄) dof4 P repetition(w;N); (replaing all repetitions)5 P assort(w;N); (replaing frequent pairs)6 g7 if(jwj = 1) return P ;8 else return P [fS ! wg;9 end.notation: X Y denotes all members in Y are added to X.Figure 1: The algorithm Levelwise. An input is a string and an output is a set ofprodution rule of an admissible grammar for w.
1 proedure repetition(w;N)2 initialize P = ;;3 while(9w[i; i+ j℄ = a+)dof4 replae w[i; i + j℄ by A(a;j);5 P fA(a;j) ! BCg and N fA(a;j); B;Cg reursively;6 g7 return P ;8 end. BC = 8<: A2(a;j=2); if j � 4 is evenA(a;j�1) � a; if j � 3 is odda2; otherwiseFigure 2: The proedure repetition. An input is a string and a urrent alphabet. An outputis a set of prodution rules deriving all repetitions in the input.

4

1 proedure assort(w;N)2 initialize D = ;;3 make list: the frequeny list of all pairs in w;4 while(list is not empty)dof5 pop the top pair ab in list;6 set the unique id = fd1; d2g for ab;7 ompute the following sets based on Cab = fw[i; i + 1℄ = abg:8 Fab = fs 2 Cab j s is free g,9 Lab = fs 2 Cab j s is left-�xed g,10 Rab = fs 2 Cab j s is right-�xed g;11 D assign(Fab) [assign(Lab) [assign(Rab);12 g13 replae all segments in D by appropriate nonterminals;14 return the set P of prodution rules orresponding to D and update N by P ;15 end.16 subproedure assign(X)17 in ase(X = Fab)f D Fab and set id(s) = d1 for all s 2 Fab;g18 in ase(X = Lab (resp. X = Rab))dof19 ompute the set Y of all left (resp. right) segments of X;20 for eah(yx 2 Y X (resp. xy 2 XY))dof21 in ase (1): y is a member of an irregular subgroup,22 set id(x) = d2;23 in ase (2): y is a member of an unseleted subgroup,24 set id(x) = d1 and D fxg;25 in ase (3): y is a member of a seleted subgroup,26 if the group has an irregular subgroup,27 set id(x) = d2;28 else if the group has an unseleted subgroup,29 set id(x) = d1;30 else if Y ontains an irregular subgroup,31 set id(x) = d2;32 else set id(x) = d1;33 g34 g35 return D;36 end.notation: yx 2 Y X in line 20 denotes y = w[i� 1; i℄ 2 Y and x = w[i; i + 1℄ 2 X,and xy 2 XY is similar.Figure 3: The proedure assort and assign. An input is a string and a urrent alphabet.The output is a set of prodution rules whih is seleted by the frequeny of pairs in theinput string as well as by the levelwise strategy.5

De�nition 2 A segment is alled free if the left and right segments of it are not assigned,and is alled left-�xed (right-�xed) if only the left (right) segment of it is assigned, respe-tively.Deision rule for assignment: The assignment for segments are deided by assortas the following manner. Let ab be a urrent pair popped from the priority queue. At�rst, the sets Fab, Lab, Rab, and C 0ab are omputed based on the set Cab of all segmentsw[i; i + 1℄ = ab.Fab is the set of free segments, that is, the both sides of eah w[i; i + 1℄ 2 Fab are notassigned. For eah segment in Fab, assort assigns the index d1 and add it to the ditionaryD. All segments registered to D are olletively replaed after the proess of assort is�nished.Lab is the set of the left-�xed segments, that is, the left side of eah segment in Lab isassigned and the other is not. Let L be the set of suh assigned segments. assort deidesthe assignments for all w[i; i+1℄ 2 Lab as well as whether w[i; i+1℄ is added to D dependingon L. The deision is evaluated as follows1.Sine all segments in L are assigned, L is divided into some disjoint groups like L =L1[L2 � � �[Lk suh that L` is assigned by a unique id = fd1; d2g and eah group L` onsistsof some subgroups.Given Lab and L, the proedure assort �nds all w[i�1; i℄ 2 L belonging to an unseletedsubgroup and then adds its all right segments w[i; i + 1℄ 2 Lab to the ditionary D.Next it deides the assignment for Lab as follows. Assign d2 to eah w[i; i + 1℄ 2 Lab ifthe left segment w[i � 1; i℄ 2 L is in an irregular subgroup and d1 to eah w[i; i + 1℄ 2 Labif w[i � 1; i℄ 2 L is in an unseleted subgroup.The remained segments are w[i; i+ 1℄ 2 Lab suh that the orresponding w[i� 1; i℄ 2 Lbelong to a seleted subgroup of a group. In this ase, the proedure heks whether thegroup ontains other subgroups, that is, unseleted or irregular. If the group ontains anirregular subgroup, w[i; i + 1℄ is assigned d2, else if it ontains an unseleted subgroup,w[i; i+ 1℄ is assigned d1, and otherwise, the proedure heks whether there is other groupin ontaining an irregular subgroup; If so, w[i; i + 1℄ is assigned d2 and else w[i; i + 1℄ isassigned d1.Consequently, a single group for Lab assigned d1 or d2 is onstruted from k groupsL = L1 [L2 � � � [Lk. The resulting group is used for further assignment of right segmentsof Lab.The ase Rab is symmetri, that is, the set R of the right assigned segments for Rabis omputed and the assignment and ditionary for Rab are deided by R. The remainedsegments in C 0ab = Cab nFab [Lab [Rab are skipped sine both sides of any segments in C 0abare already assigned.We �rst show that the running time of our algorithm is in at most O(n2). This order isredued to a linear time at the next setion.Proposition 1 Levelwise runs in at most O(n2) in the length of an input string.proof. Using a ounter, for eah repetition xk in w, we an onstrut all nonterminals inthe binary derivation for xk in O(k) time. Thus, the required time for repetition(w;N)is O(n). For other omputation, we initially onstrut a doubly-linked list for w to gain1This proess and all onrete assignments are illustrated in Appendix A6

onstant-time aess to any ourrene of a pair ab in w. Sine this tehnique was alreadyimplemented in [7℄, we briey explain the idea.The length of the linked-list, that is the number of nodes is n suh that the ith nodeni ontains at most �ve pointers a(i), su(i), pre(i), latter(i), and former(i), where a(i)is w(i), su(i) and pre(i) are pointers for the nodes ni�1 and ni+1, respetively, latter(i) isthe pointer for the next ourrene of ab for w[i; i + 1℄ = ab, and the former(i) is similar.The time to onstrut this linked-list is O(n).The priority list of all pairs in w is simultaneously onstruted. Whenever the top of thepriority list, say ab, is popped, the total length traed by the algorithm to ompute the setCab, Fab, Lab, and Rab is at most O(k) for the number k of all ourrenes of ab. Similarly,the sets L for Fab and R for Rab an be omputed in O(k) time.Using hash table, for eah w[i; i+1℄ 2 Lab we an deide the group of the w[i� 1; i℄ 2 Lin O(1) time. Moreover, other onditions an be also omputed in O(1) time. Thus, therunning time of assort for a pair ab is also in O(k). Sine an output string by assort isshorter than its input (if not, the algorithm terminates), the number of repetitions of theouter-loop is at most n. Therefore, the running time of Levelwise is at most O(n2). 24 Approximation Ratio and Running TimeIn the setion, we show that Levelwise is O(log2 n)-approximation algorithm as well asit runs in linear time in an input length. We �rst show that repetition ompresses twoindependent intervals of a same substring into a suÆiently long ommon string.Lemma 1 Let w be an input string for repetition and w[i1; j1℄ = w[i2; j2℄ be nonoverlappingintervals of a same substring in w. Let w0 be the resulting string and let I1 and I2 be twointervals in w0 orresponding to w[i1; j1℄ and w[i2; j2℄, respetively. Then it holds thatI1[2; jkj � 1℄ = I2[2; jkj � 1℄, where k is the length of I1.proof. We an assume w[i1; j1℄ = w[i1; j1℄ = usv suh that u = a+ and v = b+ for somea; b 2 N . The substrings w[i1+ juj; i1+ jusj�1℄ = w[i2+ juj; i2+ jusj�1℄ = s are ompressedinto a same string ~s. There exist i � i1 and i0 � i2 suh that w[i; i1℄ = w[i0; i2℄ = a+ areompressed into a symbol A1 and A2, and suh indies exist also for j1 and j2. Thus, theinterval in w0 orresponding to w[i1; j1℄ and w[i2; j2℄ are of the form A1~sB1 and A2~sB2,respetively. They are the same string exept one symbols of both sides of them. 2Let p and q be pairs in a priority queue onstruted in assort . We de�ne the partial order� for all pairs suh that p � q if p is former element than q in the queue. Then, p is said to bemore frequent than q. Partiularly, the top element of a urrent queue is said to be the mostfrequent pair. Similarly, we write w[i; i+1℄ � w[i0; i0+1℄ if w[i; i+1℄ = ab; w[i0; i0+1℄ = a0b0,and ab � a0b0.De�nition 3 An interval w[i; j℄ is said to be dereasing if w[k; k + 1℄ � w[k + 1; k + 2℄ forall i � k � j�2, and onversely, is said to be inreasing if w[k; k+1℄ � w[k+1; k+2℄ for allpairs. A segment w[i; i+1℄ is said to be loal maximum if w[i; i+1℄ � w[i�1; i℄; w[i+1; i+2℄and said to be loal minimum if w[i; i + 1℄ � w[i� 1; i℄; w[i + 1; i+ 2℄.Here we note that any repetition like a+ is replaed by a nonterminal by the �rstproedure repetition, any input given to assort ontains no segment w[i; i + 2℄ satisfyingw[i; i + 1℄ = w[i+ 1; i+ 2℄, that is, any di�erent segments satisfy w[i; i + 1℄ � w[i0; i0 + 1℄.7

De�nition 4 Let w[i; j℄ and w[i0; j0℄ be independent ourrenes of a substring and D bea ditionary, that is, a set of segments in w. Let sk and s0k be the kth segments from thew[i; i + 1℄ and w[i0; i0 + 1℄, respetively. Then, the segments sk; s0k are said to agree with Dif sk; s0k 2 D or sk; s0k 62 D, and are said to disagree with D otherwise.Lemma 2 Let w be an input for assort, w[i; i + j℄ = w[i0; i0 + j℄ be two independentourrenes of a same substring in w, and D be a ditionary omputed by assort. Then,the following two onditions hold: (1) the segments w[i+k; i+k+1℄ and w[i0+k; i0+k+1℄agree with D for any 6 � k � j � 6 and (2) w[i; i+ j℄ ontains no interval w[`; `+3℄ whosethree segments are not in D.proof. proof of ondition (1): If w[i; i + j℄ ontains a loal maximum segment s1 = w[i +k; i+k+1℄, then s1 is the �rst segment hosen from w[i+k�1; i+k℄; s1; w[i+k+1; i+k+2℄.Thus, s1 and the orresponding segment s01 in w[i0; i0 + j℄ are added to D and assigned asame index.Similarly it is easy to see that any segments w[i+k; i+k+1℄ and w[i0+k; i0+k+1℄ agreewith D between the left most and right most loal maximum segments in w[i; i + j℄ andw[i0; i0 + j℄. Thus, the remained intervals are a long dereasing pre�x and a long inreasingsuÆx2 of w[i; i+j℄ and w[i0; i0+j℄. In order to prove this ase, we need the following laims:laim 1 Any group omputed by assort onsists of at most two di�erent subgroups ofseleted, unseleted, and irregular.laim 2 When a segment s is hosen by assort to assign some index, if the left segmentof s belongs to a group ontaining two di�erent subgroups, then the assignment for s isdeided by only the subgroups.Claim 1 is diretly obtained from De�nition 1. Claim 2 is derived from the subproedureassign (Appendix A shows all ases of assignments for suh s). Let w[i; i + j℄ ontains adereasing pre�x of length at least six. The segment �rstly hosen from the pre�x of w[i; i+j℄is w[i; i+1℄, and w[i0; i0+1℄ is also hosen simultaneously. They are then lassi�ed into somegroups. Sine the pre�x is dereasing, sueedingly hosen segments are the right segmentss of w[i; i+ 1℄ and s0 of w[i0; i0 + 1℄. Sine s and s0 are both left-�xed and represent a samepair, they are lassi�ed into a same group g.Case 1: The group g onsists of a single subgroup. In this ase, s and s0 are bothontained in one of (a) seleted, (b) unseleted, or () irregular subgroup. The ase (a)satis�es that s and s0 are assigned a same index and are both added to D. Thus, from thesegments, no disagreement happens within the pre�x. The ase (b) and () onverge to thease (a) within at least two right segments from s are hosen.Case 2: The group g ontaining s and s0 onsists of two di�erent subgroups. By Claim2, the right segments of s and s0 are assigned by only the ondition of this group. The allombinations of two di�erent subgroups are (i) seleted and unseleted, (ii) seleted andirregular, and (iii) unseleted and irregular. In the �rst two ases, the right segments are alllassi�ed into a single subgroup. In the last ase, any segment are lassi�ed into a seletedor unseleted subgroup, that is, this ase onverges to ase (i). Thus, eah ase of (i), (ii),and (iii) onverges to Case 1 within further two right segment from s are hosen.Consequently, together with Case 1 and 2, it is satis�ed that some segments w[i+ k; i+k+1℄ and w[i0+k; i0+k+1℄ are assigned a same index and they are added to D within four2The dereasing pre�x ase is demonstrated in Appendix B.8

right segment from s and s0 are hosen. It follows that any disagreement of w[i; i + j℄ andw[i0; i0+ j℄ in the dereasing pre�x happens within only the range w[i; i+6℄ and w[i0; i0+6℄.The ase of an inreasing suÆx of them an be similarly shown.proof of ondition (2): Sine all loal maximum segments are added to D, the possibilityfor unsatisfying Condition (2) is remained only on a dereasing pre�x and inreasing suÆxof w[i; i + j℄. As is already shown in the above, any segment is lassi�ed into one of aseleted, unseleted, and irregular subgroup, and the last two subgroups must onverge toa seleted subgroup within two segments. Thus, w[i; i + j℄ and w[i0; i0 + j℄ has no threeonseutive segments whih are not added to D. 2Finally, we show the main result of this paper by omparing the size of output grammarG with the LZ-fatorization [15℄ of w. Here we reall its de�nition: The LZ-fatorizationof w denoted by LZ(w) is the deomposition w = f1 � � � fk, where f1 = w[1℄ and for eah1 � ` � k, f` is the longest pre�x of f` � � � fk whih ours in f1 � � � f`�1. Eah f` is alled afator . The size of LZ(w), denoted by jLZ(w)j, is the number of its fators.Theorem 1 ([12℄) For eah string w and its deterministi CFG G, jLZ(w)j � jGj.Theorem 2 For eah string w of length n, the approximation ratio of Levelwise isO(log2 n) ant it runs in O(n).proof. By Theorem 1, it is suÆient to prove jGj=jLZ(w)j = O(log2 n). For eah fatorf`, the pre�x f1 � � � f`�1 ontains at least one ourrene of f`. We denote f` by w[i; i + j℄and other ourrene by w[i0; i0 + j℄, respetively. By Lemma 1 and 2, after one loop of thealgorithm is exeuted, the substrings represented by w[i; i+j℄ and w[i0; i0+j℄ are ompressedinto some strings �� and �0�0, respetively, where j�j; jj � 4. By Lemma 2, j�j � 34j.Sine � ours in the ompressed string at least twie, we an apply Lemma 1 and 2 to thestrings until they are ompressed into suÆiently short strings.Thus, the interval w[i; i + j℄ orresponding to f` is ompressed into a string of lengthat most O(log j). It follows that w ompressed into a string of length at most O(k log n),where k = jLZ(w)j. Hene, we an estimate jGj = 2jN j + � k log n with a onstant andthe set N of all nonterminals of G.The number of di�erent nonterminals in the ompressed string is at most � k log n. IfA 2 N ours in the string and A ! BC 2 P , then the pair BC must our in the lowerstring at least twie. Thus, the number of di�erent nonterminals in the lower level is also atmost �k log n. Sine the depth of the loop of the algorithm is O(log n), jN j � k log n � lognHene, we obtain jGj=jLZ(w)j = O(log2 n) +O(log n) = O(log2 n).The running time an be redued in linear time in n sine the number of repetitions ofthe outer loop of the algorithm is O(logn) and j�j � 34 � j. 25 ConlusionFor the grammar-based ompression problem, we presented a fully linear time algorithmwhih guarantees O(log2 n) approximation ratio for input strings over possibly unboundedalphabets. The remained open problem is whether this ratio an be redued to O(log n).Another important problem is an upper bound of the approximation ratio of Re-pairalgorithm [7℄. 9

Referenes[1℄ M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Rasala, A. Sahai,and A. Shelat. Approximating the Smallest Grammar: Kolmogorov Complexity inNatural Models. In Pro. 29th Ann. Sympo. on Theory of Computing, 792-801, 2002.[2℄ D. Gus�eld. Algorithms on Strings, Trees, and Sequenes. Computer Siene andComputational Biology. Cambridge University Press, 1997.[3℄ T. Kida, Y. Shibata, M. Takeda, A. Shinohara, and S. Arikawa. Collage System: aUnifying Framework for Compressed Pattern Mathing. Theoret. Comput. Si. (toappear).[4℄ J. C. Kie�er and E.-H. Yang. Grammar-Based Codes: a New Class of Universal LosslessSoure Codes. IEEE Trans. on Inform. Theory, 46(3):737{754, 2000.[5℄ J. C. Kie�er, E.-H. Yang, G. Nelson, and P. Cosman. Universal Lossless Compressionvia Multilevel Pattern Mathing. IEEE Trans. Inform. Theory, IT-46(4), 1227{1245,2000.[6℄ D. Knuth. Seminumerial Algorithms. Addison-Wesley, 441-462, 1981.[7℄ N. J. Larsson and A. Mo�at. O�ine Ditionary-Based Compression. Proeedings ofthe IEEE , 88(11):1722-1732, 2000.[8℄ E. Lehman. Approximation Algorithms for Grammar-Based Compression. PhD thesis,MIT, 2002.[9℄ E. Lehman and A. Shelat. Approximation Algorithms for Grammar-Based Compres-sion. In Pro. 20th Ann. ACM-SIAM Sympo. on Disrete Algorithms, 205-212, 2002.[10℄ M. Farah. Optimal SuÆx Tree Constrution with Large Alphabets. In Pro. 38thAnn. Sympo. on Foundations of Computer Siene, 137-143, 1997.[11℄ C. Nevill-Manning and I. Witten. Compression and Explanation using HierarhialGrammars. Computer Journal, 40(2/3):103{116, 1997.[12℄ W. Rytter. Appliation of Lempel-Ziv Fatorization to the Approximation ofGrammar-Based Compression. In Pro. 13th Ann. Sympo. Combinatorial PatternMathing, 20-31, 2002.[13℄ T. A. Welh. A Tehnique for High Performane Data Compression. IEEE Comput.,17:8-19, 1984.[14℄ E.-H. Yang and J. C. Kie�er. EÆient Universal Lossless Data Compression AlgorithmsBased on a Greedy Sequential Grammar Transform{Part One: without Context Mod-els. IEEE Trans. on Inform. Theory, 46(3):755-777, 2000.[15℄ J. Ziv and A. Lempel. A Universal Algorithm for Sequential Data Compression. IEEETrans. on Inform. Theory, IT-23(3):337-349, 1977.[16℄ J. Ziv and A. Lempel. Compression of Individual Sequenes via Variable-Rate Coding.IEEE Trans. on Inform. Theory, 24(5):530-536, 1978.10

Appendix A

Figure 4: The assignment manner for urrent segments X. This �gure illustrates how theleft-�xed segments X are assigned from its left segments Y . The left segments Y is alreadyassigned and then lassi�ed into some groups, in this ase p and q. The group g for X isobtained from group p and q, whih are ontaining several subgroups. The indies of groupp, q, and g are id = f1; 2g, f3g, f4; 5g. The mark `+' denotes that the marked segmentsare added to D. For example, on the �rst ase of (1), there is an unseleted subgroup in Y ,then the orresponding segments in X is added to D. Next, there is an irregular subgroupand an unseleted subgroup, then the orresponding segments in X are assigned 4 and 5,respetively. Finally, the remained seleted subgroup is in the same group of the irregularsubgroup, then its orresponding segments are assigned 5. In this �gure, only the ase of qonsisting a single subgroup is shown, but this is suÆiently general sine the assignmentfor X is invariable even if q ontains other subgroups.

11

Appendix B

Figure 5: The onvergene of assignment for a long dereasing pre�x ase. We assume thata string w ontains 8 independent intervals whih have the same pre�x `abdefg ', where thispre�x is dereasing. The 1-8 rows represent suh 8 intervals. Assume that the set of segmentsof ab are already lassi�ed into two group p and q. The last 4 rows denote other intervals inw whih have the same pre�x `bdefg '. All 12 rows are merged on the olumn of d in a samegroup. All segments of this group onverge to a same seleted subgroup on the indiatedolumn within the pairs de, ef , and fg are hosen. We note that the onvergene of 1-8 rowsare guaranteed regardless of the last 4 rows sine for eah group g0, the assignment for rightsegments of g0 is not a�eted by other groups as long as g0 ontains 2 subgroups. Finallyeah interval is ompressed in the string shown in its right side. Nonterminals B;C;D;E; Forrespond to the prodution rules B ! b; C ! d;D ! de;E ! ef; F ! fg, respetively.The `�' and `Ai' are inde�nite sine they depend on their left sides.

12

