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Demonic orders and quasi-totality in Dedekind
categories

Yasuo Kawahara* and Hitomi Okuma*

Abstract

This paper presents a proof of the associativity of demonic composition
of relations in Dedekind categories and shows that the demonic composition is
monotonic with respect to two demonic orderings on relations, which are defined
by quasi-total relations, respectively.

1 Introduction

Relation algebras [9] are suitable for describing semantics of relational programming
[4]. In particular demonic composition [2, 10, 1, 5, 11] and demonic orderings will be
useful for designing nondeterministic programs [3, 11, 12].

For concrete relations R and S, the demonic composition R ® S relates elements x
with elements y exactly if x is related with y by the usual relational composition RS
and the image of x under R may not lie outside the domain of S (which should never
be confused with the categorical concept of source of morphism):

(x,y) e RO S < [Vz: (2,2) € R= z € dom(S5)]| A (x,y) € RS.

In this paper the demonic composition in Dedekind categories [7, 8] will be de-

fined (without using complement operator). The proofs of associative law of demonic
compositions are given earlier in [2, 10, 1, 5], here we give a proof using properties
of right residuals. Moreover we study two demonic orderings of relations originally
introduced by Desharnais et al. [5] and Xu et al. [11] and show several fundamental
properties of them in Dedekind categories. This paper organized as follows.
In Section 2, we first review the definition of Dedekind categories. Then we introduce
the demonic composition in a Dedekind category, and show some of its properties.
In Section 3, we define quasi-totality of relations and give the definition of two re-
finement orderings, and provide existence conditions of the supremum and values of
supremum and infimum of a set of relations with respect to both refinement orderings,
respectively. Finally we prove the monotonicity of the demonic composition on these
orderings.

*Department of Informatics, Kyushu University 33 Fukuoka 812-8581, Japan
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2 Demonic Compositions

We will generalize demonic compositions into Dedekind categories and give a proof of
associativity of the demonic compositions using properties of right residuals.

We first review the definition of a Dedekind category, a kind of relation category
(following Olivier and Serrato, 1980) which is our general framework.

Throughout this paper, a morphism « from an object A into an object B in a
Dedekind category (which will be defined below) will be called a relation, and denoted
by a half arrow o : A — B. The composite of a relation a : A — B followed by a
relation § : B — C will be written as af : A — C. We denote the identity relation
on an object A by id4. The composition operator will bind stronger than all other
binary operators.

Definition 2.1 A Dedekind category D is a category satisfying the following:
D1. [Complete Heyting Algebra] For all pairs of objects X and Y the hom-set D(X,Y)
consisting of all relations of X into Y is a complete Heyting algebra with the least
relation Oxy and the greatest relation Vxy. Its algebraic structure will be denoted
by

D(X,Y)=(D(X,Y),C,U,M,0xy, Vxy).

That is, (a) C is a partial order on D(X,Y), (b) Vo € D(X,Y) :: Oxy C a C Vxy,
(¢) Uneray Caiff ay Caforall A € A, (d) o E Myepay iff a C vy for all A € A, and
(€) amM (Uxean) = Unea(aMay).

D2. [Converse] There is given a converse operation ¥ : D(X,Y) — D(Y, X). That is,
for all relations o,/ : X — Y, f:Y — Z, the following laws hold:

(a) (af) = Bfat, (b) (o) = a, (c) If a C o, then of C .

D3. [Dedekind Formula] For all relations o : X — Y, 3:Y — Z and v : X — Z the
Dedekind formula o3 M~ C a8 M a*y) holds.

D4. [Residue] For all relations §: Y — Z and v : X — Z the residue (or division,
weakest precondition) v+ 3 : X — Y is a relation such that af C ~ if and only if
a C v =+ [ for all morphisms av: X — Y. O

If all relations of a Dedekind category have complement, that is, every hom-set
is a Boolean lattice, the Dedekind category is equivalent to a Schroder category. It
is well known that in a Schroder category the Dedekind formula is equivalent to a
equivalence

afCredy L &y FCa

which is called Schroder rule.
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A relation f: X — Y such that ff C idy (univalent) and idy C ff* (total) is
called a function and may be introduced as f: X — Y.

A Dedekind category D is called uniform if VxyVyz = Vxz holds for all objects
X,Y and Z in D.

Before we define the demonic composition of relations in a Dedekind category, we
consider the right residue of & : X — Y by v : X — Z, noted a7y, and defined by
af C v iff B C a\y for relations 3 : Y — Z. It is easy to see that a\y = (v¥ + o)},
and also using the Schroder rule one can finds that a\y = (afy~)~. The demonic
composition in a Dedekind category D is defined by

a®f=afNa\BVzz

for relations a: X — Y and 3 : Y — Z using a right residue. This definition is found
in [10]. In Schroder categories it is clear that the demonic composition a ® [ can be
rewritten to

a®pf=afN{a(6Vzz)"}".

This definition using complement operator is found in [2, 5|. They prove that de-
monic composition is associative using properties related to complement operator,
and Desharnais et al. [5] also give a proof of associativity by embedding a demonic
semilattice in a relation algebra.

Proposition 2.2 Leta: X — Y and B :Y — Z be relations in a Dedekind category
D. If a is univalent or 3 is total, then a® (3 = afB. In particular, idx ©a = a®idx =
.

Proof. First note that a ® 3 = a8 iff a8 C of\BVzy iff a*aB C fVzz. When o
is univalent, afaf T 3 T AV yy. Next assume f3 is total. Then Vy, C B3iVy, C
BV 2z, and so afaf T BV ;. Consequently the last claim is clear from the fact that
idx is univalent and total ]

The domain relation dom « : X — X and the range (codomain) relation ran « :
Y — Y of a: X — Y are defined by dom « := aof Midy and ran a = ofa Midy,
respectively.

We have the following properties relates to the domain and range relations.

Proposition 2.3 Let a : X — Y, 3:Y — Z and v : X — Z be relations in a
Schroder category. Then the following hold:

(a) a(ran @) = a and (dom a)a = a.



4 YASUO KAWAHARA AND HitoMlI OKUMA

(b) rany Cran < v C Vxyf and dom v C dom o < v C aVy 4.
(c) a® B = (dom v)aB where v = a*\(BV zz).

(d) If u Cidy and VxzVzx = Vxx then u C dom ~ iff ran (ua) C dom (3 where
v =a"\(BVzz).

Proof. (a) It is clear from

afran a) C « {rana Cidy }
= alNaidy
C a(afamnidy) { Dedekind formula }
= afran a).

(b) Assume that ran v C ran 3. Then

v = qrany) {(a)}
C ~y(ran 8) { assumption }
C 08 {ran 3 =p*pNid, C G5 }
C VxyB {7 EVxy}

Conversely assume that v C Vxy /3. Then

rany = AfyMidy { definition of range }
C +VxyBNidy { assumption }
= (Y¥*Vxy Midzp*)pMNid; { Dedekind Formula }
C pgpnidy
= ran f3. { definition of range }

(c) Set v = af\(BV zz). First we show that v = (dom )V xz. We have

v = (dom 7)y {(a) }
C (dom ¥)Vxz {ran yVxz }
= (/¥ Nidx)Vxz { definition of domain }
E 7Vzz {¥"VxzCVyzz}
= 7. { Proposition A.3(e) }

Hence v = (dom 7)Vxz. Thusa ® 3 = af M~y = af M (dom 7)Vxz = (dom v)as by
Proposition A.1(a).
(d) Assume u C idx and Vx,Vzx = Vxx, and set v = a*\(3Vzz). Then

uC dom~y < dom u C dom v { u=dom u }
4 UE”}/VZX :aﬁ\(ﬁVZx) { (b) and A.3(e):VX2VZX:VXX }
& ofuC BVgx
& ua C Vg [t { conversion }
& ran (ua) Cran 3* =dom 3 { (b) }

g

Backhouse and van der Woude [1] and Xu et al. [11] also gave the definition of
demonic composition. The device used by them to restrict the domain of a relational
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composition is not intersection, but, instead, composition with a so-called ‘monotype’,
that is, a relation below identity relation. The equivalence of their definition to our
definition of demonic composition is clear from (c¢) and (d) of the last proposition.
In [1] there is a proof of associative law for demonic composition using properties of
monotype.

Before we see associativity of the demonic compositions we have to show the fol-
lowing lemma.

Lemma 2.4 Leta: X — Y, (3:Y — Z and v : Z — W be relations in a Dedekind
category D. Then the following holds:

(a) &\(BO7)Vww = a*\ByVww N B\ Vipw.

(b) a(B© )N FF\YViw = afy M Fa\yViw.

(c) a® (BO7) =afy N \{ByVww NF\YViww}.

(d) If VivzVzw = Vw then the following hold:

(i) (a ® B)y = afy N \BV zw.

(ii) (@ ® B)\YWVww = (a\BV zw) = (B \yVww).

(i) (a0 ® B) © v = afy M a*\{BV zw N B\YVww }.
Proof. (a) It follows from

o \(B @ 7)Viww
= A\ By NN Vww)} Virw
= A\ (BYVww N A\YVirw) { Proposition A.3(e) and A.1(b) }
= o \BYVw Mo\ (B \vVww) { Proposition A.3(c) }
= oA\BVww N YVyww.  { Proposition A.3(d) }

(b) It follows from

a(B @) N B\ Vi
= a(By N \YVww) N a\(8\7Vww) { Proposition A.3(d) }
= afy o\ (B \YVww) { Proposition A.3(f) }
= afy Mo\ Viw. { Proposition A.3(d) }

(c) It is a direct corollary of (a) and (b):

a®(Boy) = afey)Na\(Fe7)Vww
= a(fOy) Na\ByWVWww N \YViw { (a) }
afBy M af\ByVww M B\ Vipw {(b)}
= aBynd\ByVww Mo\ (BS\YVww)  { Proposition A.3(d) }
= afy N \{ByVww N B\YVww . { Proposition A.3(c) }
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(d) Assume that Vi zVzw = Viw.
(i) It follows from

(@®p)y = (aBNaf\BVzz)y
= {aBM(a*\BVz2)Vzz}y { Proposition A.3(e) }
= afyN(a*\BVz2z)Vzw  { Proposition A.1(b) }
= afBynNao\BVzw. { Proposition A.3(e): assumption }
(ii) It is immediate from

(@ ® BN\ Vww
= (2N \BV22)\yViww
= {B* NV ;5(af\BV22) \YVww { Proposition A.3(e) }
= ("\BV22)Vzw = (B*a*\yVww) { Proposition A.3(g) }
= (aM\BVzw) = (B \YVww). { Proposition A.3(e): assumption }
(iii) It is a corollary of (i) and (ii):
(@O p) Oy
= (@©A N (@ B \Www
= aByNaA\BVzw N{(@\BVzw) = (B \7Vww)}  { (1), (i) }
= afyMaf\BVzw N FaA\YWVww  { Proposition A.2(c) }
= aByna\{BVzw N B\YVww}. { Proposition A.3(d) and A.3(c) }

g

Now we show the associative law of the demonic compositions.

Theorem 2.5 Leta: X — Y, :Y — Z and v : Z — W be relations in a uniform
Dedekind category D. Then the associative law o ® (6 © 7) = (a ® B) ©@ v of the
demonic compositions holds.

Proof. By Lemma 2.4(c) and (d)(iii) it suffices to see an equality SV zw M
BNYVww = ByVww N B\YVww. Applying Proposition A.3(f) one can see that
BV zw N B\ Viww
= B(Vzw NyVww) N BA\YVww { Proposition A.3(f) }
= Vww N AV,

Example 2.6 Take the following homogeneous relations «, ' and § on a set X =
{1,2} represented by Boolean matrices:

= (40)= (3 ) mos=(3 )

Then o C o/, but « ® B £ o/ ® 3 since
10\/1 0 10
O‘Qﬁ:aﬁ:(o o)(o 0):(0 o)and
, (11 10\ (00
a®ﬂ_(0 o)®<o 0)‘(0 0)'
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3 Demonic Orderings

As we see in the end of the last section (see Example 2.6) the demonic composition is
not monotonic with respect to the ordering C on relations. For ensuring the existence
of the fixed points of a recursively defined program, we need other orderings among
relations on which the demonic composition is monotonic. There are two refinement
orderings which are introduced by Xu et al. [11] and Desharnais et al. [5], respec-
tively. In this section we define these refinement orderings in Dedekind categories,
and show some of their properties, and finally prove the monotonicity of the demonic
composition on these two refinement orderings.

We first recall that each hom-set D(X,Y’) has relative pseudo-complement, that
is, for any two relations o and (3 in D there is a relation « = 3 in D(X,Y) such that
all~y E G iff v E a = g for all relations 7.

Define a™ = aVyy = « for every relation a : X — Y in a Dedekind category D.
A relation « is called quasi-total if at = a.

We can easily see that all total relations are quasi-total as follows: If « is total, then
Vyy =idxVxy C aadfVyy C aVyy. Hence at = aVyy = a=Vyy = a = a.

All quasi-total relations are total in uniform Schréder categories. To prove this
claim it is enough to show that aVyx = Vxx for each quasi-total relation «, because
of the fact that idy C aal iff aVyx = Vyx. If a is quasi-total then aVyy = Oxy C
aVyy = a = a E aVyy and so aVyy = Oxy = (OéVyy = OXy> MaVyy = Oxy.
In boolean lattices (or equivalently, in Schréder categories) 6 = Oxy = 6~ for each
relation § : X — Y, and so aVyy = (aVyy) ™ = (aVyy = Oxy) = Oxy = Oxy =
OXY = ny. Therefore OéVYX = OéVnyYX = vavYX = VXX by the uniformity.

Proposition 3.1 Let a: X — Y be a relation in a Dedekind category.

(a) a« C at and o™t =at. (Every o is quasi-total.)

(b) aVyy = a iff o™ = Vxy. In particular 0%y = Vxy and (aVyy)T = Vxy.

Proof. (a) It is trivial that & C a*. Also a™™ = a™Vyy = (aVyy = a) =
(a"Vyy MaVyy) = a=aVyy = a = a* by Proposition A.2(d).
(b) Assume aVyy = a. Then a™ = a = a = Vxy. Conversely assume aVyy =
a = Vyxy. Then aVyy = aVyy M Vxy = aVyy Ma™ = a by Proposition A.2(c).
Hence oo = aVyy.

L]
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Two demonic refinement orderings < and = of relations «,a’ : X — Y are respec-
tively defined in [11] and [5] as follows:

a<o ¥ aCcoCat {Xuetal [11] }
& o MNaVyy =«
& at = aVyy = o

a=o E aVyy Ca'Vyy A o/ Cat { Desharnais et al. [5] }

We can obtain straightforwardly from the above definitions that o < o' implies
a=<da.

Proposition 3.2 Let a: X — Y and o : X — Y be relations. Then the following
hold:

Proof. (a) Assume aVyy = Vxy. Then the assertion is trivial since a™ = Vxy by
Proposition 3.1(b).
(b) It is trivial from the definition.
(¢) By Proposition 3.1(a) we have a C o C o' which means a < o, and so o < o™
by (a).
(d) Tt follows from aa*aVyy C aVyy and a C acfa T (acfa)t by Proposition
3.1(a).
(e) Assume that aVyy J o/Vyy and o = o/. Then we have o/ = o/Vyy Mo’ C
aVyy Ma’™ = a by Proposition A.2(c).

]

Next we see the demonic refinement orderings are orderings on the hom-set D(X', ).
Proposition 3.3 Relations < and < on the hom-set D(X,Y) are orderings.

Proof. (i) Reflexive law: o < a and o < « follows from a fact « C o = o™ by
Proposition 3.1(a).
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(ii) Transitive law: Assume that a < o and o/ < o, that is, « C o/ C o' and
o Ca”Ca't. Hence a C o C o and

o'Vyy = o {a"Ca*t}

a'Vyy = (aVyy = a) {d Cat}

(¢/Vyy MaVyy) = a { Proposition A.2(d) }

= aVyy = a. {alCd }

a//

(171

Similarly @ < o and o/ < o” imply a < .

(iii) Anti-symmetric law: Assume that o < o and o < «. First note that aVyy =
o/Vyy. Then using Proposition 3.2(f) we have « C o and o/ C «a. Hence a = «/.
Anti-symmetry of < is trivial. O

Example 3.4 Consider the following relations on a set X = {1,2} represented by

11 10 )
a:(o 0>:aVXX, o/:(o 1):1dx.

Then a < o (aVxy C Vxy = a'Vyxx and o/ C Vyx = at), but a £ o because

alZd.

matrices:

Figure 1: An ordered set (Rel(X, X), <) for a set X = {1,2}.

Lemma 3.5 Let o,/ : X — Y be relations. If o is univalent and o C o, then
o C at and consequently o < o and o < o/.

Proof. Assume o/fa/ C idy and o C «/. Then

o MaVyy C a(afa/ MVyy) { Dedekind Formula }
= adtd {ofd/ CVyy }
C aao {aCd }
C

a. { oo/ Cidy }
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00
(0 5)
Figure 2: An ordered set (Rel(X, X), <) for a set X = {1,2}.

Hence o/ C a. O

By the above lemma if « is quasi-total and ' is univalent, then o« C «' implies
a = . Recall that if « is total and o' is univalent, then o C o' implies a = «’.
(o C acta’ C adto C a.)

The following proposition characterizes maximal elements in the demonic orderings:

Proposition 3.6 (a) A relation o : X — Y is mazimal in (D(X,Y), <) iff it is
quasi-total (o = o).

(b) Suppose a relational axiom' of choice. Then a relation o : X — Y is mazimal
in (D(X,Y), =) iff a = ot and oo C idy.

Proof. (a) Assume that @« = a® and @ < /. Then a C o/ and o/ C o™ = «. Hence
a = o and so « is maximal. Conversely assume that « is maximal in (D(X,Y), <).
Then o = a* follows from the maximality of «a since o < o™ by Proposition 3.2(d).

(b) Let @ = o and ofa C idy. Assume a < o/. Then o/ = ot = a and so
o < «a by Lemma 3.5. Hence a = o/ by the anti-symmetric law of <, which proves

L' A relational axiom of choice: for every relation a : X — Y there exists a univalent relation
f:X — Y such that f C a and fVyy = aVyy.
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the maximality of a. Conversely assume that « is maximal in (D(X,Y), <). Since
a =< ot by Proposition 3.2(d) the maximality of « leads & = a*. Now by the
relational axiom® of choice there exists a univalent relation f : X — Y such that
f CE aand fVyy = aVyy. Then a <X f since aVyy = fVyy and f C a = at.
Again by the maximality of o we have o = f, which proves that « is univalent. [

Theorem 3.7 Let A be a nonempty subset of D(X,Y).

(a) The supremum of the set A in (D(X,Y), <) exists if and inly if
l—laGAa C |_lozEAOCJr-
When this condition is satisfied, the supremum is

sup< A = Ugeaa.

(b) The infimum of A in (D(X,Y), <) always exists, that is,
infc A = U{ap | ag C Maea and Ugen a C ag }.

In particular, inf< A = Myeaa when Upeaar C (Mpeaa)™.

Proof. (a) Set oy = Uyeaa. We prove the existence condition and the value of the
supremum. Let o/ be any relation. Then

Vaoe A:a<d
< { definition }
Vae A: o/ MaVyy = aAag C Myeaa™
< { = ' MagVyy = Useal@ MaVyy) = ag
<: Because a C ag C o and o MaVyy = o 1M
aoVyy MaVyy = aqyMNaVyy Eat MNaVyy = a. }
o MagVyy = ag A ag C Myeaa™
< { definition }
ag < o ANag E Mueaa™.

(b) Denote by Ag the set of all lower bounds «y of A, that is Ag = {ag|ag E Maea A
Useac E agf }, and set o, = Ug,ea,00. Obviously Ay is a nonempty set, since a zero
relation Oyy is a lower bound of A. Let o be any relation, then we obtain

Vaoe A:d <a
< { definition }
Vaoe A:aMdo'Vyy =d
& {=: a,MNadVyy CalNaVyy = Mo Vyy C a, Tl
Oé/Vyy since o/ € A(). }
o, Ma'Vyy = o
< { definition }
o < ay,
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where the second < follows from o/ C «, C « and the next computation

a T Magea0n
= [ageao (0 Vyy = ap)
C Mageao(@Vyy = a,) { Proposition A.2(g): ap C a, }
= (Uagea,@0Vyy) = a, { Proposition A.2(e) }
= aVyy = .
C oVyy=a™ { Proposition A.2(g): o/ Ca, Ca't}
= a't. { Proposition A.2(d) }

O

We next see the least upper bounds and the greatest lower bounds with respect to
< found in [11].

Proposition 3.8 Every chain A in (D(X,Y), <) has the supremum sup. A = Ugeacx
and the infimum inf< A = Myeca0.

Proof. (i) By the virtue of the last theorem it suffices to see that every chain A in
(D(X,Y), <) satisfies Uyeaax C Myeaa™. The inequality is equivalent to a fact that
o Catforall o,a € A. But Ais a chain, so @ < o/ or o < . In the case of @ < o/
it is trivial that o C at. Also in the case of &/ < o we have o/ C o C a™.

(ii) It suffices to show that Mueaa is a lower bound of A, that is, Ugeaa C (Maea)™,
which is equivalent to o M (Myeaa)Vyy C « for all o/, € A. But A is a chain in
(D(X,Y),<),soa < ora < a. In the case of @ < o we have o/ M (Myea)Vyy C
a/MaVyy = a. Also in the case of o < «v it is trivial that o/M(Myea)Vyy C o/ T a.

O

We now see the least upper bounds and the greatest lower bounds with respect to
= found in [5].

Proposition 3.9 Let A be a nonempty subset of D(X,Y).
(a) The supremum of the set A in (D(X,Y), =) exists if and only if
UaeaaVyy E (Maeac™)Vyy.
When this condition is satisfied, the supremum is
supsA = (UaeaaVyy) M (Macaa™).
(b) The infimum of A in (D(X,Y), =) always exists, that is,

infjA = (UaeAOé) 'l (ﬂaeAOvKY)a
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Proof. (a) Set ay = (UaeadVyy) M (Maecaa™). Noting that when the condition
uaeAOley E (|_|aeAO./+)va holds

o Vyy = (HaeaaVyy) M (Macaa™)Vyy = UgeaaVyy
and so aq can be rewritten to
ap = aoVyy M (Macaa™),

we prove the existence condition and the value of supremum of A. Let o' be any
relation. We have

Vo e A:a=<d
< { definition }

UaeadVyy E & Vyy A EMaeaa™ AlgeaaVyy & (Maecaa™)Vyy
& {=:d MayVyy E (Myeaa™) MNagVyy = ap }

aVyy C &/Vyy A/ C of AlseaaVyy C (Maeaa™)Vyy
< { definition }

ag 2 &' ANlaeaadVyy C (Macac™)Vyy,

where the second <« follows from

o' M OzVYy

ag MaVyy {dCaof }

(OéoVyy = Oé(]) NaVyy

oo M aVyy { Proposition A.2(f): aVyy C agVyy }
Qo

at,

I1m

e

which implies o/ E aVyy = a™ = a™ for each o € A by Proposition A.2(d).
(b) Set ap = (Uaea) M (MaeaaVyy). Then ayVyy = MacaaVyy and so ap =
(Uaeaa) MagVyy. So we have the following equivalences for any given relation o/

Vo€ A:d <«

& VYa€A:dVyy CaVyy Aa T o't { definition }
& o'Vyy C agVyy A lUgeaa C o't { definition }
4 CY’VYY C agVyy Aoy E Oéur { =: g C Ugeaa & CYIJF }
& o = ay, { definition }

where the third < is shown as follows. Consider the following computation
(Uaca@) Mo/ Vyy T (Ugeae) MagVyy = ag C o',

which implies Llyeac C '+ by Proposition A.2(d). O

Lemma 3.10 Let o : X — Y and B : X — Z be relations. Then a ® 3 = af T
a™\(BV 22).
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Proof.

a®f = afna\(BVzz)

Oéﬂ Il (V}/yOétt M Oé—Ht)\(ﬁsz) { a = OéVyy [l Oé+ }
aBn{aVyz = a™\(BVzz)} { Proposition A.3(g) }
= afNa™\(8Vzz) { Proposition A.2(f) }

U

In the following discussion, a map which is monotonic with respect to < or < is
called <-monotonic or <-monotonic, respectively. The next proposition shows that
the demonic composition ® is <-monotonic and <-monotonic.

Proposition 3.11 Let o, : X — Y and §:Y — Z be relations. Then the following
hold:

(a) Ifa<d and <, thena®pf<d O F.

(b) Ifa=<d and B< [, thena® 2o O F.

Proof. (a) Assume that « C o/ C ot and § C 3 C S*. Then

aBMat\BVzz { Lemma 3.10 }
o/FMa\GFVz; {aCd Cat, CF }
o g,

a®pf

[l

and

(@ ©B) N (a®B)Vzz

Oz/ﬁ/ NaVyz M Ozﬂj\ﬁvZZ

{ (a®B)Vzz=0abVzz;Ma™\BVzz C aVyz Na™\BV; }
atf nat\BV z MaVyy

Oé+(ﬂ/ M ﬁVZz) MNaVyz

atfnaVyy {BNpVzzCBby fCGT}
(Oé+ [l OéVyzﬁﬁ)ﬁ

(Oé+ [l aVyy)ﬁ

af.

Hence (¢! © )M (a®B)VzzCa®fandsod @ C (a®B)*F.

(b) Assume that aVyy C o/Vyy, 8Vzz C 'Vyzz, o C ot and § C 7. First
we have o'#(a*\BV,) C ot (a™\BV,) C BVzz T 3'Vzz by the assumptions
o Cat, V7 C 'V and Proposition A.3(a). Then

(a®B)Vzz

afBVzzMat\BVy, { Lemma 3.10, Proposition A.1(b) and A.3(e) }
aVyzMa™\BVzz {BVzzC Vyz }

o'VyzMNat\BVzz { assumption }

o/t (at\ BV 22) { Dedekind formula }

BV 2

A rT e

M
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and

C a*(a™\fVyzyz)

C B'Vzz

which means (o ® f)Vzz C a*\F'Vyzz. Consequently we have (o ® 3)Vyzz C
BV MaN\BVzz = (! ® F)Vzz. We have to see o/ ©® 8/ C (o ® 3)*, but
this claim can be shown by the same argument of the second part in the proof for (a).

O

Oé,ﬁ(Oé ® ﬂ)VZZ
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A Basic Properties of Relations
In this section we list a few basic properties of relations.

Proposition A1 Leta : X — Y, 3:Y - Z, n: X - W, €:Y — W and
u: X — X be relations in a Dedekind category D. Then the following hold:

(a) If u Cidx then uVxy Ma = ua.

(b) (aMnVwy)B =aBMnVyz.

(c) (aNVxwé)B =alEVwzMA).
Proof.

(a) Assume that u C idy. Then uVxy Ma C u(Vyy MNufa) C ua.
(b) It follows from

(aMnVwy)B C afNnVwyf { M-subdistributivity }
C afNnVwz
C (anNnVwzB)B { Dedekind formula }
C (alnVwy)s
C afMNnVyz. { M-subdistributivity }

(¢) The claim follows from

a(§Vwz N B) a(§Vwz M B)Naf

{aMaB(Voaw& M HHEVw2zMB)  { Dedekind formula }
(aNVxwé)s

Ozﬁ M (Oé I waﬁﬂ)ﬁ

(anNVxwE){(a* M EVwx)aBm B} { Dedekind formula }

a(§VWZ M 6)

IFT eI

Proposition A.2 Let o, (3,7 : X — Y be relations in a Dedekind category D. Then
the following hold:

(a) BCa= 0.

(b) a = a=Vxy and Vxy = a = .

(¢) aN(a= B)=anp. In particular aVyy Ma™ = a.

(d) a= (=) =(anp)=~. In particular aVyy = at = ao™.

(e) (aUa) = f=(a=0)N (= [).
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(f) Ifa C 3, then aM (B =) =aln.

(¢) Ifadd’ and BEF, thena= [ C o = .
Proof. (a), (b) and (c) are obvious from the definition of pseudo-complement.
(d) For all relations 0 : X — Y we have

SCa=B=7) & aldCp=7y
&S allfroCy
& 0L (alp) =1~

which means a = (= v) = (aNf) = 7.

(e) We first easily see that (o = )M (a/ = () C (alla’) = [ by the definition. The
reverse containment follows from aM{(alUd’) = 6} C (alld) N {(ald) = B} = 5.
(f) Assume that o C 3. Then we have a M (8 = v) =a N (6 =7 C al~y by
(c). By (a) we have the reverse containment.

(g) Assuming o J o/ and f C ' we have o/ M (aMF) EaMN(anp) C 5 C G, which
implies the assertion. U

Proposition A.3 Leta: X =Y, 6,08 Y - Z, v : X —Z,0:7Z — W and
&Y — W be relations in a Dedekind category D. Then the following hold:

(a) ala\y) Ev.

(b) (a\7)d T a\(v9d).
(c) a\(vyMv) = (a\y) N (a\Y).

(d) (@§)\y=&\(a\).

e) If VwzVzw = Vw, then (6\BV 22)Vzw = o*\3V zw,
f) a(BN ) Naf\g' =afNaf\F,

(&) (Vxw&f Ma)\y = (EVwz) = (a\).

(
(

Proof. (a) It is obvious from the definition of left residues.
(b) It follows from a(a\7v)d C ~0 by (a).
(c) It follows from

& afEqyny

& afCyand af C
& fCa\yand BCa\y
& BE (a\y) M (a\y).

BEa\(y1v)

(d) It follows from
FC(0E\y & ot Cr
& P E a\y
& FCE\(a\).
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(e) It follows from

AAN\BVzw T (*\BVzw)Vww {idw C Vww }
= (M\OVzw)VwzVaw { VwzVaw = Vww }
C (\OVzwVwz)Vzw { (b)}
C (a"\BVzz)Vzw {VzwVwzEVyzz }
C (a"\BV2zVzw) {(b) }
= au\ﬂVZw.

(f) It simply follows from

a(Bnp)Nna\g af naf\g

a{B Mot (af\F)}af\# { Dedekind formula }
a(BN ) Naf\g. { (a) }

w111

(g) It follows from

(Vxwé NMa)d Evy

a(EVwz M P) Cy { Proposition A.1(c) }
EVwzMBE a\y

BEE{Vwz = (a\y).

BE (Vxw&Ma)\y &
~
54
~



