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Demonic orders and quasi-totality in Dedekind

categories

Yasuo Kawahara∗ and Hitomi Okuma∗

Abstract

This paper presents a proof of the associativity of demonic composition

of relations in Dedekind categories and shows that the demonic composition is

monotonic with respect to two demonic orderings on relations, which are defined

by quasi-total relations, respectively.

1 Introduction

Relation algebras [9] are suitable for describing semantics of relational programming

[4]. In particular demonic composition [2, 10, 1, 5, 11] and demonic orderings will be

useful for designing nondeterministic programs [3, 11, 12].

For concrete relations R and S, the demonic composition R⊙S relates elements x

with elements y exactly if x is related with y by the usual relational composition RS

and the image of x under R may not lie outside the domain of S (which should never

be confused with the categorical concept of source of morphism):

(x, y) ∈ R ⊙ S ⇔ [∀z : (x, z) ∈ R ⇒ z ∈ dom(S)] ∧ (x, y) ∈ RS.

In this paper the demonic composition in Dedekind categories [7, 8] will be de-

fined (without using complement operator). The proofs of associative law of demonic

compositions are given earlier in [2, 10, 1, 5], here we give a proof using properties

of right residuals. Moreover we study two demonic orderings of relations originally

introduced by Desharnais et al. [5] and Xu et al. [11] and show several fundamental

properties of them in Dedekind categories. This paper organized as follows.

In Section 2, we first review the definition of Dedekind categories. Then we introduce

the demonic composition in a Dedekind category, and show some of its properties.

In Section 3, we define quasi-totality of relations and give the definition of two re-

finement orderings, and provide existence conditions of the supremum and values of

supremum and infimum of a set of relations with respect to both refinement orderings,

respectively. Finally we prove the monotonicity of the demonic composition on these

orderings.
∗Department of Informatics, Kyushu University 33 Fukuoka 812-8581, Japan
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2 Demonic Compositions

We will generalize demonic compositions into Dedekind categories and give a proof of

associativity of the demonic compositions using properties of right residuals.

We first review the definition of a Dedekind category, a kind of relation category

(following Olivier and Serrato, 1980) which is our general framework.

Throughout this paper, a morphism α from an object A into an object B in a

Dedekind category (which will be defined below) will be called a relation, and denoted

by a half arrow α : A ⇁ B. The composite of a relation α : A ⇁ B followed by a

relation β : B ⇁ C will be written as αβ : A ⇁ C. We denote the identity relation

on an object A by idA. The composition operator will bind stronger than all other

binary operators.

Definition 2.1 A Dedekind category D is a category satisfying the following:

D1. [Complete Heyting Algebra] For all pairs of objects X and Y the hom-set D(X,Y )

consisting of all relations of X into Y is a complete Heyting algebra with the least

relation 0XY and the greatest relation ∇XY . Its algebraic structure will be denoted

by

D(X,Y ) = (D(X,Y ),⊑,⊔,⊓, 0XY ,∇XY ).

That is, (a) ⊑ is a partial order on D(X,Y ), (b) ∀α ∈ D(X,Y ) :: 0XY ⊑ α ⊑ ∇XY ,

(c) ⊔λ∈Λαλ ⊑ α iff αλ ⊑ α for all λ ∈ Λ, (d) α ⊑ ⊓λ∈Λαλ iff α ⊑ αλ for all λ ∈ Λ, and

(e) α ⊓ (⊔λ∈Λαλ) = ⊔λ∈Λ(α ⊓ αλ).

D2. [Converse] There is given a converse operation ♯ : D(X,Y ) → D(Y,X). That is,

for all relations α, α′ : X ⇁ Y , β : Y ⇁ Z, the following laws hold:

(a) (αβ)♯ = β♯α♯, (b) (α♯)♯ = α, (c) If α ⊑ α′, then α♯ ⊑ α′♯.

D3. [Dedekind Formula] For all relations α : X ⇁ Y , β : Y ⇁ Z and γ : X ⇁ Z the

Dedekind formula αβ ⊓ γ ⊑ α(β ⊓ α♯γ) holds.

D4. [Residue] For all relations β : Y ⇁ Z and γ : X ⇁ Z the residue (or division,

weakest precondition) γ ÷ β : X ⇁ Y is a relation such that αβ ⊑ γ if and only if

α ⊑ γ ÷ β for all morphisms α : X ⇁ Y . �

If all relations of a Dedekind category have complement, that is, every hom-set

is a Boolean lattice, the Dedekind category is equivalent to a Schröder category. It

is well known that in a Schröder category the Dedekind formula is equivalent to a

equivalence

αβ ⊑ γ ⇔ α♯γ− ⊑ β− ⇔ γ−β♯ ⊑ α−

which is called Schröder rule.
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A relation f : X ⇁ Y such that f ♯f ⊑ idY (univalent) and idX ⊑ ff ♯ (total) is

called a function and may be introduced as f : X → Y .

A Dedekind category D is called uniform if ∇XY ∇Y Z = ∇XZ holds for all objects

X , Y and Z in D.

Before we define the demonic composition of relations in a Dedekind category, we

consider the right residue of α : X ⇁ Y by γ : X ⇁ Z, noted α\γ, and defined by

αβ ⊑ γ iff β ⊑ α\γ for relations β : Y ⇁ Z. It is easy to see that α\γ = (γ♯ ÷ α♯)♯,

and also using the Schröder rule one can finds that α\γ = (α♯γ−)−. The demonic

composition in a Dedekind category D is defined by

α ⊙ β = αβ ⊓ α♯\β∇ZZ

for relations α : X ⇁ Y and β : Y ⇁ Z using a right residue. This definition is found

in [10]. In Schröder categories it is clear that the demonic composition α ⊙ β can be

rewritten to

α ⊙ β = αβ ⊓ {α(β∇ZZ)−}−.

This definition using complement operator is found in [2, 5]. They prove that de-

monic composition is associative using properties related to complement operator,

and Desharnais et al. [5] also give a proof of associativity by embedding a demonic

semilattice in a relation algebra.

Proposition 2.2 Let α : X ⇁ Y and β : Y ⇁ Z be relations in a Dedekind category

D. If α is univalent or β is total, then α⊙β = αβ. In particular, idX⊙α = α⊙ idX =

α.

Proof. First note that α ⊙ β = αβ iff αβ ⊑ α♯\β∇ZZ iff α♯αβ ⊑ β∇ZZ . When α

is univalent, α♯αβ ⊑ β ⊑ β∇ZZ. Next assume β is total. Then ∇Y Z ⊑ ββ♯∇Y Z ⊑

β∇ZZ , and so α♯αβ ⊑ β∇ZZ . Consequently the last claim is clear from the fact that

idX is univalent and total �

The domain relation dom α : X ⇁ X and the range (codomain) relation ran α :

Y ⇁ Y of α : X ⇁ Y are defined by dom α := αα♯ ⊓ idX and ran α := α♯α ⊓ idY ,

respectively.

We have the following properties relates to the domain and range relations.

Proposition 2.3 Let α : X ⇁ Y , β : Y ⇁ Z and γ : X ⇁ Z be relations in a

Schröder category. Then the following hold:

(a) α(ran α) = α and (dom α)α = α.
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(b) ran γ ⊑ ran β ⇔ γ ⊑ ∇XY β and dom γ ⊑ dom α ⇔ γ ⊑ α∇Y Z.

(c) α ⊙ β = (dom γ)αβ where γ = α♯\(β∇ZZ).

(d) If u ⊑ idX and ∇XZ∇ZX = ∇XX then u ⊑ dom γ iff ran (uα) ⊑ dom β where

γ = α♯\(β∇ZZ).

Proof. (a) It is clear from

α(ran α) ⊑ α { ran α ⊑ idY }
= α ⊓ α idY

⊑ α(α♯α ⊓ idY ) { Dedekind formula }
= α(ran α).

(b) Assume that ran γ ⊑ ran β. Then

γ = γ(ran γ) { (a) }
⊑ γ(ran β) { assumption }
⊑ γβ♯β { ran β = β♯β ⊓ idZ ⊑ ββ♯ }
⊑ ∇XY β. { γβ♯ ⊑ ∇XY }

Conversely assume that γ ⊑ ∇XY β. Then

ran γ = γ♯γ ⊓ idZ { definition of range }
⊑ γ♯∇XY β ⊓ idZ { assumption }
= (γ♯∇XY ⊓ idZβ♯)β ⊓ idZ { Dedekind Formula }
⊑ β♯β ⊓ idZ

= ran β. { definition of range }

(c) Set γ = α♯\(β∇ZZ). First we show that γ = (dom γ)∇XZ . We have

γ = (dom γ)γ { (a) }
⊑ (dom γ)∇XZ { ran γ∇XZ }
= (γγ♯ ⊓ idX)∇XZ { definition of domain }
⊑ γ∇ZZ { γ♯∇XZ ⊑ ∇ZZ }
= γ. { Proposition A.3(e) }

Hence γ = (dom γ)∇XZ . Thus α⊙ β = αβ ⊓ γ = αβ ⊓ (dom γ)∇XZ = (dom γ)αβ by

Proposition A.1(a).

(d) Assume u ⊑ idX and ∇XZ∇ZX = ∇XX , and set γ = α♯\(β∇ZZ). Then

u ⊑ dom γ ⇔ dom u ⊑ dom γ { u = dom u }
⇔ u ⊑ γ∇ZX = α♯\(β∇ZX) { (b) and A.3(e):∇XZ∇ZX = ∇XX }
⇔ α♯u ⊑ β∇ZX

⇔ uα ⊑ ∇XZβ♯ { conversion }
⇔ ran (uα) ⊑ ran β♯ = dom β { (b) }

�

Backhouse and van der Woude [1] and Xu et al. [11] also gave the definition of

demonic composition. The device used by them to restrict the domain of a relational
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composition is not intersection, but, instead, composition with a so-called ‘monotype’,

that is, a relation below identity relation. The equivalence of their definition to our

definition of demonic composition is clear from (c) and (d) of the last proposition.

In [1] there is a proof of associative law for demonic composition using properties of

monotype.

Before we see associativity of the demonic compositions we have to show the fol-

lowing lemma.

Lemma 2.4 Let α : X ⇁ Y , β : Y ⇁ Z and γ : Z ⇁ W be relations in a Dedekind

category D. Then the following holds:

(a) α♯\(β ⊙ γ)∇WW = α♯\βγ∇WW ⊓ β♯α♯\γ∇WW .

(b) α(β ⊙ γ) ⊓ β♯α♯\γ∇WW = αβγ ⊓ β♯α♯\γ∇WW .

(c) α ⊙ (β ⊙ γ) = αβγ ⊓ α♯\{βγ∇WW ⊓ β♯\γ∇WW }.

(d) If ∇WZ∇ZW = ∇WW then the following hold:

(i) (α ⊙ β)γ = αβγ ⊓ α♯\β∇ZW .

(ii) (α ⊙ β)♯\γ∇WW = (α♯\β∇ZW ) ⇒ (β♯α♯\γ∇WW ).

(iii) (α ⊙ β) ⊙ γ = αβγ ⊓ α♯\{β∇ZW ⊓ β♯\γ∇WW}.

Proof. (a) It follows from

α♯\(β ⊙ γ)∇WW

= α♯\{βγ ⊓ β♯\(γ∇WW )}∇WW

= α♯\(βγ∇WW ⊓ β♯\γ∇WW ) { Proposition A.3(e) and A.1(b) }
= α♯\βγ∇WW ⊓ α♯\(β♯\γ∇WW ) { Proposition A.3(c) }
= α♯\βγ∇WW ⊓ β♯α♯\γ∇WW . { Proposition A.3(d) }

(b) It follows from

α(β ⊙ γ) ⊓ β♯α♯\γ∇WW

= α(βγ ⊓ β♯\γ∇WW ) ⊓ α♯\(β♯\γ∇WW ) { Proposition A.3(d) }
= αβγ ⊓ α♯\(β♯\γ∇WW ) { Proposition A.3(f) }
= αβγ ⊓ β♯α♯\γ∇WW . { Proposition A.3(d) }

(c) It is a direct corollary of (a) and (b):

α ⊙ (β ⊙ γ) = α(β ⊙ γ) ⊓ α♯\(β ⊙ γ)∇WW

= α(β ⊙ γ) ⊓ α♯\βγ∇WW ⊓ β♯α♯\γ∇WW { (a) }
= αβγ ⊓ α♯\βγ∇WW ⊓ β♯α♯\γ∇WW { (b) }
= αβγ ⊓ α♯\βγ∇WW ⊓ α♯\(β♯\γ∇WW ) { Proposition A.3(d) }
= αβγ ⊓ α♯\{βγ∇WW ⊓ β♯\γ∇WW }. { Proposition A.3(c) }
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(d) Assume that ∇WZ∇ZW = ∇WW .

(i) It follows from

(α ⊙ β)γ = (αβ ⊓ α♯\β∇ZZ)γ
= {αβ ⊓ (α♯\β∇ZZ)∇ZZ}γ { Proposition A.3(e) }
= αβγ ⊓ (α♯\β∇ZZ)∇ZW { Proposition A.1(b) }
= αβγ ⊓ α♯\β∇ZW . { Proposition A.3(e): assumption }

(ii) It is immediate from

(α ⊙ β)♯\γ∇WW

= (αβ ⊓ α♯\β∇ZZ)♯\γ∇WW

= {β♯α♯ ⊓∇ZZ(α♯\β∇ZZ)♯}\γ∇WW { Proposition A.3(e) }
= (α♯\β∇ZZ)∇ZW ⇒ (β♯α♯\γ∇WW ) { Proposition A.3(g) }
= (α♯\β∇ZW ) ⇒ (β♯α♯\γ∇WW ). { Proposition A.3(e): assumption }

(iii) It is a corollary of (i) and (ii):

(α ⊙ β) ⊙ γ

= (α ⊙ β)γ ⊓ (α ⊙ β)♯\γ∇WW

= αβγ ⊓ α♯\β∇ZW ⊓ {(α♯\β∇ZW ) ⇒ (β♯α♯\γ∇WW )} { (i), (ii) }
= αβγ ⊓ α♯\β∇ZW ⊓ β♯α♯\γ∇WW { Proposition A.2(c) }
= αβγ ⊓ α♯\{β∇ZW ⊓ β♯\γ∇WW}. { Proposition A.3(d) and A.3(c) }

�

Now we show the associative law of the demonic compositions.

Theorem 2.5 Let α : X ⇁ Y , β : Y ⇁ Z and γ : Z ⇁ W be relations in a uniform

Dedekind category D. Then the associative law α ⊙ (β ⊙ γ) = (α ⊙ β) ⊙ γ of the

demonic compositions holds.

Proof. By Lemma 2.4(c) and (d)(iii) it suffices to see an equality β∇ZW ⊓

β♯\γ∇WW = βγ∇WW ⊓ β♯\γ∇WW . Applying Proposition A.3(f) one can see that

β∇ZW ⊓ β♯\γ∇WW

= β(∇ZW ⊓ γ∇WW ) ⊓ β♯\γ∇WW { Proposition A.3(f) }
= βγ∇WW ⊓ β♯\γ∇WW .

�

Example 2.6 Take the following homogeneous relations α, α′ and β on a set X =

{1, 2} represented by Boolean matrices:

α =

(

1 0
0 0

)

, α′ =

(

1 1
0 0

)

and β =

(

1 0
0 0

)

.

Then α ⊑ α′, but α ⊙ β 6⊑ α′ ⊙ β since

α ⊙ β = αβ =

(

1 0
0 0

) (

1 0
0 0

)

=

(

1 0
0 0

)

and

α′ ⊙ β =

(

1 1
0 0

)

⊙

(

1 0
0 0

)

=

(

0 0
0 0

)

.
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3 Demonic Orderings

As we see in the end of the last section (see Example 2.6) the demonic composition is

not monotonic with respect to the ordering ⊑ on relations. For ensuring the existence

of the fixed points of a recursively defined program, we need other orderings among

relations on which the demonic composition is monotonic. There are two refinement

orderings which are introduced by Xu et al. [11] and Desharnais et al. [5], respec-

tively. In this section we define these refinement orderings in Dedekind categories,

and show some of their properties, and finally prove the monotonicity of the demonic

composition on these two refinement orderings.

We first recall that each hom-set D(X,Y ) has relative pseudo-complement, that

is, for any two relations α and β in D there is a relation α ⇒ β in D(X,Y ) such that

α ⊓ γ ⊑ β iff γ ⊑ α ⇒ β for all relations γ.

Define α+ = α∇Y Y ⇒ α for every relation α : X ⇁ Y in a Dedekind category D.

A relation α is called quasi-total if α+ = α.

We can easily see that all total relations are quasi-total as follows: If α is total, then

∇XY = idX∇XY ⊑ αα♯∇XY ⊑ α∇Y Y . Hence α+ = α∇Y Y ⇒ α = ∇XY ⇒ α = α.

All quasi-total relations are total in uniform Schröder categories. To prove this

claim it is enough to show that α∇Y X = ∇XX for each quasi-total relation α, because

of the fact that idX ⊑ αα♯ iff α∇Y X = ∇XX . If α is quasi-total then α∇Y Y ⇒ 0XY ⊑

α∇Y Y ⇒ α = α ⊑ α∇Y Y and so α∇Y Y ⇒ 0XY = (α∇Y Y ⇒ 0XY ) ⊓ α∇Y Y = 0XY .

In boolean lattices (or equivalently, in Schröder categories) δ ⇒ 0XY = δ− for each

relation δ : X ⇁ Y , and so α∇Y Y = (α∇Y Y )−− = (α∇Y Y ⇒ 0XY ) ⇒ 0XY = 0XY ⇒

0XY = ∇XY . Therefore α∇Y X = α∇Y Y ∇Y X = ∇XY ∇Y X = ∇XX by the uniformity.

Proposition 3.1 Let α : X ⇁ Y be a relation in a Dedekind category.

(a) α ⊑ α+ and α++ = α+. (Every α+ is quasi-total.)

(b) α∇Y Y = α iff α+ = ∇XY . In particular 0+
XY = ∇XY and (α∇Y Y )+ = ∇XY .

Proof. (a) It is trivial that α ⊑ α+. Also α++ = α+∇Y Y ⇒ (α∇Y Y ⇒ α) =

(α+∇Y Y ⊓ α∇Y Y ) ⇒ α = α∇Y Y ⇒ α = α+ by Proposition A.2(d).

(b) Assume α∇Y Y = α. Then α+ = α ⇒ α = ∇XY . Conversely assume α∇Y Y ⇒

α = ∇XY . Then α∇Y Y = α∇Y Y ⊓ ∇XY = α∇Y Y ⊓ α+ = α by Proposition A.2(c).

Hence α = α∇Y Y .

�
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Two demonic refinement orderings ≤ and � of relations α, α′ : X ⇁ Y are respec-

tively defined in [11] and [5] as follows:

α ≤ α′ def
⇔ α ⊑ α′ ⊑ α+ { Xu et al. [11] }
⇔ α′ ⊓ α∇Y Y = α

⇔ α+ = α∇Y Y ⇒ α′

α � α′ def
⇔ α∇Y Y ⊑ α′∇Y Y ∧ α′ ⊑ α+ { Desharnais et al. [5] }

We can obtain straightforwardly from the above definitions that α ≤ α′ implies

α � α′.

Proposition 3.2 Let α : X ⇁ Y and α′ : X ⇁ Y be relations. Then the following

hold:

(a) If α∇Y Y = α, then α ≤ α′ iff α ⊑ α′. In particular 0XY ≤ α and 0XY � α.

(b) If α∇Y Y = α, then α � α′ iff α ⊑ α′∇Y Y . In particular α∇Y Y � α.

(c) α ≤ α+ and α � α+.

(d) αα♯α � α.

(e) If α∇Y Y ⊒ α′∇Y Y and α � α′, then α′ ⊑ α.

Proof. (a) Assume α∇Y Y = ∇XY . Then the assertion is trivial since α+ = ∇XY by

Proposition 3.1(b).

(b) It is trivial from the definition.

(c) By Proposition 3.1(a) we have α ⊑ α+ ⊑ α+ which means α ≤ α+, and so α � α+

by (a).

(d) It follows from αα♯α∇Y Y ⊑ α∇Y Y and α ⊑ αα♯α ⊑ (αα♯α)+ by Proposition

3.1(a).

(e) Assume that α∇Y Y ⊒ α′∇Y Y and α � α′. Then we have α′ = α′∇Y Y ⊓ α′ ⊑

α∇Y Y ⊓ α+ = α by Proposition A.2(c).

�

Next we see the demonic refinement orderings are orderings on the hom-set D(X ,Y).

Proposition 3.3 Relations ≤ and � on the hom-set D(X,Y ) are orderings.

Proof. (i) Reflexive law: α ≤ α and α � α follows from a fact α ⊑ α ⊑ α+ by

Proposition 3.1(a).
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(ii) Transitive law: Assume that α ≤ α′ and α′ ≤ α′′, that is, α ⊑ α′ ⊑ α+ and

α′ ⊑ α′′ ⊑ α
′+. Hence α ⊑ α′ ⊑ α′′ and

α′′ ⊑ α′∇Y Y ⇒ α′ { α′′ ⊑ α
′+ }

⊑ α′∇Y Y ⇒ (α∇Y Y ⇒ α) { α′ ⊑ α+ }
= (α′∇Y Y ⊓ α∇Y Y ) ⇒ α { Proposition A.2(d) }
= α∇Y Y ⇒ α. { α ⊑ α′ }
= α+

Similarly α � α′ and α′ � α′′ imply α � α′′.

(iii) Anti-symmetric law: Assume that α � α′ and α′ � α. First note that α∇Y Y =

α′∇Y Y . Then using Proposition 3.2(f) we have α ⊑ α′ and α′ ⊑ α. Hence α = α′.

Anti-symmetry of ≤ is trivial. �

Example 3.4 Consider the following relations on a set X = {1, 2} represented by

matrices:

α =

(

1 1
0 0

)

= α∇XX , α′ =

(

1 0
0 1

)

= idX .

Then α � α′ (α∇XX ⊑ ∇XX = α′∇XX and α′ ⊑ ∇XX = α+), but α 6≤ α′ because

α 6⊑ α′.

„

0 0

0 0

«

�����

HHHHH

���������

XXXXXXXXX

(((((((((((((

hhhhhhhhhhhhh

„

1 0

0 0

« „

0 1

0 0

« „

1 1

0 0

« „

0 0

1 1

« „

0 0

1 0

« „

0 0

0 1

«
















J
J

J
J

J
JJ

„

1 0

1 0

« „

1 0

1 1

« „

0 1

0 1

« „

0 1

1 1

« „

1 1

1 1

« „

1 1

1 0

« „

0 1

1 0

« „

1 1

0 1

« „

1 0

0 1

«

Figure 1: An ordered set (Rel(X,X),≤) for a set X = {1, 2}.

Lemma 3.5 Let α, α′ : X ⇁ Y be relations. If α′ is univalent and α ⊑ α′, then

α′ ⊑ α+ and consequently α ≤ α′ and α � α′.

Proof. Assume α′♯α′ ⊑ idY and α ⊑ α′. Then

α′ ⊓ α∇Y Y ⊑ α(α♯α′ ⊓∇Y Y ) { Dedekind Formula }
= αα♯α′ { α♯α′ ⊑ ∇XY }
⊑ αα′♯α′ { α ⊑ α′ }
⊑ α. { α′♯α′ ⊑ idY }
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„

0 0

0 0

«

������

HHHHHH

„

1 1

0 0

« „

0 0

1 1

«

������

HHHHHH

������

HHHHHH

„

0 1

0 0

« „

1 0

0 0

« „

1 1

1 1

« „

0 0

1 0

« „

0 0

0 1

«

������

HHHHHH

������������

XXXXXXXXXXXX

„

0 1

1 1

« „

1 0

1 1

« „

1 1

1 0

« „

1 1

0 1

«

((((((((((((((((((

((((((((((((((((((

hhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhh

„

0 1

0 1

« „

1 0

1 0

« „

0 1

1 0

« „

1 0

0 1

«

Figure 2: An ordered set (Rel(X,X),�) for a set X = {1, 2}.

Hence α′ ⊑ α+. �

By the above lemma if α is quasi-total and α′ is univalent, then α ⊑ α′ implies

α = α′. Recall that if α is total and α′ is univalent, then α ⊑ α′ implies α = α′.

(α′ ⊑ αα♯α′ ⊑ αα′♯α′ ⊑ α.)

The following proposition characterizes maximal elements in the demonic orderings:

Proposition 3.6 (a) A relation α : X ⇁ Y is maximal in (D(X,Y ),≤) iff it is

quasi-total (α = α+).

(b) Suppose a relational axiom1 of choice. Then a relation α : X ⇁ Y is maximal

in (D(X,Y ),�) iff α = α+ and α♯α ⊑ idY .

Proof. (a) Assume that α = α+ and α ≤ α′. Then α ⊑ α′ and α′ ⊑ α+ = α. Hence

α = α′ and so α is maximal. Conversely assume that α is maximal in (D(X,Y ),≤).

Then α = α+ follows from the maximality of α since α ≤ α+ by Proposition 3.2(d).

(b) Let α = α+ and α♯α ⊑ idY . Assume α � α′. Then α′ ⊑ α+ = α and so

α′ � α by Lemma 3.5. Hence α = α′ by the anti-symmetric law of �, which proves

1 A relational axiom of choice: for every relation α : X ⇁ Y there exists a univalent relation

f : X → Y such that f ⊑ α and f∇Y Y = α∇Y Y .
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the maximality of α. Conversely assume that α is maximal in (D(X,Y ),�). Since

α � α+ by Proposition 3.2(d) the maximality of α leads α = α+. Now by the

relational axiom∗ of choice there exists a univalent relation f : X → Y such that

f ⊑ α and f∇Y Y = α∇Y Y . Then α � f since α∇Y Y = f∇Y Y and f ⊑ α = α+.

Again by the maximality of α we have α = f , which proves that α is univalent. �

Theorem 3.7 Let A be a nonempty subset of D(X,Y ).

(a) The supremum of the set A in (D(X,Y ),≤) exists if and inly if

⊔α∈Aα ⊑ ⊓α∈Aα+.

When this condition is satisfied, the supremum is

sup≤A = ⊔α∈Aα.

(b) The infimum of A in (D(X,Y ),≤) always exists, that is,

inf≤A = ⊔{α0 | α0 ⊑ ⊓α∈Aα and ⊔α∈A α ⊑ α+
0 }.

In particular, inf≤A = ⊓α∈Aα when ⊔α∈Aα ⊑ (⊓α∈Aα)+.

Proof. (a) Set α0 = ⊔α∈Aα. We prove the existence condition and the value of the

supremum. Let α′ be any relation. Then

∀α ∈ A : α ≤ α′

⇔ { definition }
∀α ∈ A : α′ ⊓ α∇Y Y = α ∧ α0 ⊑ ⊓α∈Aα+

⇔ { ⇒: α′ ⊓ α0∇Y Y = ⊔α∈A(α′ ⊓ α∇Y Y ) = α0

⇐: Because α ⊑ α0 ⊑ α′ and α′ ⊓ α∇Y Y = α′ ⊓
α0∇Y Y ⊓ α∇Y Y = α0 ⊓ α∇Y Y ⊑ α+ ⊓ α∇Y Y = α. }

α′ ⊓ α0∇Y Y = α0 ∧ α0 ⊑ ⊓α∈Aα+

⇔ { definition }
α0 ≤ α′ ∧ α0 ⊑ ⊓α∈Aα+.

(b) Denote by A0 the set of all lower bounds α0 of A, that is A0 = {α0|α0 ⊑ ⊓α∈Aα∧

⊔α∈Aα ⊑ α+
0 }, and set α∗ = ⊔α0∈A0

α0. Obviously A0 is a nonempty set, since a zero

relation 0XY is a lower bound of A. Let α′ be any relation, then we obtain

∀α ∈ A : α′ ≤ α

⇔ { definition }
∀α ∈ A : α ⊓ α′∇Y Y = α′

⇔ { ⇒: α∗ ⊓ α′∇Y Y ⊑ α ⊓ α′∇Y Y = α′ ⊓ α′∇Y Y ⊑ α∗ ⊓
α′∇Y Y since α′ ∈ A0. }

α∗ ⊓ α′∇Y Y = α′

⇔ { definition }
α′ ≤ α∗,
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where the second ⇐ follows from α′ ⊑ α∗ ⊑ α and the next computation

α ⊑ ⊓α0∈A0
α+

0

= ⊓α0∈A0
(α0∇Y Y ⇒ α0)

⊑ ⊓α0∈A0
(α0∇Y Y ⇒ α∗) { Proposition A.2(g): α0 ⊑ α∗ }

= (⊔α0∈A0
α0∇Y Y ) ⇒ α∗ { Proposition A.2(e) }

= α∗∇Y Y ⇒ α∗

⊑ α′∇Y Y ⇒ α
′+ { Proposition A.2(g): α′ ⊑ α∗ ⊑ α

′+ }
= α

′+. { Proposition A.2(d) }

�

We next see the least upper bounds and the greatest lower bounds with respect to

≤ found in [11].

Proposition 3.8 Every chain A in (D(X,Y ),≤) has the supremum sup≤A = ⊔α∈Aα

and the infimum inf≤A = ⊓α∈Aα.

Proof. (i) By the virtue of the last theorem it suffices to see that every chain A in

(D(X,Y ),≤) satisfies ⊔α∈Aα ⊑ ⊓α∈Aα+. The inequality is equivalent to a fact that

α′ ⊑ α+ for all α′, α ∈ A. But A is a chain, so α ≤ α′ or α′ ≤ α. In the case of α ≤ α′

it is trivial that α′ ⊑ α+. Also in the case of α′ ≤ α we have α′ ⊑ α ⊑ α+.

(ii) It suffices to show that ⊓α∈Aα is a lower bound of A, that is, ⊔α∈Aα ⊑ (⊓α∈Aα)+,

which is equivalent to α′ ⊓ (⊓α∈Aα)∇Y Y ⊑ α for all α′, α ∈ A. But A is a chain in

(D(X,Y ),≤), so α ≤ α′ or α′ ≤ α. In the case of α ≤ α′ we have α′ ⊓ (⊓α∈Aα)∇Y Y ⊑

α′⊓α∇Y Y = α. Also in the case of α′ ≤ α it is trivial that α′⊓(⊓α∈Aα)∇Y Y ⊑ α′ ⊑ α.

�

We now see the least upper bounds and the greatest lower bounds with respect to

� found in [5].

Proposition 3.9 Let A be a nonempty subset of D(X,Y ).

(a) The supremum of the set A in (D(X,Y ),�) exists if and only if

⊔α∈Aα∇Y Y ⊑ (⊓α∈Aα+)∇Y Y .

When this condition is satisfied, the supremum is

sup�A = (⊔α∈Aα∇Y Y ) ⊓ (⊓α∈Aα+).

(b) The infimum of A in (D(X,Y ),�) always exists, that is,

inf�A = (⊔α∈Aα) ⊓ (⊓α∈Aα∇Y Y ),
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Proof. (a) Set α0 = (⊔α∈Aα∇Y Y ) ⊓ (⊓α∈Aα+). Noting that when the condition

⊔α∈Aα∇Y Y ⊑ (⊓α∈Aα+)∇Y Y holds

α0∇Y Y = (⊔α∈Aα∇Y Y ) ⊓ (⊓α∈Aα+)∇Y Y = ⊔α∈Aα∇Y Y

and so α0 can be rewritten to

α0 = α0∇Y Y ⊓ (⊓α∈Aα+),

we prove the existence condition and the value of supremum of A. Let α′ be any

relation. We have

∀α ∈ A : α � α′

⇔ { definition }
⊔α∈Aα∇Y Y ⊑ α′∇Y Y ∧ α′ ⊑ ⊓α∈Aα+ ∧ ⊔α∈Aα∇Y Y ⊑ (⊓α∈Aα+)∇Y Y

⇔ { ⇒: α′ ⊓ α0∇Y Y ⊑ (⊓α∈Aα+) ⊓ α0∇Y Y = α0 }
α0∇Y Y ⊑ α′∇Y Y ∧ α′ ⊑ α+

0 ∧ ⊔α∈Aα∇Y Y ⊑ (⊓α∈Aα+)∇Y Y

⇔ { definition }
α0 � α′ ∧ ⊔α∈Aα∇Y Y ⊑ (⊓α∈Aα+)∇Y Y ,

where the second ⇐ follows from

α′ ⊓ α∇Y Y

⊑ α+
0 ⊓ α∇Y Y { α′ ⊑ α+

0 }
= (α0∇Y Y ⇒ α0) ⊓ α∇Y Y

= α0 ⊓ α∇Y Y { Proposition A.2(f): α∇Y Y ⊑ α0∇Y Y }
⊑ α0

⊑ α+,

which implies α′ ⊑ α∇Y Y ⇒ α+ = α+ for each α ∈ A by Proposition A.2(d).

(b) Set α0 = (⊔α∈Aα) ⊓ (⊓α∈Aα∇Y Y ). Then α0∇Y Y = ⊓α∈Aα∇Y Y and so α0 =

(⊔α∈Aα) ⊓ α0∇Y Y . So we have the following equivalences for any given relation α′

∀α ∈ A : α′ � α

⇔ ∀α ∈ A : α′∇Y Y ⊑ α∇Y Y ∧ α ⊑ α
′+ { definition }

⇔ α′∇Y Y ⊑ α0∇Y Y ∧ ⊔α∈Aα ⊑ α
′+ { definition }

⇔ α′∇Y Y ⊑ α0∇Y Y ∧ α0 ⊑ α
′+ { ⇒: α0 ⊑ ⊔α∈Aα ⊑ α

′+ }
⇔ α′ � α0, { definition }

where the third ⇐ is shown as follows. Consider the following computation

(⊔α∈Aα) ⊓ α′∇Y Y ⊑ (⊔α∈Aα) ⊓ α0∇Y Y = α0 ⊑ α
′+,

which implies ⊔α∈Aα ⊑ α
′+ by Proposition A.2(d). �

Lemma 3.10 Let α : X ⇁ Y and β : X ⇁ Z be relations. Then α ⊙ β = αβ ⊓

α+♯\(β∇ZZ).
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Proof.

α ⊙ β = αβ ⊓ α♯\(β∇ZZ)
= αβ ⊓ (∇Y Y α♯ ⊓ α+♯)\(β∇ZZ) { α = α∇Y Y ⊓ α+ }
= αβ ⊓ {α∇Y Z ⇒ α+♯\(β∇ZZ)} { Proposition A.3(g) }
= αβ ⊓ α+♯\(β∇ZZ) { Proposition A.2(f) }

�

In the following discussion, a map which is monotonic with respect to ≤ or � is

called ≤-monotonic or �-monotonic, respectively. The next proposition shows that

the demonic composition ⊙ is ≤-monotonic and �-monotonic.

Proposition 3.11 Let α, ξ : X ⇁ Y and β : Y ⇁ Z be relations. Then the following

hold:

(a) If α ≤ α′ and β ≤ β′, then α ⊙ β ≤ α′ ⊙ β′.

(b) If α � α′ and β ≤ β′, then α ⊙ β � α′ ⊙ β′.

Proof. (a) Assume that α ⊑ α′ ⊑ α+ and β ⊑ β′ ⊑ β+. Then

α ⊙ β = αβ ⊓ α+♯\β∇ZZ { Lemma 3.10 }
⊑ α′β′ ⊓ α′♯\β′∇ZZ { α ⊑ α′ ⊑ α+, β ⊑ β′ }
= α′ ⊙ β′.

and

(α′ ⊙ β′) ⊓ (α ⊙ β)∇ZZ

⊑ α′β′ ⊓ α∇Y Z ⊓ α+♯\β∇ZZ

{ (α ⊙ β)∇ZZ = αβ∇ZZ ⊓ α+♯\β∇ZZ ⊑ α∇Y Z ⊓ α+♯\β∇ZZ }
⊑ α+β′ ⊓ α+♯\β∇ZZ ⊓ α∇Y Z

⊑ α+(β′ ⊓ β∇ZZ) ⊓ α∇Y Z

⊑ α+β ⊓ α∇Y Z { β′ ⊓ β∇ZZ ⊑ β by β′ ⊑ β+ }
⊑ (α+ ⊓ α∇Y Zβ♯)β
⊑ (α+ ⊓ α∇Y Y )β
= αβ.

Hence (α′ ⊙ β′) ⊓ (α ⊙ β)∇ZZ ⊑ α ⊙ β and so α′ ⊙ β′ ⊑ (α ⊙ β)+.

(b) Assume that α∇Y Y ⊑ α′∇Y Y , β∇ZZ ⊑ β′∇ZZ, α′ ⊑ α+ and β′ ⊑ β+. First

we have α
′♯(α+♯\β∇ZZ) ⊑ α+♯(α+♯\β∇ZZ) ⊑ β∇ZZ ⊑ β′∇ZZ by the assumptions

α′ ⊑ α+, β∇ZZ ⊑ β′∇ZZ and Proposition A.3(a). Then

(α ⊙ β)∇ZZ

= αβ∇ZZ ⊓ α+♯\β∇ZZ { Lemma 3.10, Proposition A.1(b) and A.3(e) }
⊑ α∇Y Z ⊓ α+♯\β∇ZZ { β∇ZZ ⊑ ∇Y Z }
⊑ α′∇Y Z ⊓ α+♯\β∇ZZ { assumption }
⊑ α′α

′♯(α+♯\β∇ZZ) { Dedekind formula }
⊑ α′β′∇ZZ
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and
α

′♯(α ⊙ β)∇ZZ ⊑ α
′♯(α+♯\β∇ZZ)

⊑ β′∇ZZ

which means (α ⊙ β)∇ZZ ⊑ α
′♯\β′∇ZZ. Consequently we have (α ⊙ β)∇ZZ ⊑

α′β′∇ZZ ⊓ α
′♯\β′∇ZZ = (α′ ⊙ β′)∇ZZ. We have to see α′ ⊙ β′ ⊑ (α ⊙ β)+, but

this claim can be shown by the same argument of the second part in the proof for (a).

�
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A Basic Properties of Relations

In this section we list a few basic properties of relations.

Proposition A.1 Let α : X ⇁ Y , β : Y ⇁ Z, η : X ⇁ W , ξ : Y ⇁ W and

u : X ⇁ X be relations in a Dedekind category D. Then the following hold:

(a) If u ⊑ idX then u∇XY ⊓ α = uα.

(b) (α ⊓ η∇WY )β = αβ ⊓ η∇WZ.

(c) (α ⊓∇XW ξ♯)β = α(ξ∇WZ ⊓ β).

Proof.

(a) Assume that u ⊑ idX . Then u∇XY ⊓ α ⊑ u(∇XY ⊓ u♯α) ⊑ uα.

(b) It follows from

(α ⊓ η∇WY )β ⊑ αβ ⊓ η∇WY β { ⊓-subdistributivity }
⊑ αβ ⊓ η∇WZ

⊑ (α ⊓ η∇WZβ♯)β { Dedekind formula }
⊑ (α ⊓ η∇WY )β
⊑ αβ ⊓ η∇WZ. { ⊓-subdistributivity }

(c) The claim follows from

α(ξ∇WZ ⊓ β) = α(ξ∇WZ ⊓ β) ⊓ αβ

⊑ {α ⊓ αβ(∇ZW ξ♯ ⊓ β♯)}(ξ∇WZ ⊓ β) { Dedekind formula }
⊑ (α ⊓∇XW ξ♯)β
⊑ αβ ⊓ (α ⊓∇XW ξ♯)β
⊑ (α ⊓∇XW ξ♯){(α♯ ⊓ ξ∇WX)αβ ⊓ β} { Dedekind formula }
⊑ α(ξ∇WZ ⊓ β).

�

Proposition A.2 Let α, β, γ : X ⇁ Y be relations in a Dedekind category D. Then

the following hold:

(a) β ⊑ α ⇒ β.

(b) α ⇒ α = ∇XY and ∇XY ⇒ α = α.

(c) α ⊓ (α ⇒ β) = α ⊓ β. In particular α∇Y Y ⊓ α+ = α.

(d) α ⇒ (β ⇒ γ) = (α ⊓ β) ⇒ γ. In particular α∇Y Y ⇒ α+ = α+.

(e) (α ⊔ α′) ⇒ β = (α ⇒ β) ⊓ (α′ ⇒ β).
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(f) If α ⊑ β, then α ⊓ (β ⇒ γ) = α ⊓ γ.

(g) If α ⊒ α′ and β ⊑ β′, then α ⇒ β ⊑ α′ ⇒ β′.

Proof. (a), (b) and (c) are obvious from the definition of pseudo-complement.

(d) For all relations δ : X ⇁ Y we have

δ ⊑ α ⇒ (β ⇒ γ) ⇔ α ⊓ δ ⊑ β ⇒ γ

⇔ α ⊓ β ⊓ δ ⊑ γ

⇔ δ ⊑ (α ⊓ β) ⇒ γ

which means α ⇒ (β ⇒ γ) = (α ⊓ β) ⇒ γ.

(e) We first easily see that (α ⇒ β)⊓ (α′ ⇒ β) ⊑ (α⊔α′) ⇒ β by the definition. The

reverse containment follows from α⊓{(α⊔α′) ⇒ β} ⊑ (α⊔α′)⊓{(α⊔α′) ⇒ β} = β.

(f) Assume that α ⊑ β. Then we have α ⊓ (β ⇒ γ) = α ⊓ β ⊓ (β ⇒ γ) ⊑ α ⊓ γ by

(c). By (a) we have the reverse containment.

(g) Assuming α ⊒ α′ and β ⊑ β′ we have α′ ⊓ (α ⊓ β) ⊑ α ⊓ (α ⊓ β) ⊑ β ⊑ β′, which

implies the assertion. �

Proposition A.3 Let α : X ⇁ Y , β, β′ : Y ⇁ Z, γ, γ′ : X ⇁ Z, δ : Z ⇁ W and

ξ : Y ⇁ W be relations in a Dedekind category D. Then the following hold:

(a) α(α\γ) ⊑ γ.

(b) (α\γ)δ ⊑ α\(γδ).

(c) α\(γ ⊓ γ′) = (α\γ) ⊓ (α\γ′).

(d) (αξ)\γ = ξ\(α\γ).

(e) If ∇WZ∇ZW = ∇WW , then (α♯\β∇ZZ)∇ZW = α♯\β∇ZW ,

(f) α(β ⊓ β′) ⊓ α♯\β′ = αβ ⊓ α♯\β′,

(g) (∇XW ξ♯ ⊓ α)\γ = (ξ∇WZ) ⇒ (α\γ).

Proof. (a) It is obvious from the definition of left residues.

(b) It follows from α(α\γ)δ ⊑ γδ by (a).

(c) It follows from

β ⊑ α\(γ ⊓ γ′) ⇔ αβ ⊑ γ ⊓ γ′

⇔ αβ ⊑ γ and αβ ⊑ γ′

⇔ β ⊑ α\γ and β ⊑ α\γ′

⇔ β ⊑ (α\γ) ⊓ (α\γ′).

(d) It follows from
δ♯ ⊑ (αξ)\γ ⇔ αξδ♯ ⊑ γ

⇔ ξδ♯ ⊑ α\γ
⇔ δ♯ ⊑ ξ\(α\γ).
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(e) It follows from

α♯\β∇ZW ⊑ (α♯\β∇ZW )∇WW { idW ⊑ ∇WW }
= (α♯\β∇ZW )∇WZ∇ZW { ∇WZ∇ZW = ∇WW }
⊑ (α♯\β∇ZW∇WZ)∇ZW { (b) }
⊑ (α♯\β∇ZZ)∇ZW { ∇ZW∇WZ ⊑ ∇ZZ }
⊑ (α♯\β∇ZZ∇ZW ) { (b) }
= α♯\β∇ZW .

(f) It simply follows from

α(β ⊓ β′) ⊓ α♯\β′ ⊑ αβ ⊓ α♯\β′

= α{β ⊓ α♯(α♯\β′)} ⊓ α♯\β′ { Dedekind formula }
⊑ α(β ⊓ β′) ⊓ α♯\β′. { (a) }

(g) It follows from

β ⊑ (∇XW ξ♯ ⊓ α)\γ ⇔ (∇XW ξ♯ ⊓ α)β ⊑ γ

⇔ α(ξ∇WZ ⊓ β) ⊑ γ { Proposition A.1(c) }
⇔ ξ∇WZ ⊓ β ⊑ α\γ
⇔ β ⊑ ξ∇WZ ⇒ (α\γ).

�


