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Abstract. This paper presents a categorical formulation for associa-
tion rules in information systems. MacCaull developed a tableaux style
calculus that is sound and complete for the implication problem for as-
sociation rules. The proof of the completeness required an informational
representability result, to go from frames to contexts with 1. To show
the completeness for the implication problem for association rules in our
categorical framework, we prove an informational representability result
in Dedekind categories.

1 Introduction

Relational database theory has been studied since Codd [4] introduced relational
database models. Dependency theory is concerned with the general problem of
relationships among attributes in database relations. Database dependency the-
ory has been studied with relational methods. Or lowska [13] proposed a relational
formulation of functional, multivalued and other dependencies, and Buszkowski
and Or lowska [3] developed an axiomatic relational calculus for dependency the-
ory. Okuma and Kawahara [10, 11] extend some database dependency theory
to Dedekind categories. Schmidt and Ströhlein [16] explained a basic relational
feature of functional dependency for relational models of databases. The foun-
dations and recent applications of relational methods in computer science are
excellently summarized in [1].

MacCaull [8, 9] investigated a relational formulation for functional and multi-
valued dependencies and association rules, and proved soundness and complete-
ness for the implication problem of these dependencies with a Rasiowa/Sikorski-
style tableaux proof system. MacCaull [9] focuses on association rules in contexts,
which are databases such that all attribute values are either 0 or 1. There the
notion of association relation was used to express association rules and sufficient
conditions were given to prove an informational representability result used in
the proof of the completeness of a tableaux deduction method for the implication
problem for association rules.



The aim of this paper is to give a categorical formulation for information
systems and to prove the informational representability for contexts in our cate-
gorical framework in order to extend the work on association rules to Dedekind
categories.

The remainder of this paper is organized as follows: In Section 2, we first
review the notion of information systems, a generalization of database relation
to indeterminate databases (of use both in rough set theory and in classical
database theory). Then we review the notion of contexts, association relation
and association rule in a context with 1.

In Section 3, we briefly review the definition of Dedekind category, a kind of
relational category, and list basic properties of relations in Dedekind categories.
Next we present the definition and some properties of binomial equivalence re-
lations in order to discuss association rules in Dedekind categories.

In Section 4, we give a definition of information system in a Dedekind cat-
egory. We show some properties of indiscernibility relations found in [8, 9] hold
in Dedekind categories. Next we generalize the notions of context with 1, asso-
ciation relation and association rule in contexts with 1 to Dedekind categories.
We show some properties of association relations found in [9] hold in a Dedekind
category. Finally we define the notion of information frame in a Dedekind cate-
gory and prove that the informational representability result found in [9] holds
in Dedekind categories.

2 Information Systems

In this section, we review the definition of information systems and the formu-
lation of some constraints in information systems.

First we recall a foundation of (binary) relational calculus on sets. A relation
R of a set A to a set B, denoted by a half arrow R : A ⇁ B, is a subset of the
cartesian product A×B. Given relations R : A ⇁ B, S : B ⇁ C and T : A ⇁ C ,
the operations of composition, conversion and residue are defined as follows:

RS = {(x, z) ∈ A × C | for some y, (x, y) ∈ R and (y, z) ∈ S},

R♯ = {(x, y) ∈ B ×A | (y, x) ∈ R} and

T ÷ S = {(x, y) ∈ A ×B | for all z ∈ C , (y, z) ∈ S implies (x, z) ∈ T}.

As relations are subsets of a cartesian product, the inclusion ⊆, the union ∪, the
intersection ∩ and the complement − are available as usual.

Now we review the definition of information systems as presented in [8].

An information system is a 4-tuple (X,U, {Va : a ∈ U}, f), where X is a set
(of tuples); U is a set (of attributes); for each a ∈ U , Va is the set of values of an
attribute a, and for each x ∈ X and a ∈ U , f(x, a) ⊆ Va. This is a generalization
of database relation to the situation of indeterminate databases, and it is of use



both in rough set theory (see Or lowska [15]) and classical database theory. If
f(x, a) ∈ Va then this is a database relation with attributes in U .

For each P ⊆ U , an indiscernibility relation Rind
P : X ⇁ X is defined by

Rind
P = {(x, y) ∈ X × X|∀a ∈ P, f(x, a) = f(y, a)}.

Using the indiscernibility relations one may express many dependencies in rela-
tional databases (see [13, 3, 8]). For example, let P and Q be subsets of U :

a functional dependency P → Q holds in X
iff ∀x, y ∈ X, {(∀a ∈ P, f(x, a) = f(y, a)) ⇒ (∀a ∈ Q, f(x, a) = f(y, a))}
iff Rind

P ⊆ Rind
Q .

Given an information system (X,U, {Va : a ∈ U}, f), the following hold for
all subsets P and Q of U : (a) Rind

P is an equivalence relation, (b) Rind
P ∩Rind

Q =

Rind
P∪Q and (c) Rind

∅ = X × X. The properties (b) and (c) imply that the set of
indiscernibility relations is a set of strong relations (see [15]).

Now we recall the definitions of context, association relation and association
rule in a context with 1 [8, 9].

A context is an information system (X,U, {Va : a ∈ U}, f) such that all
attribute values are either 0 or 1; that is, f(x, a) ∈ Va = {0, 1} for all x ∈ X and
for all a ∈ U . A context with 1 is a context with an object 1U in X satisfying
f(1U , a) = 1 for all a ∈ U . An association rule is a dependency for contexts with
1 defined as follows: let P and Q be subsets of U , an association rule P ⇒ Q
holds in X iff ∀x ∈ X, f(x, a) = 1 for all a ∈ P implies f(x, a) = 1 for all a ∈ Q.

An association relation Ras
P : X ⇁ X in a context with 1 is defined as follows:

Ras
P = {(x, y) ∈ X × X|∀a ∈ P, f(x, a) = 1 iff ∀a ∈ P, f(y, a) = 1}.

A relational formulation for the association rule P ⇒ Q may be given as follows:

P ⇒ Q iff Ras
P = Ras

P∪Q.

Given a context with 1, the following hold for all subsets P and Q of U : (a)
Ras

P is an equivalence relation, (b) Ras
P ∩ Ras

Q ⊆ Ras
P∪Q and (c) Ras

∅ = X × X.
The properties (b) and (c) imply that the set of association relations is a set of
semistrong relations.

Fact 1 Let (X,U, {Va : a ∈ U}, f) be an information system and fa : X →
℘(Va) be a function (that is, a univalent and total relation) such that fa(x) =
f(x, a). Then we have ∩a∈P faf♯

a = Rind
P for each subset P of U .



Proof. The result follows from

(x, y) ∈ ∩a∈P faf♯
a

iff ∀a ∈ P, (x, y) ∈ faf♯
a

iff ∀a ∈ P,∃v ∈ ℘(Va), v = fa(x) ∧ v = fa(y) { fa is a function }
iff ∀a ∈ P, f(x, a) = f(y, a)
iff (x, y) ∈ Rind

P .

⊓⊔

The next fact shows that an association relation can be expressed using
indiscernibility relations and residues.

Fact 2 Let (X,U, {Va : a ∈ U}, f) be a context with 1, t : {∗} → X
be a function such that t(∗) = 1U . Then {(tRind

P )♯ ÷ (tRind
P )♯} ∩ {(tRind

P )♯ ÷
(tRind

P )♯}♯ = Ras
P for each subset P of U .

Proof. First we have

(x, y) ∈ (tRind
P )♯ ÷ (tRind

P )♯

iff (y, ∗) ∈ (tRind
P )♯ implies (x, ∗) ∈ (tRind

P )♯

iff (1U , y) ∈ Rind
P implies (1U , x) ∈ Rind

P

iff ∀a ∈ P : f(1U , a) = f(y, a) implies ∀a ∈ P : f(1U , a) = f(x, a).

In the same way we have

(x, y) ∈ {(tRind
P )♯ ÷ (tRind

P )♯}♯

iff ∀a ∈ P : f(1U , a) = f(x, a) implies ∀a ∈ P : f(1U , a) = f(y, a).

Then we conclude

(x, y) ∈ {(tRind
P )♯ ÷ (tRind

P )♯} ∩ {(tRind
P )♯ ÷ (tRind

P )♯}♯

iff ∀a ∈ P : f(x, a) = f(1U , a) if and only if ∀a ∈ P : f(y, a) = f(1U , a)
iff (x, y) ∈ Ras

P .

⊓⊔

3 Dedekind Categories

In this section, we first recall the definition of a Dedekind category, a kind
of relation category (following Olivier and Serrato [12]) which is our general
framework, and then present some properties of relations in Dedekind categories.

Throughout this paper, a morphism α from an object A into an object B in
a Dedekind category (which will be defined below) will be called a relation, and
denoted by a half arrow α : A ⇁ B. The composite of a relation α : A ⇁ B
followed by a relation β : B ⇁ C will be written as αβ : A ⇁ C . We denote the
identity relation on an object A by idA.



Definition 1. A Dedekind category D is a category satisfying the following:
D1. [Complete Distributive Lattice] For all pairs of objects A and B the hom-set
D(A,B) consisting of all relations of A into B is a complete distributive lattice
with the least relation 0AB and the greatest relation ∇AB.
D2. [Converse] For all objects A and B there is given an operator ♯ : D(A,B) →
D(B,A) such that for all relations α,α′ : A ⇁ B, β : B ⇁ C , the following laws
hold:
(a) (αβ)♯ = β♯α♯, (b) (α♯)♯ = α, (c) If α ⊑ α′ then α♯ ⊑ α′♯.
D3. [Dedekind Formula] For all relations α : A ⇁ B, β : B ⇁ C and γ : A ⇁ C
the Dedekind formula αβ ⊓ γ ⊑ α(β ⊓ α♯γ) holds.
D4. [Residues] For all relations β : B ⇁ C and γ : A ⇁ C the residue (or
division or weakest precondition) γ ÷ β : A ⇁ B is a relation such that αβ ⊑ γ
if and only if α ⊑ γ ÷ β for all relations α : A ⇁ B. 2

In a Dedekind category D a function f : A → B is a relation f : A ⇁ B such
that f♯f ⊑ idB (univalent) and idA ⊑ ff♯ (total), and an equivalence relation
η : A ⇁ A is a relation such that idA ⊑ η (reflexive), η♯ ⊑ η (symmetric) and
ηη ⊑ η (transitive).

An object I of a Dedekind category D is called a unit if 0II 6= idI = ∇II. An
I-point x of A is a function x : I → A.

In the next proposition we collect some basic properties of relations in Dedekind
categories. The proof of the next proposition and more details on fundamental
properties of relations may be found in [5], [16] or [6].

Proposition 1. Let α,α′ : A ⇁ B, β, β′, βj : B ⇁ C, γ, γ′, γj : A ⇁ C,
δ : D ⇁ B be relations and ζ : E → A a function in a Dedekind category D.
Then the following hold:

(a) 0♯
AB = 0BA, ∇♯

AB = ∇BA and id♯
A = idA.

(b) (α ⊔ α′)♯ = α♯ ⊔ α′♯ and (α ⊓ α′)♯ = α♯ ⊓ α′♯.
(c) α(⊔j∈Jβj) = ⊔j∈Jαβj.
(d) α(⊓j∈Jβj) ⊑ ⊓j∈Jαβj.
(e) If α ⊑ α′ and β ⊑ β′ then αβ ⊑ α′β′.
(f) If α is univalent then α(⊓j∈Jβj) = ⊓j∈Jαβj .
(g) (γ ÷ β)β ⊑ γ, γ ÷ idC = γ, ∇AC ÷ β = ∇AB and γ ÷ 0BC = ∇AB.
(h) (⊓j∈Jγj) ÷ β = ⊓j∈J (γj ÷ β) and γ ÷ (⊔j∈Jβj) = ⊓j∈J (γ ÷ βj).
(i) γ ÷ (δβ) = (γ ÷ β) ÷ δ.
(j) If γ ⊑ γ′ and β′ ⊑ β then γ ÷ β ⊑ γ′ ÷ β′.
(k) ζ(γ ÷ β) = (ζγ) ÷ β.
(l) If β is a function then γ ÷ β = γβ♯． ⊓⊔

Next we recall the definition of binomial equivalence relations, which gener-
alizes the notion of equivalence relation with at most two equivalence classes.

Definition 2. For a relation ρ : I ⇁ A define a binomial equivalence relation
ξ(ρ) : A ⇁ A as:

ξ(ρ) = (ρ♯ ÷ ρ♯) ⊓ (ρ♯ ÷ ρ♯)♯.

⊓⊔



The next lemma collects some properties of binomial equivalence relations.
Later on, we will use them to show the properties of association relations in
Dedekind categories.

Lemma 1. Let ρ, ρ1, ρ2 : I ⇁ A and η : A ⇁ A be relations and t : I → A an
I-point of A in a Dedekind category D. Then the following hold:

(a) ξ(ρ) : A ⇁ A is an equivalence relation on A.
(b) ξ(ρ1) ⊓ ξ(ρ2) ⊑ ξ(ρ1 ⊓ ρ2).
(c) ξ(∇IA) = ξ(0IA) = ∇AA.
(d) If η is an equivalence relation then η ⊑ ξ(tη).
(e) If η is reflexive then t ξ(tη) = tη.

Proof. (a) First reflexivity follows from the next equivalence: idA ⊑ ρ♯ ÷ ρ♯ iff
idAρ♯ ⊑ ρ♯. ξ(ρ) is clearly symmetric by the definition. By Proposition 1(g) we
have (ρ♯ ÷ ρ♯)(ρ♯ ÷ ρ♯) ⊑ ρ♯ ÷ ρ♯, and hence transitivity follows from

ξ(ρ)ξ(ρ) = {(ρ♯ ÷ ρ♯) ⊓ (ρ♯ ÷ ρ♯)♯}{(ρ♯ ÷ ρ♯) ⊓ (ρ♯ ÷ ρ♯)♯}
⊑ (ρ♯ ÷ ρ♯)(ρ♯ ÷ ρ♯) ⊓ (ρ♯ ÷ ρ♯)♯(ρ♯ ÷ ρ♯)♯ { Proposition 1(d) }
⊑ (ρ♯ ÷ ρ♯) ⊓ (ρ♯ ÷ ρ♯)♯

= ξ(ρ).

(b) It is enough to show that

(ρ♯
1 ÷ ρ♯

1) ⊓ (ρ♯
2 ÷ ρ♯

2) ⊑ (ρ1 ⊓ ρ2)♯ ÷ (ρ1 ⊓ ρ2)♯.

This follows from

(ρ♯
1 ÷ ρ♯

1) ⊓ (ρ♯
2 ÷ ρ♯

2)

⊑ {ρ♯
1 ÷ (ρ♯

1 ⊓ ρ♯
2)} ⊓ {ρ♯

2 ÷ (ρ♯
1 ⊓ ρ♯

2)} { Proposition 1(j) }

= (ρ♯
1 ⊓ ρ♯

2) ÷ (ρ♯
1 ⊓ ρ♯

2) { Proposition 1(h) }
= (ρ1 ⊓ ρ2)♯ ÷ (ρ1 ⊓ ρ2)♯. { Proposition 1(b) }

(c) By Proposition 1(g),(a) we have ξ(∇IA) = (∇♯
IA ÷∇♯

IA) ⊓ (∇♯
IA ÷∇♯

IA)♯ =

∇AA, and ξ(0IA) = (0♯
IA ÷ 0♯

IA) ⊓ (0♯
IA ÷ 0♯

IA)♯ = ∇AA.
(d) Assume that η is an equivalence relation. Then we have η(tη)♯ = (tη)♯ and
so η ⊑ (tη)♯ ÷ (tη)♯. Hence η ⊑ ξ(tη).
(e) Assume that η is reflexive. We first get idA ⊑ η♯ since η is reflexive, and so
idI ⊑ tt♯ ⊑ tη♯t♯ = t(tη)♯ since t is total. Then we have

t{(tη)♯ ÷ (tη)♯} = {t(tη)♯} ÷ (tη)♯ { t is function and Proposition 1(k) }
= idI ÷ (tη)♯ { t(tη)♯ = idI }
= ∇IX , { idI = ∇II and Proposition1(g) }

and

{(tη)♯ ÷ (tη)♯}t♯ = {(tη)♯ ÷ (tη)♯} ÷ t { t is function and Proposition 1(l) }
= (tη)♯ ÷ {t(tη)♯} { Proposition 1(i) }
= (tη)♯ ÷ idI {t(tη)♯ = idI}
= (tη)♯. { Proposition 1(g) }



By the univalency of t we have the assertion as follows

t ξ(tη) = t[{(tη)♯ ÷ (tη)♯} ⊓ {(tη)♯ ÷ (tη)♯}♯]
= t{(tη)♯ ÷ (tη)♯} ⊓ t{(tη)♯ ÷ (tη)♯}♯ { Proposition 1(f) }
= ∇IX ⊓ {(tη)♯}♯

= tη.

⊓⊔

We define a notion of complementary hom-sets and Dedekind categories.

Definition 3. A hom-set D(A,B) is complemented, if each relation α : A ⇁ B
in D has a complement relation α− : A ⇁ B such that α ⊓ α− = 0AB and
α ⊔ α− = ∇AB. A Dedekind category D will be called complemented if for each
object A, the hom-set D(A,A) is complemented. ⊓⊔

If each hom-set D(I,A) is complemented, then ξ(ρ) = ρ♯ρ ⊔ ρ−♯ρ− for each
ρ : I ⇁ A.

4 Association Rules in Dedekind Categories

In this section, we introduce a definition of information system in a Dedekind
category, and we define the categorical notion of association relations and asso-
ciation rules for information systems in Dedekind categories.

Definition 4. Let U be a set (of attributes). An information system in a Dedekind
category D is an U -indexed set {fa : X → Va | a ∈ U} of functions fa from
an object X into an object Va in D. Then for each subset P of U define a re-
lation η[P ] : X ⇁ X by η[P ] = ⊓a∈P faf♯

a. When P is an empty set, we set
η[∅] = ∇XX . 2

The basic properties of the indiscernibility relation found in [9] can be also
shown in information systems in Dedekind categories.

Lemma 2. Given an information system {fa : X → Va | a ∈ U} in a Dedekind
category D, the following hold for all subsets P and Q of U :

(a) η[P ] is an equivalence relation on X.
(b) η[P ∪ Q] = η[P ] ⊓ η[Q].
(c) If Q ⊆ P then η[P ] ⊑ η[Q].
(d) η[P ]η[Q] ⊑ η[P ∩ Q].

Proof. (a) Reflexivity follows from idX ⊑ ⊓a∈P faf♯
a = η[P ], since fa is total for

each a ∈ P . We have η[P ]♯ = (⊓a∈P faf♯
a)♯ = ⊓a∈P faf♯

a = η[P ], and hence η[P ]
is symmetric. Transitivity follows from

η[P ]η[P ] = (⊓a∈P faf♯
a)(⊓a∈P faf♯

a)
⊑ ⊓a∈P faf♯

afaf♯
a { Proposition 1(d) }

⊑ ⊓a∈P faf♯
a { f♯

afa ⊑ idVa
}

= η[P ].



(b) It follows from

η[P ∪ Q] = ⊓a∈P∪Qfaf♯
a

= (⊓a∈P faf♯
a) ⊓ (⊓a∈Qfaf♯

a)
= η[P ] ⊓ η[Q].

(c) Assume that Q ⊆ P . Then we have η[P ] = η[P ∪Q] = η[P ]⊓ η[Q] ⊑ η[Q] by
(b).
(d) It follows from

η[P ]η[Q] = (⊓a∈P faf♯
a)(⊓a∈Qfaf♯

a)
⊑ ⊓a∈P∩Qfaf♯

afaf♯
a { Proposition 1(d) }

⊑ ⊓a∈P∩Qfaf♯
a { f♯

afa ⊑ idVa
}

= η[P ∩ Q].

⊓⊔

Throughout the rest of this section we assume D is a Dedekind category with
a unit I and {fa : X → Va | a ∈ U} is an information system in D.

For an I-point t : I → X, corresponding to 1U in the context with 1, we call
the binomial equivalence relation ξ(tη[P ]) : X ⇁ X as an association relation in
D.

We show the properties of association relations found in [9] in Dedekind
categories.

Lemma 3. Let {fa : X → Va | a ∈ U} be an information system with a desig-
nated I-point t : I → Xin D. Then the following hold for all subsets P and Q of
U :

(a) ξ(tη[P ]) is an equivalence relation on X.
(b) ξ(tη[P ])⊓ ξ(tη[Q]) ⊑ ξ(tη[P ∪ Q]).
(c) ξ(tη[∅]) = ∇XX.

Proof. (a) The claim is immediate from Lemma 1(a).
(b) Since t is univalent, we have tη[P ∪ Q] = t(η[P ] ⊓ η[Q]) = tη[P ] ⊓ tη[Q] by
Lemma 2(b) and Proposition 1(f). Hence we have ξ(tη[P ])⊓ξ(tη[Q]) ⊑ ξ(tη[P ]⊓
tη[Q]) = ξ(tη[P ∪ Q]) by Lemma 1(b).
(c) By the definition of η[∅] we have tη[∅] = t∇XX = ∇IX since t is total, and
so ξ(tη[∅]) = ∇XX by Lemma 1(c). ⊓⊔

We may express association rules in Dedekind categories as follows:

Definition 5. Let {fa : X → Va | a ∈ U} be an information system with a
designated I-point t : I → X in D. An association rule is a formal expression of
the form P ⇒ Q, where P and Q are subsets of U . We say that a association rule
P ⇒ Q holds in the information system if and only if ξ(tη[P ]) ⊑ ξ(tη[P ∪Q]). 2



The following lemma presents an simpler condition which is equivalent to the
condition of association rule in the above definition.

Lemma 4. Let {fa : X → Va | a ∈ U} be an information system with a desig-
nated I-point t : I → X in D. Then the following statements are equivalent for
all subsets P and Q of U :

(a) ξ(tη[P ]) ⊑ ξ(tη[P ∪ Q]).
(b) tη[P ] ⊑ tη[Q].
(c) ξ(tη[P ]) = ξ(tη[P ∪ Q]).

Proof. First we show that (a) implies (b). Suppose ξ(tη[P ]) ⊑ ξ(tη[P ∪Q]). Then
we have tη[P ] = t ξ(tη[P ]) ⊑ t ξ(tη[P ∪ Q]) = tη[P ∪ Q] ⊑ tη[Q] by Lemma 1(e)
and Lemma 2(c). Next we show that (b) implies (c). Suppose tη[P ] ⊑ tη[Q].
Then ξ(tη[P ]) = ξ(tη[P ∪ Q]) is obvious from the fact that tη[P ] ⊑ tη[Q] iff
tη[P ] = tη[P ∪ Q]．Finally the claim (c) implies (a) is obvious. ⊓⊔

Following the last lemma, the validity of the Armstrong axioms for associa-
tion rules can be proved easily by using properties of tη[P ]．

Fact 3 Let {fa : X → Va | a ∈ U} be an information system with a
designated I-point t : I → X in D. The following hold for all subsets P ,Q and
S of U :
(a) If P ⊇ Q holds then P ⇒ Q holds.
(b) If P ⇒ Q holds then P ∪ S ⇒ Q ∪ S holds.
(c) If P ⇒ Q and Q ⇒ S hold then P ⇒ S holds.

Proof. (a) By Lemma 2(c) we have tη[P ] ⊑ tη[Q], which is equivalent to ξ(tη[P ]) ⊑
ξ(tη[P ∪ Q]).
(b) Assume that tη[P ] ⊑ tη[Q]. Then tη[P ∪S] = tη[P ]⊓ tη[S] ⊑ tη[Q]⊓ tη[S] =
tη[Q ∪ S] by Lemma 2(b) and Proposition 1(f).
(c) Assume that tη[P ] ⊑ tη[Q] and tη[Q] ⊑ tη[S]. Then tη[P ] ⊑ tη[S]． ⊓⊔

The implication problem for association rules in contexts with 1 is the fol-
lowing:

The formula
⋂

i Pi ⇒ Qi ⊃ P ⇒ Q is provable iff for all contexts with 1 if
the associations Pi ⇒ Qi hold, for all i, then the association P ⇒ Q holds.

MacCaull [8, 9] gives sufficient conditions on semistrong equivalence relations
to develop a relational proof system that is sound and complete for the impli-
cation problem for association rules in contexts with 1. In fact it is shown that
(1) if the tableau for the formula

⋂
i Pi ⇒ Qi ⊃ P ⇒ Q closes, then if for all

i, the associations Pi ⇒ Qi hold in a context with 1 then P ⇒ Q holds in that
context and (2) if the tableau is open, then one can construct a context with 1
where for all i, the associations Pi ⇒ Qi hold but the association P ⇒ Q does
not hold. The proof of (2) required an informational representability result, to
go from information frames to information systems that are contexts with 1 (the



completeness of the tableaux system is frame completeness).

In order to show the completeness for the implication problem for association
rules in Dedekind categories, we extend the informational representability result
found in [9] to Dedekind categories. We first give a definition of information
frames in Dedekind categories.

Definition 6. An information frame in D is a structure of the form K =
(X,U, ε), where X is an object in D, U is a finite set and ε is a map ε : ℘(U) →
D(X,X) assigning a relation ε[P ] on X to each subset P of U . If each ε[P ] is
an equivalence relation, then we say K is a frame with equivalence relations.
The frame is called semistrong if and only if for all subsets P and Q of U ,
ε[P ] ⊓ ε[Q] ⊑ ε[P ∪ Q] and ε[∅] = ∇XX . 2

We conclude this section by establishing the theorem on the informational
representability for contexts in a Dedekind category.

Theorem 1. (Informational representability) Let K = (X,U, ε) be a semistrong
information frame with equivalence relations having a designated I-point t : I →
X in D. Suppose for all subsets P of U , the relations ε[P ] satisfy the following
axioms:
(As1) ξ(tε[P ]) ⊑ ε[P ],
(As2) If Q ⊆ P then tε[P ] ⊑ tε[Q].
(Equiv) For each equivalence relation θ : X ⇁ X, there is an object X/θ in D
together with a surjection q : X ։ X/θ such that θ = qq♯ and q♯q = idX/θ.
Then there is an information system with a designated I-point t in D such that
ξ(tη[P ]) = ε[P ].

Proof. Given a semistrong information frame (X,U, ε) with a designated I-point
t : I → X and equivalence relations that satisfy (As1), (As2) and (Equiv), we
construct an information system with t, as follows:

By (Equiv) there exists a surjection qa : X ։ X/ε[{a}] such that qaq♯
a =

ε[{a}] and q♯
aqa = idX/ε[{a}], for each a in U . Set Va = X/ε[{a}] for each a in U .

Then {qa : X → Va | a ∈ U} is a information system in D and η[P ] = ⊓a∈P qaq♯
a

for each subset P of U .
Then we need to show that for all subsets P of U , ε[P ] = ξ(tη[P ]). By (As1)

we have ε[P ] = ξ(tε[P ]) since ε[P ] ⊑ ξ(tε[P ]) always holds by Lemma 1(d), so
it is enough to show tη[P ] = tε[P ] for each subset P of U . First we have

η[P ] = ⊓a∈P qaq♯
a

= ⊓a∈P ε[{a}] { qaq♯
a = ε[{a}] }

⊑ ε[∪a∈P {a}] { K is semistrong }
= ε[P ]

and so tη[P ] ⊑ tε[P ]. Next we show the reverse containment. We have for all a in
P , tε[P ] ⊑ tε[{a}] by (As2). Hence tε[P ] ⊑ ⊓a∈P tε[{a}] = t(⊓a∈P ε[{a}]) = tη[P ]
by Proposition 1(f). We conclude tη[P ] = tε[P ]. ⊓⊔



5 Conclusion and Future work

In this paper we present a categorical formulation of indiscernibility relations
and association relations and show that properties of those relations hold in
Dedekind categories. We also prove the categorical analog of the informational
representability result used to show the completeness of the implication problem
for association rules in contexts.

Much of database dependency theory has been extended to Dedekind cate-
gories [10, 11]. The question arises can we extend the work on association rules
to Dedekind categories. There are two different approaches one could take:

On the one hand a tableaux-style of deduction for complemented Dedekind
categories (in the sense of Definition 3) could be developed. In fact, since the
hom-sets are complete distributive lattices, most of the core relational deduc-
tion rules are admissible (see, for example, [14]). The condition that for any
α : X ⇁ X, α ⊔ α− = ∇XX is required so that we may call sequences con-
taining the subsequence α, α− axiomatic; that is this condition gives a branch
closing condition for the tableau. It is of interest to see if this approach gives us
tableaux style proofs for implications of functional or multivalued dependencies
or association rules in complemented Dedekind categories. It is also of interest to
investigate the possibility of a tableaux style of deduction appropriate for other
dependencies for complemented Dedekind categories. With such a development
deductions in complemented Dedekind categories can be automated in the same
way that relational deduction systems are automated (see [7]).

The second approach is to develop an axiom system of the style in [10, 11]
for association rules in Dedekind categories. This involves designing deduction
rules corresponding to the properties of semistrong relations and the properties
(As1), (As2) and (Equiv) in Theorem 1. We will leave this development for a
later time.
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