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Abstrat. We address the problem of �nding interesting substrutures
from a olletion of semi-strutured data suh as XML or HTML. Our
framework of data mining is optimized pattern disovery introdued by
Fukuda et al., where the goal of a mining algorithm is to disover a
pattern that optimizes a given statistial measure suh as the informa-
tion entropy over a lass of simple patterns. In this paper, modeling
semi-strutured data with labeled ordered trees, we study the eÆient
algorithm for the optimized pattern disovery problem for the lass. In
a previous paper, we developed the rightmost expansion tehnique and
the inremental ourrene update tehnique by generalizing enumera-
tion tehnique developed by Bayardo (SIGMOD'98) for disovering long
itemsets to implement an eÆient frequent pattern miner for the lass
of labeled ordered trees. By ombining these tehnique with the pruning
tehnique for optimized patterns of Morishita and Sese (PODS'00), we
present an eÆient algorithm for �nding optimized patterns for labeled
ordered trees of bounded size. Experimental results show that our algo-
rithm perform well on a variety of size of data and range of parameters.
We also show an approximation hardness result for labeled ordered trees
of unbounded size.

1 Introdution

Reent progress of network and storage tehnologies have made it easier for
an individual or an organization to ollet, exhange, and aumulate massive
amounts of eletroni data through inter/intranet in the form of text streams,
data sheets in PDF, HTML pages, and XML arhives [18℄. Suh semi-strutured

data [1℄ are heterogeneous olletions of weakly strutured data that have no rigid
strutures, and thus traditional information retrieval and data mining methods
do not work. Hene, there are potential demands for extrating unknown infor-
mation from these semi-strutured data [6, 11, 12, 16, 20℄.

Ordered Trees

In this paper, we study the problem of �nding interesting substruture from a
given olletion of semi-strutured data in HTML or XML format. In Fig. 1
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<people>

<person age="40">

<name>Alan </name>
<tel> 7786 </tel>
<tel> 2133 </tel>

</person>

<person height="155">

<name> <first>Sara </first>
<last>Green </last>

</name>

<tel> 6877 </tel>
</person>

<person age="33" height="187">

<name>Fred </name>
</person>

</people>

(a) An XML doument (b) The DOM tree for the left doument

Fig. 1. XML data expressions

(a), we show an XML data as an example of semi-strutured data, whih are
hierarhially strutured texts with a set of tags as markups. We model suh
semi-strutured data and the patterns for them both by labeled ordered trees as
shown in Fig. 1 (b), where eah node is labeled by symbols from an alphabet
and the hildren of eah node are ordered from left to right. We model XML
attributes and text values with the nodes and tags in these trees.

The lass of patterns we onsider is that of labeled ordered trees of bounded
size. Given labeled ordered trees alled a pattern tree and a data tree, the pattern
tree mathes the data tree if there is a one-to-one mapping from the nodes of
the pattern tree to the nodes of the data tree that preserves the diret anestor
relation, the possibly indiret sibling relation, and the labeling information.

Optimized pattern Disovery

We employed the optimized pattern disovery as our framework of semi-strutured
data mining, whih has its origin in the statistial deision theory in 1970's [7℄
and redisovered in data mining, mahine learning and omputational learning
theory in the middle of 1990's [8, 10, 13{15℄.

Let C be a lass of patterns to disover. Assume that we are given a olle-
tion S of douments and a binary labeling funtion � over douments in S that
indiates if a doument has a property of interest. A pattern H 2 C splits the
input olletion into the disjoint sets S1 and S0 of mathed douments and the
unmathed douments. To measure the goodness of the split (S1; S0), we use
a statistial measure G�(S1; S0) 2 [0; 1℄ suh as the lassi�ation error or the
information entropy. Then, the goal of optimized pattern disovery is to �nd an
optimized pattern H 2 C that minimizes the statistial measure G�(S1; S0) over
all patterns in the lass C.



Main Results

In a previous paper [3℄, we onsidered the frequent pattern disovery problem for
the lass of labeled ordered trees and presented an eÆient algorithm FREQT.
Previous algorithms for �nding tree-like patterns basially adopted a straight-
forward generate-and-test strategy [12, 19℄. In ontrast, our algorithm FREQT is
an inremental algorithm that simultaneously onstruts the set of frequent pat-
terns and their ourrenes level by level. For the purpose, we devise an eÆient
enumeration tehnique for ordered trees by generalizing the itemset enumeration
tree by Bayardo [4℄.

Based on the rightmost expansion and the inremental ourrene-update
tehniques of FREQT, in Setion 3 we present an eÆient mining algorithmOPTT

that solves the optimized pattern disovery problem for labeled ordered trees. We
also inorporate into OPTT a pruning tehnique with onvexity measure by Sese
and Morishita [14℄. In the ase that the maximum size of patterns is bounded
but the number of labels are slowly growing in the total size N of input, we
show that OPTT runs in O(kN) time for some onstant  > 0, and is more
eÆient than a straightforward algorithm with super linear time omplexity
in N if k = O(1). Furthermore, we show that in the ase that the maximum
pattern size k is unbounded, the optimized patterns are hard to disover in
ontrast. Experimental results in Setion 4 show that our algorithm sales well
and eÆiently �nds optimized labeled ordered trees from a real datasets. In
Setion 5, we onlude.

Related Works

There are many studies on information and data retrieval from semi-strutured
databases [1, 18℄. In ontrast, not many researhes have been done on semi-
strutured data mining [6, 11, 12, 19{21℄.

Wang and Liu [20℄ onsidered the problem of �nding frequent tree-like pat-
terns from a semi-strutured data, and presented an Apriori-style algorithm for
the problem. Sine in their framework a pattern is represented with a olletion
of paths, the branhing information of a tree is lost. Dehaspe et al. [6℄ presented
the eÆient algorithm for solving the frequent substruture disovery problem
for labeled graphs, and applied it to the problem of funtion predition of hem-
ial ompounds. Wang, Shapiro, Shasha et al. [19℄ devised the algorithm for
disovering approximately ommon subtree, and applied it to motif disovery in
genomis.

Matsuda and Motoda et al. [11℄ presented an eÆient algorithm, alled the
graph-based indution, for disovering interesting patterns in direted graphs.
Although they adopted a framework similar to the optimized pattern disovery,
their interests are in developing an eÆient heuristi searh algorithm rather
than exhaustive omputation of optimized patterns. Inokuhi et al. [9℄ presented
an Apriori-style algorithm for �nding frequent subgraphs.

Miyahara et al. [12℄ onsider disovery of labeled ordered trees in more gen-
eral framework alled tag-tree patterns, but their algorithm is a straightforward
generate-test algorithm.

Independently to our previous work, Zaki [21℄ very reently proposed eÆient
algorithms for the frequent pattern disovery problem for ordered trees, whih is
essentially same to our rightmost expansion. Also, he reported that a depth-�rst
searh algorithm equipped with his enumeration tehnique performs very well.



Fig. 2. A data tree D and a pattern tree T on the set L = fA;Bg of labels

2 Preliminaries

2.1 Labeled Ordered Trees

Let L = f`; `0; `1; : : :g be a �nite alphabet of labels, whih orrespond to tags in
XML and HTML. As a model of semi-strutured databases and patterns suh
as XML [18℄ and OEM model [1℄, we adopt the lass of labeled ordered trees
de�ned as follows.

A labeled ordered tree on L (an ordered tree, for short) of size k � 0 [2℄
is a 6-tuple T = (V;E;B;L; L; v0), where V = f1; : : : ; kg (n � 0), E � V 2 is
the parent-hild relation suh that (parent; hild) 2 E, B � V 2 the (possibly
indiret) sibling relation suh that (elder; younger) 2 B. L : V ! L is the
labeling funtion, and G = (V;E; v0) forms a tree with root v0. By onvention,
we assume that all nodes of T are numbered by the preorder traversal [2℄ of T .
Consequently, The root v0 is 1 and the rightmost leaf is k. In what follows, given
an ordered tree T = (V;E;B;L; L; v0), we refer to V;E;B; L,, respetively, as
VT ; ET ; BT and LT if it is lear from ontext.

Given labeled ordered trees T;D, alled the pattern tree and the data tree,
resp., a funtion ' : VT ! VD from nodes of T to nodes of D is a mathing

funtion of T into D if it satis�es the following onditions for any v; v1; v2 2 VT :

{ ' is a one-to-one mapping .
{ ' preserves the parent relation, i.e., (v1; v2) 2 ET i� ('(v1); '(v2)) 2 ED.
{ ' preserves the sibling relation, i.e., (v1; v2) 2 BT i� ('(v1); '(v2)) 2 BD.
{ ' preserves the labels, i.e., LT (v) = LD('(v)).

A pattern tree T mathes a data tree D (or T ours in D) if there exists
some mathing funtion ' of T into D. Then, we de�ne the root ourrene

of T in D w.r.t. ' to be the node Root(') = '(1) 2 VD of D that the
root of T maps, and the set of the root-ourrenes of T in D by O(T ) =
fRoot(') j ' is a mathing funtion of T into Dg:

For every k � 0, we denote by Tk the lass of labeled ordered trees of size
exatly k over L, and by T = [k�0Tk the whole lass. Let T k = [i�k Ti. We
assume that T0 ontains the empty tree ? of size zero and ? mathes to any
tree at any node.

Example 1. In Fig. 2, we show examples of labeled ordered trees, say D and
T , on the alphabet L = fA;Bg, where a irle with the number, say v, at its
upper right orner indiates the node v, and the symbol appearing in a irle
indiates its label L(v). We also see that the nodes of these trees are numbered
onseutively by the preorder. In this �gure, a mathing funtion, say '1, of the
pattern T with three nodes into the data tree D with ten nodes is indiated by



a set of arrows from the nodes of T . The root-ourrenes orresponding to '1
is Root(') = 7. Furthermore, there are two root-ourrenes of T in D, namely
2 and 7, while there are �ve mathing funtions of T into D.

The length of a path of T is de�ned by the number of its nodes. For every
p � 0 and a node v, the p-th parent of v, denoted by �pT (v), is the unique
anestor u of v suh that the length of the path from u to v has length exatly
p + 1. By de�nition, �0T (v) is v itself and �1T (v) is the parent of v. The depth

of a node v of T , denoted by depth(v), is de�ned by the length d of the path
x0 = v0; x1; : : : ; xd�1 = v from the root v0 of T to the node v.

In this paper, we deal with the full lass of XML data and Dom trees. Thus,
we transform a set of XML attribute-value pairs at a node into a set of two-node
trees ordered in the lexiographi order of their labels [3℄, and the text value of
a text node into a new hild node of the node labeled with the text value. Note
that this results that even for HTML/XML douments over �xed set of markup
tags, the number of distint labels may not be onstant.

2.2 Optimized Pattern Disovery

We introdue the optimized pattern disovery aording to [7, 13℄. Suppose that
we are given a set D = fD1; : : : ; Dmg of douments and an objetive ondition
� : S ! f0; 1g, where eah doument Di is a labeled tree in our problem. The
value �(Di) indiates if a doument Di is interesting.

For every � 2 f0; 1g, letN� =
P

Di2D
[ �(Di) = � ℄ andM� =

P
Di2D

[ �(Di) =
� ^ H mathes Di ℄. That is, N1 and N0 are the numbers of positive and neg-
ative douments, and M1 and M0 are the numbers of mathed and unmathed
positive douments. Then, a pattern T on a labeled sample (D; �) de�nes a
ontingeny table (M1;M0; N1; N0).

An impurity funtion is any real-valued funtion  : [0; 1℄! R suh that (i)
it takes the maximum value  ( 12 ) at 1=2, (ii) the minimum value  (0) =  (1) = 0
at 0 and 1, and (iii)  is onvex, i.e.,  ((x + y)=2 � ( (x) +  (y))=2 for every
x; y 2 [0; 1℄. The followings are examples of impurity funtions:

{ The predition error:  1(x) = min(x; 1� x) [7, 10℄.
{ The information entropy:  2(x) = �x logx� (1� x) log(1� x) [13℄.
{ The Gini index:  3(x) = 2x(1� x) [7℄.

Then, the objet funtion of our optimized pattern disovery based on  , for
every pattern T , D and �,

Obj S;�(H) = N1 �  (M1=N1) +N0 �  (M0=N0);

where (M1;M0; N1; N0) is a ontingeny table de�ned by the pattern H over
S and �. A pattern Ĥ is  -optimal within lass C (or optimal , for short if

Obj S;�(Ĥ) = minH2C Obj S;�(H).
Let C be the lass of andidate patterns and  be any impurity funtion.

Now, we state our data mining problem, alled the opitimal pattern disovery

problem for labeled ordered trees as follows.

 -OPTIMIZED PATTERN DISCOVERY PROBLEM(C)
Given: A set D = fD1; : : : ; Dmg of douments and an objetive ondition
� : D ! f0; 1g.



Algorithm OPTT
Input : A label alphabet L, an integer k � 0, a set D of labeled ordered trees over L and

an objetive ondition � : D ! f0; 1g, and an impurity funtion  : [0; 1℄ ! [0; 1℄.
Output : A  -optimal pattern T of size at most k within Tk on S and �.
Variable: A queue or stak BD � T of patterns, alled boundary set , and a priority

queue R � T �R of patterns with real weight.
1. BD := h?; RMO(?)i), where RMO(?) is the preorder traversal of D.
2. While BD 6= ;, do:

(a) hS;RMO(S)i := Pop(BD);
(b) Compute eval := Obj

 

D;�
(S;RMO(S));

Insert hS; evali into R with eval as the key;
() If Lookahead(S;RMO(S)) > Opt(R) then

{ Skip Step 2 (d) and go to the beginning of Step 2;
(d) For eah hT;RMO(T )i 2 Expand-A-Tree(S;RMO(S)), do:

{ Push(hT;RMO(T )i; BD);
3. Return an optimal pattern hP; evali := DeleteMin(R).

Fig. 3. An eÆient algorithm for disovering the optimal pattern of bounded size,
where searh strategy is either breadth-�rst or depth-�rst depending on the hoie of
the boundary set BD

Problem:Find an optimal patternH 2 C that minimizes the valueObj S;�(T )
over all patterns in C.

Partiularly, we onsider the optimal pattern disovery problem for the lass of
labeled ordered trees. From reent development in learning theory, it is known
that any algorithm that eÆiently solves the lassi�ation error minimization
problem an best approximate arbitrary unknown probability distributions pos-
sibly with lassi�ation noise within a given hypothesis spae [10℄.

3 Mining Algorithms

In this setion, we present eÆient algorithms for solving the optimal pattern
disovery problem for ordered trees. Our algorithm employs the following obser-
vations: (i) Based on the rightmost expansion tehnique of [3, 21℄, one an gen-
erate all labeled ordered trees without dupliates by attahing a new rightmost
leaf one by one; (ii) By taking the rightmost leaf of a pattern as the referene
point [3℄, one an ompatly represents the ourrene information of a pattern
by maintaining the list of all nodes where the rightmost leaf of the pattern maps.
This is enough to inrementally omputing the rightmost ourrenes through
the expansion proess of (i); (iii) Using the tehnique by Morishita and Sese [14℄

based on the onvexity of the statistial measure Obj S;�(�), one an eÆiently
prune unpromising branh in a searh proess.

In Fig. 3, we present our algorithms OPTT for disovering an optimal pattern
that minimizes a given statistial measure within the lass of labeled ordered
trees of bounded size k on a data tree D. The algorithm uses either a queue

(FIFO list) or a stak (FILO list) to implement the boundary set DB onsisting
of andidate patterns to be expanded. The searh strategy is the breadth-�rst

searh or levelwise searh if BD is a queue and the depth-�rst searh if BD is a
stak.

Let k � 0 be the maximum size of patterns, D be a set of data trees and
� be an objetive ondition on D. Starting from the empty pattern ? of size



(a) A searh graph for ordered trees (b) The (p; `)-expansion of tree S

Fig. 4. The rightmost expansion for ordered trees

zero, OPTT-B searhes the hypothesis spae T k of labeled ordered trees of size
at most k with growing andidate pattern trees by attahing a new node one by
one using the subproedure Expand-A-Tree. Whenever a new pattern tree T is
generated from its predeessor S, its ourrene list RMO(T ) in the data tree D
is inrementally omputed from RMO(S) of its predeessor S in Expand-A-Tree.
In the rest of this setion, we will desribe the details of the algorithms.

3.1 EÆient Enumeration of Ordered Trees

To implement the searh of optimal pattern eÆiently, the searh should enumer-
ate all pattern trees in the hypothesis spae T k without dupliates. A possible
way to do this is to design an ayli binary relation ! on T k, alled an ex-
pansion relation, and for eah andidate pattern P 2 BD, to ompute the set
of all immediate suessor of P w.r.t. !. If the obtained graph (T k;!), alled
an enumeration graph, forms a rooted tree, then this strategy ombined with
breadth-�rst or depth-�rst searh yields non-dupliate enumeration of T k. The
basi idea will be illustrated in Fig. 4(a).

To do this, we expand a given pattern S by attahing a new leaf, but with
the resrition that the new leaf should be attahed on the rightmost branh
and the rightmost hild. Let L be the label alphabet, S 2 T be any pattern
tree of size k � 1 � 0 and rml(S) = k � 1 be the rightmost leaf of S. For
every 0 � pdepth(rml(S)) and every label ` 2 L, the (p; `)-expansion of S is
the labeled ordered tree T obtained from S by attahing a new node, namely
k, to the node y = �S

p(x) with label ` as the rightmost hild of y. We de�ne
a rightmost expansion of pattern S or to be the (p; `)-expansion T of S for any
p � 0 and ` 2 L, and write S !r T .

By the following theorem, we an enumerate members of T without dupli-
ates using an appropriate tree traversal method.

Theorem 1 (Asai et al., [3℄). For every nonnegative integer k, the enumera-

tion graph (T k;!r) forms a tree with the root ?.

3.2 Updating Ourrene Lists

The seond key of our algorithm is how to eÆiently store the information of
a mathing ' of eah pattern T into the data tree D. Instead of reording
the full information h'(1); : : : ; '(k)i of ', our algorithm maintains only the
rightmost ourrenes Rmo(') = '(k) as the partial information on ', that
is, Rmo(') is the node of D that the rightmost leaf k of T maps. We de�ne



Algorithm Expand-A-Tree(S;RMO(S))
Set Su := ;; For eah pairs (p; `) 2 f0; : : : ; d� 1g �L, where d = depth(rml(S))
is the depth of the rightmost leaf of S, do the followings:
{ Compute the (p; `)-expansion T of S;
{ RMO(T ) := Update-RMO(RMO(S); p; `); /* See Fig. 6 */
{ Su := Su [ fT; RMO(T )g;

Return Su;

Fig. 5. The algorithm for omputing all suessors of a pattern

Algorithm Update-RMO(RMO;p; `)
1. Set RMOnew to be the empty list " and hek := null.
2. For eah element x 2 RMO, do:

(a) If p = 0, let y be the leftmost hild of x.
(b) Otherwise, p � 1. Then, do:

{ If hek = �D
p(x) then skip x and go to the beginning of Step 2

(Dupliate-Detetion).
{ Else, let y be the next sibling of �D

p�1(x) (the (p� 1)st parent of x in
D) and set hek := �D

p(x).
() While y 6= null, do the following:

{ If LD(y) �L `, then RMOnew := RMOnew � (y); /* Append */
{ y := next(y); /* the next sibling */

3. Return RMOnew.

Fig. 6. The inremental algorithm for updating the rightmost ourrene list of the
(p; `)-expansion of a given pattern T from that of T

RMO(T ) = fRmo(') j' is a mathing funtion of T into D g to be the set of
the rightmost ourrenes of T .

Example 2. In Fig. 2, the pattern tree T has three rightmost ourrenes 4; 6
and 10 in the data tree D. Then, the root-ourrenes 2 and 7 of T an be easily
omputed by taking the parents of 4; 6 and 10 in D.

Fig. 6 shows the algorithm Update-RMO that, given the (p; `)-expansion T of
a pattern S and the list of the rightmost ourrene RMO(S) of S, omputes the
list of the rightmost ourrenes RMO(T ) without dupliates. This algorithm is
base on the following observation: For every node y, y is in RMO(T ) i� there is
a node x in RMO(S) suh that y is the strit younger sibling of the (p� 1)-th
parent of x. Although a straightforward implementation of this idea still results
dupliations, the Dupliate-Detetion tehnique [3℄ ensures the uniqueness of
the rightmost ourrenes omputed by the algorithm (See [3℄, for detail).

Lemma 1 (Asai et al. [3℄). For a pattern S, the algorithm Update-RMO ex-

atly omputes all the elements in RMO(T ) from RMO(S) without dupliates,

where T is a rightmost expansion of S.

3.3 Pruning by Convexity

For the optimal pattern disovery, Morishita et al. [14℄ presented an eÆient
pruning tehnique as follows.

Let (D; �) be an input olletion. For every pattern T , the value of the obje-

tive funtion Obj S;�(T ) is determined by the ontingeny table (MT
1 ;M

T
0 ; N

T
1 ; N

T
0 )



de�ned by T on (D; �). If we �xed the instane (D; �), Obj S;�(T ) an be regarded

as a funtion of a point (MT
1 ;M

T
0 ) in 2-dimensional plane [0; 1℄2. Hene, we an

write Obj S;�(M
T
1 ;M

T
0 ) for Obj

 

S;�(T ). Then, we say that Obj S;�(T ) is onvex if

Obj S;�(�; �) is onvex in the usual sense on [0; 1℄2. We note that if a pattern tree

T is a diret or indiret suessor of S, i.e., S
+
! T , then the point (MT

0 ;M
T
1 ) for

T is interior of the point (MS
0 ;M

S
1 ) for S. Then, Morishita and Sese [14℄ showed

the following theorem.

Theorem 2 (Morishita and Sese [14℄). For pattern trees S; T , if S
+
! T and

the ontingeny table for T is (M1;M0; N1; N0) then

minfObj S;�(0;M0); Obj
 
S;�(M1; 0)g � Obj S;�(M1;M0): (1)

In the algorithm OPTT of Fig. 3, we used the pruning tehnique based on
the above theorem in Step 2 (), where the subproedure Lookahead omputes
the value of the left hand side of Eq. 1. From [13, 14℄, the objetive funtions
based on the following impurity funtions  have the onvexity: the lassi�ation
error, the information entropy, Gini index funtion, and Chi2 index funtion.

3.4 Theoretial Analysis: The Case of Bounded Pattern Size

Now, we give a ase analysis on the performane of our algorithm in the ase
that maximum pattern size is bounded by a onstant k � 0. Let b � 0 be the
branhing fator of input data trees. Suppose that we have a growing series
(Di)i2N of data trees. For every i, let Ni be the size of the data tree Di and
Li be the number of distint labels appearing in Di. Sine we enode attribute
names, attribute values, and the text ontents as the node labels, in pratie Li
is not a onstant and typially bounded by slowly growing funtion Li = f(Ni),
e.g., f(N) = N� for 0 < � < 1.

Now, we will estimate the time omplexity of a straightforward enumeration-
and-test algorithm. Let Zi be the number of distint labeled ordered trees of size

k and with at most Li labels. Sine Zi = 
(2k � Li
k
) for some  > 0, suh an

algorithm requires �(2kNk� �N) time, whih is not linear even when k = O(1).
In ontrast, the following theorem says that under the above assumptions,

the running time of the breadth-�rst/levelwise version of the OPTT algorithm
is linear in the total size N of D � T when k and b are onstants. The same
upperbound holds for the depth-�rst version, too. This method also gives a more
preise estimation of the running time of the algorithm FREQT in [3℄.

Theorem 3. Under the above assumptions, the running time of OPTT on the

input olletion D is bounded by O(kk+1bkN), where N is the total size of D.

Proof. We will estimate the upper bound of the sum Rk of the length the right-
most ourrenes of the patterns generated in the k-th stage. By an argument
in [3℄, it follows that the running time of OPTT is bounded above by the sum
Pk�1
l=0 lRl. For every 0 � p � k, if we de�ne Rk;p to be the sum of the rightmost

ourrenes of those trees in Tk generated in the k-th stage by (p; `)-expansion

for some ` then we have Rk =
Pk�1

p=0 Rk;p. Trivially, R0 = R0;0 � Ni. In-
dutively, we an show that Rk;p � bRk�1 for every 0 � p; q � k. Then, we

an show that Rk �
Pk�1
p=0 Rk;p � kbRk�1. Solving this reurrene, we have

Rk = O(kk�1bk�1Ni), and thus the result immediately follows. ut



3.5 Theoretial Analysis: The Case of Unbounded Pattern Size

The maximum agreement problem (MA, for short) is a dual problem of the
lassi�ation error minimization problem and de�ned as follows: Given a pair
(D; �), �nd a pattern T that maximizes the agreement of T , i.e., the ratio of
douments in S that is orretly lassi�ed by T .

Reently, Ben-David et al. [5℄ showed that for any " > 0, there is no polyno-
mial time (770=767� ")-approximation algorithm for the maximum agreement
problem for Boolean onjuntions if P 6= NP . When we an use arbitrary many
labels, we an easily show the following theorem by using the approximation
fator preserving redution [17℄. The proof is easy, but it indiates that the re-
strition of bounded pattern size is really neessary for eÆient optimized pattern
disovery. (The proof is attahed in the appendix.)

Theorem 4. For any " > 0, there exists no polynomial time (770=767 � ")-
approximation algorithm for the maximum agreement problem for labeled ordered

trees of unbounded size on an unbounded label alphabet if P 6= NP . This is true

even when either the maximum depth of trees is at most three or the maximum

branhing of trees is at most two.

4 Experimental Results

We have experimented with the algorithms on the following two data sets. The
data sets are Citeseers (5.6MB) and Imdb, where HTML/XML attributes and
text values are enoded by the tags and nodes in a labeled ordered tree. The
data set Citeseers is a olletion of CGI generated HTML pages olleted from
an online bibliographi arhive Citeseers3, whose data tree has 196,247 nodes
and 7,125 unique tags. The data set Imdb is a olletion of XML data generated
with a hand-oded Perl sript from the HTML pages olleted from an online
movie database, alled the Internet Movie Database (IMDb) 4.

In the experiments, the tree mining algorithms we tested are the follow-
ings: The breadth-�rst/levelwise searh version (OPTT+BF) and the depth-�rst
searh version (OPTT+DF) of the optimized tree miner OPTT of this paper
(Fig. 3); The frequent tree miner FREQT of [3℄ with breadth-�rst/levelwise searh
(OPTT+DF). We also implemented pruning with onvexity (denoted by C). All
algorithms were implemented in Java (SUN JDK1.3.1 JIT) using a DOM li-
brary (OpenXML). Experiments were run on PC (Pentium III 600MHz) with
512 megabytes of main memory running Linux 2.2.14 or Windows 2000.

Salability and Running Time

Fig. 7 shows the running time against the size of the data tree when the max-
imum size of the pattern trees is �xed to k = 5. The data set is Citeseers, and
the size of the input olletion ranges from 5(pages)/316(KB)/22847(nodes) to
180(pages)/5.61(MB)/402740(nodes). Then, the running time seems to linearly
sale on this data set for �xed k. It �ts to the theoretial bound in Setion 3.4.

Fig. 8 shows the running time with varying the maximum pattern tree size
k from 1 to 11. The data set is a fragment of Imdb, and the size of the in-
put olletion is �xed to 18(douments)/39.4(KB)/5835(nodes) ontaining 759
unique labels. Sine the y-axis is log-saled, the almost linear plot on�rms the

3 http://iteseer.nj.ne.om/
4 http://www.imdb.om/
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Table 1. Comparison of tree mining algorithms in running time and spae.

Algorithm OPTT+DF OPTT+DF+C OPTT+BF OPTT+BF+C FREQT(0.1%)+BF

Time 29.7 (se) 21.5 (se) 20.2 (se) 20.0 (se) 10.4 (se)

Spae 8.0 (MB) 8.0 (MB) 96.4 (MB) 96.4 (MB) 20.7 (MB)

theoretial analysis of Setion 3.5; when the data size is �xed, the running time
is exponential in the maximum pattern size k.

Searh Strategies and Pruning Tehniques

Table. 1 shows the running time of versions of optimized tree miners OPTT+DF,
OPTT+DF+C, OPTT+BF, OPTT+BF+C, and a frequent tree miner FREQTon
the same data set to that of Fig. 8. This experiment shows that on this small data
set, the di�erene in the running time between the depth-�rst searh (denoted by
DF) and the breadth-�rst searh (denoted by BF) in Setion 3.1 is not signi�ant,
while DF saves the main memory size more than ten times than BF. From this,
the depth-�rst searh strategy is an attrative hoie in situations that only
a limited amount of main memory is available. Also, the use of pruning with
onvexity (denoted by C) in Setion 3.3 is e�etive in the depth-�rst searh;
OPTT+DF+C is 1.5 times faster than OPTT+DF.

5 Conlusion

In this paper, we studied the optimized pattern disovery problem for the lass
of labeled ordered trees by modeling semi-strutured data as labeled ordered
trees. We presented an eÆient mining algorithm that �nds the labeled ordered
trees that optimize a given statistial objetive funtion on a binary labeled
olletion of labeled ordered trees. Experimental results on�rmed that the pro-
posed algorithm is salable for mining trees of bounded size. We also ompared
the breadth-�rst and the depth-�rst searh strategies and the use of pruning
tehnique with onvexity.
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A Appendix: Proof of Theorem 4

Note: This is not a part of the submitted paper.

Theorem 4 For any " > 0, there exists no polynomial time (770=767 � ")-
approximation algorithm for the maximum agreement problem for labeled or-
dered trees of unbounded size on an unbounded label alphabet if P 6= NP . This
is true even when either the maximum depth of trees is at most three or the
maximum branhing of trees is at most two.

Proof. Ben-David, Eiron, and Long [5℄ showed that for any " > 0, there exists
no polynomial time (770=767 � ")-approximation algorithm for the maximum
agreement problem for Boolean onjuntions if P 6= NP . Thus, we give an
approximation fator preserving redution (f; g) (See, e.g., [17℄ for de�nition)
from the optimized pattern disovery problem (MA, for short) for the lass
of Boolean onjuntions to MA for labeled ordered trees as follows. We use
term notation to represent labeled trees. Let fx1; : : : ; xng be the set of Boolean
variables and I1 = (S; �) be an instane of MA for onjuntions. Let L = fCg [
f 1i;0i j i = 1; : : : ; n g. Then, mapping f transforms I1 into the instane I2 =
(S0; �0) suh that (i) for eah a = (a1; : : : ; an) 2 S, f(a) = C(�1(a1); : : : ; �n(an)),
S0 = f(S), and �0(f(a)) = �(a), where �i(1) = 1i and �i(0) = 0i. Conversely,
the mapping g transforms any solution S0 2 Sol2(f(I1)) into some solution
S = g(S) 2 Sol1(I1) de�ned as follows. For every labeled tree T over L, g(T ) =
L1 ^ � ^ Ln is the onjuntion de�ned as follows: For every i = 1; : : : ; n, Li

is xi if T ontains 1i, xi if T ontains 0i, and > otherwise. Let I1 = (S; �)
and I2 = f(I1) = (f(S); f(�)). Then, we an show that for every assignment
a 2 f0; 1gn and every tree T , g(T )(a) = 1 i� T mathes f(a). Thus, it follows
that 8T:9F = g(T ) [ErrS;�(F ) = Errf(S);f(�)(T )℄.

Conversely, we an transform any onjuntion F = L1 ^ � ^ Ln into a tree
h(F ) = C(T1; : : : ; Tn), where Ti is 1i if Li is positive, 0i if Li is negative,
and the empty tree if Li = >. Then, we have 8F:9T = h(F ) [ErrS;�(F ) =
Errf(S);f(�)(T )℄.

Combining above arguments, we have 8I1:9I2 = f(I1) [OPT (I1) � OPT (I2)℄
and 8T 2 Sol(I2):9F = g(T ) 2 Sol(I1) [Obj(I1; F ) � Obj(I2; T )℄. Therefore,
(f; g) is an approximation fator preserving redution from MA for onjuntion
to MA for labeled ordered trees. Thus, it immediately follows from the result of
Ben-David, Eiron, and Long [5℄ that for any " > 0, there is no polynomial time
(770=767�")-approximation algorithm for the maximum agreement problem for
labeled ordered trees if P 6= NP . This proves the theorem. ut


