
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Optimized Substructure Discovery for Semi-
structured Data

Abe, Kenji
Department of Informatics, Kyushu University

Kawasoe, Shinji
Department of Informatics, Kyushu University

Asai, Tatsuya
Department of Informatics, Kyushu University

Arimura, Hiroki
PRESTO, JST | Department of Informatics, Kyushu University

他

https://hdl.handle.net/2324/3050

出版情報：DOI Technical Report. 206, 2002-03. Department of Informatics, Kyushu University
バージョン：
権利関係：

Optimized Substru
ture Dis
overy for

Semi-stru
tured Data

Kenji Abe1, Shinji Kawasoe1 Tatsuya Asai1, Hiroki Arimura1;2, and Setsuo
Arikawa1

1 Department of Informati
s, Kyushu University
6{10{1 Hakozaki Higashi-ku, Fukuoka 812{8581, JAPAN

fk-abe,s-kawa,t-asai,arim,arikawag�i.kyushu-u.a
.jp
2 PRESTO, JST, JAPAN

Abstra
t. We address the problem of �nding interesting substru
tures
from a
olle
tion of semi-stru
tured data su
h as XML or HTML. Our
framework of data mining is optimized pattern dis
overy introdu
ed by
Fukuda et al., where the goal of a mining algorithm is to dis
over a
pattern that optimizes a given statisti
al measure su
h as the informa-
tion entropy over a
lass of simple patterns. In this paper, modeling
semi-stru
tured data with labeled ordered trees, we study the eÆ
ient
algorithm for the optimized pattern dis
overy problem for the
lass. In
a previous paper, we developed the rightmost expansion te
hnique and
the in
remental o

urren
e update te
hnique by generalizing enumera-
tion te
hnique developed by Bayardo (SIGMOD'98) for dis
overing long
itemsets to implement an eÆ
ient frequent pattern miner for the
lass
of labeled ordered trees. By
ombining these te
hnique with the pruning
te
hnique for optimized patterns of Morishita and Sese (PODS'00), we
present an eÆ
ient algorithm for �nding optimized patterns for labeled
ordered trees of bounded size. Experimental results show that our algo-
rithm perform well on a variety of size of data and range of parameters.
We also show an approximation hardness result for labeled ordered trees
of unbounded size.

1 Introdu
tion

Re
ent progress of network and storage te
hnologies have made it easier for
an individual or an organization to
olle
t, ex
hange, and a

umulate massive
amounts of ele
troni
 data through inter/intranet in the form of text streams,
data sheets in PDF, HTML pages, and XML ar
hives [18℄. Su
h semi-stru
tured

data [1℄ are heterogeneous
olle
tions of weakly stru
tured data that have no rigid
stru
tures, and thus traditional information retrieval and data mining methods
do not work. Hen
e, there are potential demands for extra
ting unknown infor-
mation from these semi-stru
tured data [6, 11, 12, 16, 20℄.

Ordered Trees

In this paper, we study the problem of �nding interesting substru
ture from a
given
olle
tion of semi-stru
tured data in HTML or XML format. In Fig. 1

DOI-TR 206, Department of Informatics, Kyushu Univeristy
ftp://ftp.i.kyushu-u.ac.jp/pub/tr/trcs206.ps.gz
March 2002 (Submitting)

<people>

<person age="40">

<name>Alan </name>
<tel> 7786 </tel>
<tel> 2133 </tel>

</person>

<person height="155">

<name> <first>Sara </first>
<last>Green </last>

</name>

<tel> 6877 </tel>
</person>

<person age="33" height="187">

<name>Fred </name>
</person>

</people>

(a) An XML do
ument (b) The DOM tree for the left do
ument

Fig. 1. XML data expressions

(a), we show an XML data as an example of semi-stru
tured data, whi
h are
hierar
hi
ally stru
tured texts with a set of tags as markups. We model su
h
semi-stru
tured data and the patterns for them both by labeled ordered trees as
shown in Fig. 1 (b), where ea
h node is labeled by symbols from an alphabet
and the
hildren of ea
h node are ordered from left to right. We model XML
attributes and text values with the nodes and tags in these trees.

The
lass of patterns we
onsider is that of labeled ordered trees of bounded
size. Given labeled ordered trees
alled a pattern tree and a data tree, the pattern
tree mat
hes the data tree if there is a one-to-one mapping from the nodes of
the pattern tree to the nodes of the data tree that preserves the dire
t an
estor
relation, the possibly indire
t sibling relation, and the labeling information.

Optimized pattern Dis
overy

We employed the optimized pattern dis
overy as our framework of semi-stru
tured
data mining, whi
h has its origin in the statisti
al de
ision theory in 1970's [7℄
and redis
overed in data mining, ma
hine learning and
omputational learning
theory in the middle of 1990's [8, 10, 13{15℄.

Let C be a
lass of patterns to dis
over. Assume that we are given a
olle
-
tion S of do
uments and a binary labeling fun
tion � over do
uments in S that
indi
ates if a do
ument has a property of interest. A pattern H 2 C splits the
input
olle
tion into the disjoint sets S1 and S0 of mat
hed do
uments and the
unmat
hed do
uments. To measure the goodness of the split (S1; S0), we use
a statisti
al measure G�(S1; S0) 2 [0; 1℄ su
h as the
lassi�
ation error or the
information entropy. Then, the goal of optimized pattern dis
overy is to �nd an
optimized pattern H 2 C that minimizes the statisti
al measure G�(S1; S0) over
all patterns in the
lass C.

Main Results

In a previous paper [3℄, we
onsidered the frequent pattern dis
overy problem for
the
lass of labeled ordered trees and presented an eÆ
ient algorithm FREQT.
Previous algorithms for �nding tree-like patterns basi
ally adopted a straight-
forward generate-and-test strategy [12, 19℄. In
ontrast, our algorithm FREQT is
an in
remental algorithm that simultaneously
onstru
ts the set of frequent pat-
terns and their o

urren
es level by level. For the purpose, we devise an eÆ
ient
enumeration te
hnique for ordered trees by generalizing the itemset enumeration
tree by Bayardo [4℄.

Based on the rightmost expansion and the in
remental o

urren
e-update
te
hniques of FREQT, in Se
tion 3 we present an eÆ
ient mining algorithmOPTT

that solves the optimized pattern dis
overy problem for labeled ordered trees. We
also in
orporate into OPTT a pruning te
hnique with
onvexity measure by Sese
and Morishita [14℄. In the
ase that the maximum size of patterns is bounded
but the number of labels are slowly growing in the total size N of input, we
show that OPTT runs in O(
kN) time for some
onstant
 > 0, and is more
eÆ
ient than a straightforward algorithm with super linear time
omplexity
in N if k = O(1). Furthermore, we show that in the
ase that the maximum
pattern size k is unbounded, the optimized patterns are hard to dis
over in

ontrast. Experimental results in Se
tion 4 show that our algorithm s
ales well
and eÆ
iently �nds optimized labeled ordered trees from a real datasets. In
Se
tion 5, we
on
lude.

Related Works

There are many studies on information and data retrieval from semi-stru
tured
databases [1, 18℄. In
ontrast, not many resear
hes have been done on semi-
stru
tured data mining [6, 11, 12, 19{21℄.

Wang and Liu [20℄
onsidered the problem of �nding frequent tree-like pat-
terns from a semi-stru
tured data, and presented an Apriori-style algorithm for
the problem. Sin
e in their framework a pattern is represented with a
olle
tion
of paths, the bran
hing information of a tree is lost. Dehaspe et al. [6℄ presented
the eÆ
ient algorithm for solving the frequent substru
ture dis
overy problem
for labeled graphs, and applied it to the problem of fun
tion predi
tion of
hem-
i
al
ompounds. Wang, Shapiro, Shasha et al. [19℄ devised the algorithm for
dis
overing approximately
ommon subtree, and applied it to motif dis
overy in
genomi
s.

Matsuda and Motoda et al. [11℄ presented an eÆ
ient algorithm,
alled the
graph-based indu
tion, for dis
overing interesting patterns in dire
ted graphs.
Although they adopted a framework similar to the optimized pattern dis
overy,
their interests are in developing an eÆ
ient heuristi
 sear
h algorithm rather
than exhaustive
omputation of optimized patterns. Inoku
hi et al. [9℄ presented
an Apriori-style algorithm for �nding frequent subgraphs.

Miyahara et al. [12℄
onsider dis
overy of labeled ordered trees in more gen-
eral framework
alled tag-tree patterns, but their algorithm is a straightforward
generate-test algorithm.

Independently to our previous work, Zaki [21℄ very re
ently proposed eÆ
ient
algorithms for the frequent pattern dis
overy problem for ordered trees, whi
h is
essentially same to our rightmost expansion. Also, he reported that a depth-�rst
sear
h algorithm equipped with his enumeration te
hnique performs very well.

Fig. 2. A data tree D and a pattern tree T on the set L = fA;Bg of labels

2 Preliminaries

2.1 Labeled Ordered Trees

Let L = f`; `0; `1; : : :g be a �nite alphabet of labels, whi
h
orrespond to tags in
XML and HTML. As a model of semi-stru
tured databases and patterns su
h
as XML [18℄ and OEM model [1℄, we adopt the
lass of labeled ordered trees
de�ned as follows.

A labeled ordered tree on L (an ordered tree, for short) of size k � 0 [2℄
is a 6-tuple T = (V;E;B;L; L; v0), where V = f1; : : : ; kg (n � 0), E � V 2 is
the parent-
hild relation su
h that (parent;
hild) 2 E, B � V 2 the (possibly
indire
t) sibling relation su
h that (elder; younger) 2 B. L : V ! L is the
labeling fun
tion, and G = (V;E; v0) forms a tree with root v0. By
onvention,
we assume that all nodes of T are numbered by the preorder traversal [2℄ of T .
Consequently, The root v0 is 1 and the rightmost leaf is k. In what follows, given
an ordered tree T = (V;E;B;L; L; v0), we refer to V;E;B; L,, respe
tively, as
VT ; ET ; BT and LT if it is
lear from
ontext.

Given labeled ordered trees T;D,
alled the pattern tree and the data tree,
resp., a fun
tion ' : VT ! VD from nodes of T to nodes of D is a mat
hing

fun
tion of T into D if it satis�es the following
onditions for any v; v1; v2 2 VT :

{ ' is a one-to-one mapping .
{ ' preserves the parent relation, i.e., (v1; v2) 2 ET i� ('(v1); '(v2)) 2 ED.
{ ' preserves the sibling relation, i.e., (v1; v2) 2 BT i� ('(v1); '(v2)) 2 BD.
{ ' preserves the labels, i.e., LT (v) = LD('(v)).

A pattern tree T mat
hes a data tree D (or T o

urs in D) if there exists
some mat
hing fun
tion ' of T into D. Then, we de�ne the root o

urren
e

of T in D w.r.t. ' to be the node Root(') = '(1) 2 VD of D that the
root of T maps, and the set of the root-o

urren
es of T in D by O

(T) =
fRoot(') j ' is a mat
hing fun
tion of T into Dg:

For every k � 0, we denote by Tk the
lass of labeled ordered trees of size
exa
tly k over L, and by T = [k�0Tk the whole
lass. Let T k = [i�k Ti. We
assume that T0
ontains the empty tree ? of size zero and ? mat
hes to any
tree at any node.

Example 1. In Fig. 2, we show examples of labeled ordered trees, say D and
T , on the alphabet L = fA;Bg, where a
ir
le with the number, say v, at its
upper right
orner indi
ates the node v, and the symbol appearing in a
ir
le
indi
ates its label L(v). We also see that the nodes of these trees are numbered

onse
utively by the preorder. In this �gure, a mat
hing fun
tion, say '1, of the
pattern T with three nodes into the data tree D with ten nodes is indi
ated by

a set of arrows from the nodes of T . The root-o

urren
es
orresponding to '1
is Root(') = 7. Furthermore, there are two root-o

urren
es of T in D, namely
2 and 7, while there are �ve mat
hing fun
tions of T into D.

The length of a path of T is de�ned by the number of its nodes. For every
p � 0 and a node v, the p-th parent of v, denoted by �pT (v), is the unique
an
estor u of v su
h that the length of the path from u to v has length exa
tly
p + 1. By de�nition, �0T (v) is v itself and �1T (v) is the parent of v. The depth

of a node v of T , denoted by depth(v), is de�ned by the length d of the path
x0 = v0; x1; : : : ; xd�1 = v from the root v0 of T to the node v.

In this paper, we deal with the full
lass of XML data and Dom trees. Thus,
we transform a set of XML attribute-value pairs at a node into a set of two-node
trees ordered in the lexi
ographi
 order of their labels [3℄, and the text value of
a text node into a new
hild node of the node labeled with the text value. Note
that this results that even for HTML/XML do
uments over �xed set of markup
tags, the number of distin
t labels may not be
onstant.

2.2 Optimized Pattern Dis
overy

We introdu
e the optimized pattern dis
overy a

ording to [7, 13℄. Suppose that
we are given a set D = fD1; : : : ; Dmg of do
uments and an obje
tive
ondition
� : S ! f0; 1g, where ea
h do
ument Di is a labeled tree in our problem. The
value �(Di) indi
ates if a do
ument Di is interesting.

For every � 2 f0; 1g, letN� =
P

Di2D
[�(Di) = � ℄ andM� =

P
Di2D

[�(Di) =
� ^ H mat
hes Di ℄. That is, N1 and N0 are the numbers of positive and neg-
ative do
uments, and M1 and M0 are the numbers of mat
hed and unmat
hed
positive do
uments. Then, a pattern T on a labeled sample (D; �) de�nes a

ontingen
y table (M1;M0; N1; N0).

An impurity fun
tion is any real-valued fun
tion : [0; 1℄! R su
h that (i)
it takes the maximum value (12) at 1=2, (ii) the minimum value (0) = (1) = 0
at 0 and 1, and (iii) is
onvex, i.e., ((x + y)=2 � ((x) + (y))=2 for every
x; y 2 [0; 1℄. The followings are examples of impurity fun
tions:

{ The predi
tion error: 1(x) = min(x; 1� x) [7, 10℄.
{ The information entropy: 2(x) = �x logx� (1� x) log(1� x) [13℄.
{ The Gini index: 3(x) = 2x(1� x) [7℄.

Then, the obje
t fun
tion of our optimized pattern dis
overy based on , for
every pattern T , D and �,

Obj S;�(H) = N1 � (M1=N1) +N0 � (M0=N0);

where (M1;M0; N1; N0) is a
ontingen
y table de�ned by the pattern H over
S and �. A pattern Ĥ is -optimal within
lass C (or optimal , for short if

Obj S;�(Ĥ) = minH2C Obj S;�(H).
Let C be the
lass of
andidate patterns and be any impurity fun
tion.

Now, we state our data mining problem,
alled the opitimal pattern dis
overy

problem for labeled ordered trees as follows.

 -OPTIMIZED PATTERN DISCOVERY PROBLEM(C)
Given: A set D = fD1; : : : ; Dmg of do
uments and an obje
tive
ondition
� : D ! f0; 1g.

Algorithm OPTT
Input : A label alphabet L, an integer k � 0, a set D of labeled ordered trees over L and

an obje
tive
ondition � : D ! f0; 1g, and an impurity fun
tion : [0; 1℄ ! [0; 1℄.
Output : A -optimal pattern T of size at most k within Tk on S and �.
Variable: A queue or sta
k BD � T of patterns,
alled boundary set , and a priority

queue R � T �R of patterns with real weight.
1. BD := h?; RMO(?)i), where RMO(?) is the preorder traversal of D.
2. While BD 6= ;, do:

(a) hS;RMO(S)i := Pop(BD);
(b) Compute eval := Obj

D;�
(S;RMO(S));

Insert hS; evali into R with eval as the key;
(
) If Lookahead(S;RMO(S)) > Opt(R) then

{ Skip Step 2 (d) and go to the beginning of Step 2;
(d) For ea
h hT;RMO(T)i 2 Expand-A-Tree(S;RMO(S)), do:

{ Push(hT;RMO(T)i; BD);
3. Return an optimal pattern hP; evali := DeleteMin(R).

Fig. 3. An eÆ
ient algorithm for dis
overing the optimal pattern of bounded size,
where sear
h strategy is either breadth-�rst or depth-�rst depending on the
hoi
e of
the boundary set BD

Problem:Find an optimal patternH 2 C that minimizes the valueObj S;�(T)
over all patterns in C.

Parti
ularly, we
onsider the optimal pattern dis
overy problem for the
lass of
labeled ordered trees. From re
ent development in learning theory, it is known
that any algorithm that eÆ
iently solves the
lassi�
ation error minimization
problem
an best approximate arbitrary unknown probability distributions pos-
sibly with
lassi�
ation noise within a given hypothesis spa
e [10℄.

3 Mining Algorithms

In this se
tion, we present eÆ
ient algorithms for solving the optimal pattern
dis
overy problem for ordered trees. Our algorithm employs the following obser-
vations: (i) Based on the rightmost expansion te
hnique of [3, 21℄, one
an gen-
erate all labeled ordered trees without dupli
ates by atta
hing a new rightmost
leaf one by one; (ii) By taking the rightmost leaf of a pattern as the referen
e
point [3℄, one
an
ompa
tly represents the o

urren
e information of a pattern
by maintaining the list of all nodes where the rightmost leaf of the pattern maps.
This is enough to in
rementally
omputing the rightmost o

urren
es through
the expansion pro
ess of (i); (iii) Using the te
hnique by Morishita and Sese [14℄

based on the
onvexity of the statisti
al measure Obj S;�(�), one
an eÆ
iently
prune unpromising bran
h in a sear
h pro
ess.

In Fig. 3, we present our algorithms OPTT for dis
overing an optimal pattern
that minimizes a given statisti
al measure within the
lass of labeled ordered
trees of bounded size k on a data tree D. The algorithm uses either a queue

(FIFO list) or a sta
k (FILO list) to implement the boundary set DB
onsisting
of
andidate patterns to be expanded. The sear
h strategy is the breadth-�rst

sear
h or levelwise sear
h if BD is a queue and the depth-�rst sear
h if BD is a
sta
k.

Let k � 0 be the maximum size of patterns, D be a set of data trees and
� be an obje
tive
ondition on D. Starting from the empty pattern ? of size

(a) A sear
h graph for ordered trees (b) The (p; `)-expansion of tree S

Fig. 4. The rightmost expansion for ordered trees

zero, OPTT-B sear
hes the hypothesis spa
e T k of labeled ordered trees of size
at most k with growing
andidate pattern trees by atta
hing a new node one by
one using the subpro
edure Expand-A-Tree. Whenever a new pattern tree T is
generated from its prede
essor S, its o

urren
e list RMO(T) in the data tree D
is in
rementally
omputed from RMO(S) of its prede
essor S in Expand-A-Tree.
In the rest of this se
tion, we will des
ribe the details of the algorithms.

3.1 EÆ
ient Enumeration of Ordered Trees

To implement the sear
h of optimal pattern eÆ
iently, the sear
h should enumer-
ate all pattern trees in the hypothesis spa
e T k without dupli
ates. A possible
way to do this is to design an a
y
li
 binary relation ! on T k,
alled an ex-
pansion relation, and for ea
h
andidate pattern P 2 BD, to
ompute the set
of all immediate su

essor of P w.r.t. !. If the obtained graph (T k;!),
alled
an enumeration graph, forms a rooted tree, then this strategy
ombined with
breadth-�rst or depth-�rst sear
h yields non-dupli
ate enumeration of T k. The
basi
 idea will be illustrated in Fig. 4(a).

To do this, we expand a given pattern S by atta
hing a new leaf, but with
the resri
tion that the new leaf should be atta
hed on the rightmost bran
h
and the rightmost
hild. Let L be the label alphabet, S 2 T be any pattern
tree of size k � 1 � 0 and rml(S) = k � 1 be the rightmost leaf of S. For
every 0 � pdepth(rml(S)) and every label ` 2 L, the (p; `)-expansion of S is
the labeled ordered tree T obtained from S by atta
hing a new node, namely
k, to the node y = �S

p(x) with label ` as the rightmost
hild of y. We de�ne
a rightmost expansion of pattern S or to be the (p; `)-expansion T of S for any
p � 0 and ` 2 L, and write S !r T .

By the following theorem, we
an enumerate members of T without dupli-

ates using an appropriate tree traversal method.

Theorem 1 (Asai et al., [3℄). For every nonnegative integer k, the enumera-

tion graph (T k;!r) forms a tree with the root ?.

3.2 Updating O

urren
e Lists

The se
ond key of our algorithm is how to eÆ
iently store the information of
a mat
hing ' of ea
h pattern T into the data tree D. Instead of re
ording
the full information h'(1); : : : ; '(k)i of ', our algorithm maintains only the
rightmost o

urren
es Rmo(') = '(k) as the partial information on ', that
is, Rmo(') is the node of D that the rightmost leaf k of T maps. We de�ne

Algorithm Expand-A-Tree(S;RMO(S))
Set Su

 := ;; For ea
h pairs (p; `) 2 f0; : : : ; d� 1g �L, where d = depth(rml(S))
is the depth of the rightmost leaf of S, do the followings:
{ Compute the (p; `)-expansion T of S;
{ RMO(T) := Update-RMO(RMO(S); p; `); /* See Fig. 6 */
{ Su

 := Su

 [fT; RMO(T)g;

Return Su

;

Fig. 5. The algorithm for
omputing all su

essors of a pattern

Algorithm Update-RMO(RMO;p; `)
1. Set RMOnew to be the empty list " and
he
k := null.
2. For ea
h element x 2 RMO, do:

(a) If p = 0, let y be the leftmost
hild of x.
(b) Otherwise, p � 1. Then, do:

{ If
he
k = �D
p(x) then skip x and go to the beginning of Step 2

(Dupli
ate-Dete
tion).
{ Else, let y be the next sibling of �D

p�1(x) (the (p� 1)st parent of x in
D) and set
he
k := �D

p(x).
(
) While y 6= null, do the following:

{ If LD(y) �L `, then RMOnew := RMOnew � (y); /* Append */
{ y := next(y); /* the next sibling */

3. Return RMOnew.

Fig. 6. The in
remental algorithm for updating the rightmost o

urren
e list of the
(p; `)-expansion of a given pattern T from that of T

RMO(T) = fRmo(') j' is a mat
hing fun
tion of T into D g to be the set of
the rightmost o

urren
es of T .

Example 2. In Fig. 2, the pattern tree T has three rightmost o

urren
es 4; 6
and 10 in the data tree D. Then, the root-o

urren
es 2 and 7 of T
an be easily

omputed by taking the parents of 4; 6 and 10 in D.

Fig. 6 shows the algorithm Update-RMO that, given the (p; `)-expansion T of
a pattern S and the list of the rightmost o

urren
e RMO(S) of S,
omputes the
list of the rightmost o

urren
es RMO(T) without dupli
ates. This algorithm is
base on the following observation: For every node y, y is in RMO(T) i� there is
a node x in RMO(S) su
h that y is the stri
t younger sibling of the (p� 1)-th
parent of x. Although a straightforward implementation of this idea still results
dupli
ations, the Dupli
ate-Dete
tion te
hnique [3℄ ensures the uniqueness of
the rightmost o

urren
es
omputed by the algorithm (See [3℄, for detail).

Lemma 1 (Asai et al. [3℄). For a pattern S, the algorithm Update-RMO ex-

a
tly
omputes all the elements in RMO(T) from RMO(S) without dupli
ates,

where T is a rightmost expansion of S.

3.3 Pruning by Convexity

For the optimal pattern dis
overy, Morishita et al. [14℄ presented an eÆ
ient
pruning te
hnique as follows.

Let (D; �) be an input
olle
tion. For every pattern T , the value of the obje
-

tive fun
tion Obj S;�(T) is determined by the
ontingen
y table (MT
1 ;M

T
0 ; N

T
1 ; N

T
0)

de�ned by T on (D; �). If we �xed the instan
e (D; �), Obj S;�(T)
an be regarded

as a fun
tion of a point (MT
1 ;M

T
0) in 2-dimensional plane [0; 1℄2. Hen
e, we
an

write Obj S;�(M
T
1 ;M

T
0) for Obj

S;�(T). Then, we say that Obj S;�(T) is
onvex if

Obj S;�(�; �) is
onvex in the usual sense on [0; 1℄2. We note that if a pattern tree

T is a dire
t or indire
t su

essor of S, i.e., S
+
! T , then the point (MT

0 ;M
T
1) for

T is interior of the point (MS
0 ;M

S
1) for S. Then, Morishita and Sese [14℄ showed

the following theorem.

Theorem 2 (Morishita and Sese [14℄). For pattern trees S; T , if S
+
! T and

the
ontingen
y table for T is (M1;M0; N1; N0) then

minfObj S;�(0;M0); Obj

S;�(M1; 0)g � Obj S;�(M1;M0): (1)

In the algorithm OPTT of Fig. 3, we used the pruning te
hnique based on
the above theorem in Step 2 (
), where the subpro
edure Lookahead
omputes
the value of the left hand side of Eq. 1. From [13, 14℄, the obje
tive fun
tions
based on the following impurity fun
tions have the
onvexity: the
lassi�
ation
error, the information entropy, Gini index fun
tion, and Chi2 index fun
tion.

3.4 Theoreti
al Analysis: The Case of Bounded Pattern Size

Now, we give a
ase analysis on the performan
e of our algorithm in the
ase
that maximum pattern size is bounded by a
onstant k � 0. Let b � 0 be the
bran
hing fa
tor of input data trees. Suppose that we have a growing series
(Di)i2N of data trees. For every i, let Ni be the size of the data tree Di and
Li be the number of distin
t labels appearing in Di. Sin
e we en
ode attribute
names, attribute values, and the text
ontents as the node labels, in pra
ti
e Li
is not a
onstant and typi
ally bounded by slowly growing fun
tion Li = f(Ni),
e.g., f(N) = N� for 0 < � < 1.

Now, we will estimate the time
omplexity of a straightforward enumeration-
and-test algorithm. Let Zi be the number of distin
t labeled ordered trees of size

k and with at most Li labels. Sin
e Zi =
(2
k � Li
k
) for some
 > 0, su
h an

algorithm requires �(2
kNk� �N) time, whi
h is not linear even when k = O(1).
In
ontrast, the following theorem says that under the above assumptions,

the running time of the breadth-�rst/levelwise version of the OPTT algorithm
is linear in the total size N of D � T when k and b are
onstants. The same
upperbound holds for the depth-�rst version, too. This method also gives a more
pre
ise estimation of the running time of the algorithm FREQT in [3℄.

Theorem 3. Under the above assumptions, the running time of OPTT on the

input
olle
tion D is bounded by O(kk+1bkN), where N is the total size of D.

Proof. We will estimate the upper bound of the sum Rk of the length the right-
most o

urren
es of the patterns generated in the k-th stage. By an argument
in [3℄, it follows that the running time of OPTT is bounded above by the sum
Pk�1
l=0 lRl. For every 0 � p � k, if we de�ne Rk;p to be the sum of the rightmost

o

urren
es of those trees in Tk generated in the k-th stage by (p; `)-expansion

for some ` then we have Rk =
Pk�1

p=0 Rk;p. Trivially, R0 = R0;0 � Ni. In-
du
tively, we
an show that Rk;p � bRk�1 for every 0 � p; q � k. Then, we

an show that Rk �
Pk�1
p=0 Rk;p � kbRk�1. Solving this re
urren
e, we have

Rk = O(kk�1bk�1Ni), and thus the result immediately follows. ut

3.5 Theoreti
al Analysis: The Case of Unbounded Pattern Size

The maximum agreement problem (MA, for short) is a dual problem of the

lassi�
ation error minimization problem and de�ned as follows: Given a pair
(D; �), �nd a pattern T that maximizes the agreement of T , i.e., the ratio of
do
uments in S that is
orre
tly
lassi�ed by T .

Re
ently, Ben-David et al. [5℄ showed that for any " > 0, there is no polyno-
mial time (770=767� ")-approximation algorithm for the maximum agreement
problem for Boolean
onjun
tions if P 6= NP . When we
an use arbitrary many
labels, we
an easily show the following theorem by using the approximation
fa
tor preserving redu
tion [17℄. The proof is easy, but it indi
ates that the re-
stri
tion of bounded pattern size is really ne
essary for eÆ
ient optimized pattern
dis
overy. (The proof is atta
hed in the appendix.)

Theorem 4. For any " > 0, there exists no polynomial time (770=767 � ")-
approximation algorithm for the maximum agreement problem for labeled ordered

trees of unbounded size on an unbounded label alphabet if P 6= NP . This is true

even when either the maximum depth of trees is at most three or the maximum

bran
hing of trees is at most two.

4 Experimental Results

We have experimented with the algorithms on the following two data sets. The
data sets are Citeseers (5.6MB) and Imdb, where HTML/XML attributes and
text values are en
oded by the tags and nodes in a labeled ordered tree. The
data set Citeseers is a
olle
tion of CGI generated HTML pages
olle
ted from
an online bibliographi
 ar
hive Citeseers3, whose data tree has 196,247 nodes
and 7,125 unique tags. The data set Imdb is a
olle
tion of XML data generated
with a hand-
oded Perl s
ript from the HTML pages
olle
ted from an online
movie database,
alled the Internet Movie Database (IMDb) 4.

In the experiments, the tree mining algorithms we tested are the follow-
ings: The breadth-�rst/levelwise sear
h version (OPTT+BF) and the depth-�rst
sear
h version (OPTT+DF) of the optimized tree miner OPTT of this paper
(Fig. 3); The frequent tree miner FREQT of [3℄ with breadth-�rst/levelwise sear
h
(OPTT+DF). We also implemented pruning with
onvexity (denoted by C). All
algorithms were implemented in Java (SUN JDK1.3.1 JIT) using a DOM li-
brary (OpenXML). Experiments were run on PC (Pentium III 600MHz) with
512 megabytes of main memory running Linux 2.2.14 or Windows 2000.

S
alability and Running Time

Fig. 7 shows the running time against the size of the data tree when the max-
imum size of the pattern trees is �xed to k = 5. The data set is Citeseers, and
the size of the input
olle
tion ranges from 5(pages)/316(KB)/22847(nodes) to
180(pages)/5.61(MB)/402740(nodes). Then, the running time seems to linearly
s
ale on this data set for �xed k. It �ts to the theoreti
al bound in Se
tion 3.4.

Fig. 8 shows the running time with varying the maximum pattern tree size
k from 1 to 11. The data set is a fragment of Imdb, and the size of the in-
put
olle
tion is �xed to 18(do
uments)/39.4(KB)/5835(nodes)
ontaining 759
unique labels. Sin
e the y-axis is log-s
aled, the almost linear plot
on�rms the

3 http://
iteseer.nj.ne
.
om/
4 http://www.imdb.
om/

0

200

400

600

800

1000

1200

0 100000 200000 300000 400000 500000

Total Tree Size

R
un

ti
m

e(
se

c)

Fig. 7. The s
alability: The running
time with varying the input data size.

0.01

0.1

1

10

100

1000

10000

0 4 8 12

Maximum of Pattern Size

R
un

ti
m

e(
se

c)

Fig. 8. The running time with varying
the maximum pattern size.

Table 1. Comparison of tree mining algorithms in running time and spa
e.

Algorithm OPTT+DF OPTT+DF+C OPTT+BF OPTT+BF+C FREQT(0.1%)+BF

Time 29.7 (se
) 21.5 (se
) 20.2 (se
) 20.0 (se
) 10.4 (se
)

Spa
e 8.0 (MB) 8.0 (MB) 96.4 (MB) 96.4 (MB) 20.7 (MB)

theoreti
al analysis of Se
tion 3.5; when the data size is �xed, the running time
is exponential in the maximum pattern size k.

Sear
h Strategies and Pruning Te
hniques

Table. 1 shows the running time of versions of optimized tree miners OPTT+DF,
OPTT+DF+C, OPTT+BF, OPTT+BF+C, and a frequent tree miner FREQTon
the same data set to that of Fig. 8. This experiment shows that on this small data
set, the di�eren
e in the running time between the depth-�rst sear
h (denoted by
DF) and the breadth-�rst sear
h (denoted by BF) in Se
tion 3.1 is not signi�
ant,
while DF saves the main memory size more than ten times than BF. From this,
the depth-�rst sear
h strategy is an attra
tive
hoi
e in situations that only
a limited amount of main memory is available. Also, the use of pruning with

onvexity (denoted by C) in Se
tion 3.3 is e�e
tive in the depth-�rst sear
h;
OPTT+DF+C is 1.5 times faster than OPTT+DF.

5 Con
lusion

In this paper, we studied the optimized pattern dis
overy problem for the
lass
of labeled ordered trees by modeling semi-stru
tured data as labeled ordered
trees. We presented an eÆ
ient mining algorithm that �nds the labeled ordered
trees that optimize a given statisti
al obje
tive fun
tion on a binary labeled

olle
tion of labeled ordered trees. Experimental results
on�rmed that the pro-
posed algorithm is s
alable for mining trees of bounded size. We also
ompared
the breadth-�rst and the depth-�rst sear
h strategies and the use of pruning
te
hnique with
onvexity.

A
knowledgments

The authors would like to thank Thomas Zeugmann, John Case, Akihiro Ya-
mamoto, Masayuki Takeda, Ayumi Shinohara, and Shini
hi Shimozono, Daisuke
Ikeda and Akira Ishino for fruitful dis
ussion on this issue. The fourth author also

would like to thank Shini
hi Morishita, Masaru Kitsuregawa, Takeshi Tokuyama,
and Yoshito Toyama for their valuable
omments and dis
ussions.

Referen
es

1. S. Abiteboul, P. Buneman, and D. Su
iu. Data on the Web. Morgan Kaufmann,
2000.

2. A. V. Aho, J. E. Hop
roft, and J. D. Ullman. Data Stru
tures and Algorithms.
Addison-Wesley, 1983.

3. T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Sakamoto, and S. Arikawa. EÆ
ient
substru
ture dis
overy from large semi-stru
tured data. In Pro
. the 2nd SIAM
Int'l Conf. on Data Mining (SDM2002), 2002 (To appear).

4. R. J. Bayardo Jr. EÆ
iently mining long patterns from databases. In Pro
. SIG-
MOD98, 85{93, 1998.

5. S. Ben-David, N. Eiron, and P. M. Long, On the diÆ
ulty of Approximately
Maximizing Agreements, In Pro
. COLT 2000, 266{274, 2000.

6. L. Dehaspe, H. Toivonen, and R. D. King. Finding frequent substru
tures in

hemi
al
ompounds. In Pro
. KDD-98, 30{36, 1998.

7. L. Devroye, L. Gyor�, G. Lugosi, A Probablisti
 Theory of Pattern Re
ognition,
Springer-Verlag,1996.

8. T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Data mining using
two-dimensional optimized asso
iation rules. In Pro
. SIGMOD'96, 13{23, 1996.

9. A. Inoku
hi, T. Washio and H. Motoda An Apriori-Based Algorithm for Mining
Frequent Substru
tures from Graph Data, Pro
. PKDD 2000, 13{23, 2000.

10. M. J. Kearns, R. E. Shapire, L. M. Sellie, Toward eÆ
ient agnosti
 learning.
Ma
hine Learning, 17(2{3), 115{141, 1994.

11. T. Matsuda, T. Horiu
hi, H. Motoda, T. Washio, K. Kumazawa, and N. Arai.
Graph-based indu
tion for general graph stru
tured data. In Pro
. DS'99, 340{
342, 1999.

12. T. Miyahara, T. Shoudai, T. U
hida, K. Takahashi, and H. Ueda. Dis
overy of fre-
quent tree stru
tured patterns in semistru
tured web do
uments. In Pro
. PAKDD-
2001, 47{52, 2001.

13. S. Morishita, On
lassi�
ation and regression, In Pro
. Dis
overy S
ien
e '98 ,
LNAI 1532, 49{59, 1998.

14. S. Morishita and J. Sese, Traversing Itemset Latti
es with Statisti
al Metri
 Prun-
ing, In Pro
. PODS'00 , 226{236, 2000.

15. R. Rastogi, K. Shim, Mining Optimized Asso
iation Rules with Categori
al and
Numeri
 Attributes, Pro
. ICDE'98, 503{512, 1998.

16. K. Tanigu
hi, H. Sakamoto, H. Arimura, S. Shimozono, and S. Arikawa. Mining
semi-stru
tured data by path expressions. In Pro
. DS2001, 387{388, 2001.

17. V. V. Vazirani, Approximation Algorithms, Springer, Berlin, 1998.
18. W3C Re
ommendation. Extensibe Markup Language (XML) 1.0, se
ond edition,

06 O
tober 2000. http://www.w3.org/TR/REC-xml.
19. J. T. L. Wang, B. A. Shapiro, D. Shasha, K. Zhang, and C.-Y. Chang. Automated

dis
overy of a
tive motifs in multiple rna se
onary stru
tures. In Pro
. KDD-96,
70{75, 1996.

20. K. Wang and H. Q. Liu. Dis
overing stru
tual asso
iation of semistru
tured data.
IEEE Trans. Knowledge and Data Engineering (TKDE2000), 12(3):353{371, 2000.

21. M. J. Zaki. EÆ
iently mining frequent trees in a forest. Computer S
ien
e De-
partment, Rensselaer Ployte
hni
 Institute, PRI-TR01-7-2001, 2001.
http://www.
s.rpi.edu/~zaki/PS/TR01-7.ps.gz

A Appendix: Proof of Theorem 4

Note: This is not a part of the submitted paper.

Theorem 4 For any " > 0, there exists no polynomial time (770=767 � ")-
approximation algorithm for the maximum agreement problem for labeled or-
dered trees of unbounded size on an unbounded label alphabet if P 6= NP . This
is true even when either the maximum depth of trees is at most three or the
maximum bran
hing of trees is at most two.

Proof. Ben-David, Eiron, and Long [5℄ showed that for any " > 0, there exists
no polynomial time (770=767 � ")-approximation algorithm for the maximum
agreement problem for Boolean
onjun
tions if P 6= NP . Thus, we give an
approximation fa
tor preserving redu
tion (f; g) (See, e.g., [17℄ for de�nition)
from the optimized pattern dis
overy problem (MA, for short) for the
lass
of Boolean
onjun
tions to MA for labeled ordered trees as follows. We use
term notation to represent labeled trees. Let fx1; : : : ; xng be the set of Boolean
variables and I1 = (S; �) be an instan
e of MA for
onjun
tions. Let L = fCg [
f 1i;0i j i = 1; : : : ; n g. Then, mapping f transforms I1 into the instan
e I2 =
(S0; �0) su
h that (i) for ea
h a = (a1; : : : ; an) 2 S, f(a) = C(�1(a1); : : : ; �n(an)),
S0 = f(S), and �0(f(a)) = �(a), where �i(1) = 1i and �i(0) = 0i. Conversely,
the mapping g transforms any solution S0 2 Sol2(f(I1)) into some solution
S = g(S) 2 Sol1(I1) de�ned as follows. For every labeled tree T over L, g(T) =
L1 ^ � ^ Ln is the
onjun
tion de�ned as follows: For every i = 1; : : : ; n, Li

is xi if T
ontains 1i, xi if T
ontains 0i, and > otherwise. Let I1 = (S; �)
and I2 = f(I1) = (f(S); f(�)). Then, we
an show that for every assignment
a 2 f0; 1gn and every tree T , g(T)(a) = 1 i� T mat
hes f(a). Thus, it follows
that 8T:9F = g(T) [ErrS;�(F) = Errf(S);f(�)(T)℄.

Conversely, we
an transform any
onjun
tion F = L1 ^ � ^ Ln into a tree
h(F) = C(T1; : : : ; Tn), where Ti is 1i if Li is positive, 0i if Li is negative,
and the empty tree if Li = >. Then, we have 8F:9T = h(F) [ErrS;�(F) =
Errf(S);f(�)(T)℄.

Combining above arguments, we have 8I1:9I2 = f(I1) [OPT (I1) � OPT (I2)℄
and 8T 2 Sol(I2):9F = g(T) 2 Sol(I1) [Obj(I1; F) � Obj(I2; T)℄. Therefore,
(f; g) is an approximation fa
tor preserving redu
tion from MA for
onjun
tion
to MA for labeled ordered trees. Thus, it immediately follows from the result of
Ben-David, Eiron, and Long [5℄ that for any " > 0, there is no polynomial time
(770=767�")-approximation algorithm for the maximum agreement problem for
labeled ordered trees if P 6= NP . This proves the theorem. ut

