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Recent progress of network and storage technologies have made it easier for
an individual or an organization to collect, exchange, and accumulate massive
amounts of electronic data through inter/intranet in the form of text streams,
data sheets in PDF, HTML pages, and XML archives [18]. Such semi-structured
data [1] are heterogeneous collections of weakly structured data that have no rigid
structures, and thus traditional information retrieval and data mining methods
do not work. Hence, there are potential demands for extracting unknown infor-
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Abstract. We address the problem of finding interesting substructures
from a collection of semi-structured data such as XML or HTML. Our
framework of data mining is optimized pattern discovery introduced by
Fukuda et al., where the goal of a mining algorithm is to discover a
pattern that optimizes a given statistical measure such as the informa-
tion entropy over a class of simple patterns. In this paper, modeling
semi-structured data with labeled ordered trees, we study the efficient
algorithm for the optimized pattern discovery problem for the class. In
a previous paper, we developed the rightmost expansion technique and
the incremental occurrence update technique by generalizing enumera-
tion technique developed by Bayardo (SIGMOD’98) for discovering long
itemsets to implement an efficient frequent pattern miner for the class
of labeled ordered trees. By combining these technique with the pruning
technique for optimized patterns of Morishita and Sese (PODS’00), we
present an efficient algorithm for finding optimized patterns for labeled
ordered trees of bounded size. Experimental results show that our algo-
rithm perform well on a variety of size of data and range of parameters.
We also show an approximation hardness result for labeled ordered trees
of unbounded size.

Introduction

mation from these semi-structured data [6,11, 12,16, 20].

Ordered Trees

In this paper, we study the problem of finding interesting substructure from a
given collection of semi-structured data in HTML or XML format. In Fig. 1
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(a) An XML document (b) The DOM tree for the left document

Fig. 1. XML data expressions

(a), we show an XML data as an example of semi-structured data, which are
hierarchically structured texts with a set of tags as markups. We model such
semi-structured data and the patterns for them both by labeled ordered trees as
shown in Fig. 1 (b), where each node is labeled by symbols from an alphabet
and the children of each node are ordered from left to right. We model XML
attributes and text values with the nodes and tags in these trees.

The class of patterns we consider is that of labeled ordered trees of bounded
size. Given labeled ordered trees called a pattern tree and a data tree, the pattern
tree matches the data tree if there is a one-to-one mapping from the nodes of
the pattern tree to the nodes of the data tree that preserves the direct ancestor
relation, the possibly indirect sibling relation, and the labeling information.

Optimized pattern Discovery

We employed the optimized pattern discovery as our framework of semi-structured
data mining, which has its origin in the statistical decision theory in 1970’s [7]
and rediscovered in data mining, machine learning and computational learning
theory in the middle of 1990’s [8, 10, 13-15].

Let C be a class of patterns to discover. Assume that we are given a collec-
tion S of documents and a binary labeling function & over documents in S that
indicates if a document has a property of interest. A pattern H € C splits the
input collection into the disjoint sets S; and Sy of matched documents and the
unmatched documents. To measure the goodness of the split (S1,Sy), we use
a statistical measure G¢(S1,So) € [0,1] such as the classification error or the
information entropy. Then, the goal of optimized pattern discovery is to find an
optimized pattern H € C that minimizes the statistical measure G¢(S1, Sp) over
all patterns in the class C.



Main Results

In a previous paper [3], we considered the frequent pattern discovery problem for
the class of labeled ordered trees and presented an efficient algorithm FREQT.
Previous algorithms for finding tree-like patterns basically adopted a straight-
forward generate-and-test strategy [12,19]. In contrast, our algorithm FREQT is
an incremental algorithm that simultaneously constructs the set of frequent pat-
terns and their occurrences level by level. For the purpose, we devise an efficient
enumeration technique for ordered trees by generalizing the itemset enumeration
tree by Bayardo [4].

Based on the rightmost expansion and the incremental occurrence-update
techniques of FREQT, in Section 3 we present an efficient mining algorithm OPTT
that solves the optimized pattern discovery problem for labeled ordered trees. We
also incorporate into OPTT a pruning technique with convexity measure by Sese
and Morishita [14]. In the case that the maximum size of patterns is bounded
but the number of labels are slowly growing in the total size N of input, we
show that OPTT runs in O(c*N) time for some constant ¢ > 0, and is more
efficient than a straightforward algorithm with super linear time complexity
in N if kK = O(1). Furthermore, we show that in the case that the maximum
pattern size k is unbounded, the optimized patterns are hard to discover in
contrast. Experimental results in Section 4 show that our algorithm scales well
and efficiently finds optimized labeled ordered trees from a real datasets. In
Section 5, we conclude.

Related Works

There are many studies on information and data retrieval from semi-structured
databases [1,18]. In contrast, not many researches have been done on semi-
structured data mining [6,11,12,19 21].

Wang and Liu [20] considered the problem of finding frequent tree-like pat-
terns from a semi-structured data, and presented an Apriori-style algorithm for
the problem. Since in their framework a pattern is represented with a collection
of paths, the branching information of a tree is lost. Dehaspe et al. [6] presented
the efficient algorithm for solving the frequent substructure discovery problem
for labeled graphs, and applied it to the problem of function prediction of chem-
ical compounds. Wang, Shapiro, Shasha et al. [19] devised the algorithm for
discovering approximately common subtree, and applied it to motif discovery in
genomics.

Matsuda and Motoda et al. [11] presented an efficient algorithm, called the
graph-based induction, for discovering interesting patterns in directed graphs.
Although they adopted a framework similar to the optimized pattern discovery,
their interests are in developing an efficient heuristic search algorithm rather
than exhaustive computation of optimized patterns. Inokuchi et al. [9] presented
an Apriori-style algorithm for finding frequent subgraphs.

Miyahara et al. [12] consider discovery of labeled ordered trees in more gen-
eral framework called tag-tree patterns, but their algorithm is a straightforward
generate-test algorithm.

Independently to our previous work, Zaki [21] very recently proposed efficient
algorithms for the frequent pattern discovery problem for ordered trees, which is
essentially same to our rightmost expansion. Also, he reported that a depth-first
search algorithm equipped with his enumeration technique performs very well.



Fig. 2. A data tree D and a pattern tree T on the set £L = {A, B} of labels

2 Preliminaries

2.1 Labeled Ordered Trees

Let £ = {f,£o,¢1,...} be a finite alphabet of labels, which correspond to tags in
XML and HTML. As a model of semi-structured databases and patterns such
as XML [18] and OEM model [1], we adopt the class of labeled ordered trees
defined as follows.

A labeled ordered tree on L (an ordered tree, for short) of size k > 0 [2]
is a 6-tuple T = (V,E, B, L, L,vy), where V.= {1,....k} (n > 0), E C V% is
the parent-child relation such that (parent,child) € E, B C V? the (possibly
indirect) sibling relation such that (elder,younger) € B. L : V — L is the
labeling function, and G = (V, E, vg) forms a tree with root vg. By convention,
we assume that all nodes of T' are numbered by the preorder traversal [2] of T'.
Consequently, The root vg is 1 and the rightmost leaf is k. In what follows, given
an ordered tree T' = (V, E, B, L, L,vg), we refer to V, E, B, L,, respectively, as
Vr, Er, Br and L if it is clear from context.

Given labeled ordered trees T, D, called the pattern tree and the data tree,
resp., a function ¢ : Vr — Vp from nodes of T' to nodes of D is a matching
function of T into D if it satisfies the following conditions for any v, vy, ve € Vp:

— ( is a one-to-one mapping .

—  preserves the parent relation, i.e., (vi,v2) € Er iff (o(v1),p(v2)) € Ep.
—  preserves the sibling relation, i.e., (v1,v2) € By iff (¢p(v1), ¢p(v2)) € Bp.
— ( preserves the labels, i.e., Ly(v) = Lp(p(v)).

A pattern tree T' matches a data tree D (or T occurs in D) if there exists
some matching function ¢ of T into D. Then, we define the root occurrence
of T in D w.r.t. ¢ to be the node Root(¢) = (1) € Vp of D that the
root of T maps, and the set of the root-occurrences of T in D by Oce(T) =
{Root(p) | ¢ is a matching function of T into D}.

For every k > 0, we denote by T the class of labeled ordered trees of size
exactly k over £, and by 7 = Ur>07: the whole class. Let Tk = Ui<k Ti. We
assume that 7y contains the empty tree L of size zero and | matches to any
tree at any node.

Ezample 1. In Fig. 2, we show examples of labeled ordered trees, say D and
T, on the alphabet £ = {A, B}, where a circle with the number, say v, at its
upper right corner indicates the node v, and the symbol appearing in a circle
indicates its label L(v). We also see that the nodes of these trees are numbered
consecutively by the preorder. In this figure, a matching function, say 1, of the
pattern T with three nodes into the data tree D with ten nodes is indicated by



a set of arrows from the nodes of T. The root-occurrences corresponding to ¢
is Root(p) = 7. Furthermore, there are two root-occurrences of T' in D, namely
2 and 7, while there are five matching functions of T" into D.

The length of a path of T is defined by the number of its nodes. For every
p > 0 and a node v, the p-th parent of v, denoted by 7% (v), is the unique
ancestor u of v such that the length of the path from w to v has length exactly
p + 1. By definition, 7%(v) is v itself and 74 (v) is the parent of v. The depth
of a node v of T, denoted by depth(v), is defined by the length d of the path
To = Vg, T1,...,Tq_1 = v from the root vg of T to the node v.

In this paper, we deal with the full class of XML data and Dom trees. Thus,
we transform a set of XML attribute-value pairs at a node into a set of two-node
trees ordered in the lexicographic order of their labels [3], and the text value of
a text node into a new child node of the node labeled with the text value. Note
that this results that even for HTML/XML documents over fixed set of markup
tags, the number of distinct labels may not be constant.

2.2 Optimized Pattern Discovery

We introduce the optimized pattern discovery according to [7, 13]. Suppose that
we are given a set D = {D1,..., D} of documents and an objective condition
&: S — {0,1}, where each document D; is a labeled tree in our problem. The
value £(D;) indicates if a document D; is interesting.

Forevery a € {0,1},let No = > p [£(Di) = a]and My = Y p. cp [€(Di)
a A H matches D;]. That is, N; and Ny are the numbers of positive and neg-
ative documents, and M; and M, are the numbers of matched and unmatched
positive documents. Then, a pattern T on a labeled sample (D,¢) defines a
contingency table (M, My, N1, Np).

An impurity function is any real-valued function ¢ : [0, 1] — R such that (i)
it takes the maximum value (1) at 1/2, (i) the minimum value ¢(0) = (1) =0
at 0 and 1, and (iii) ¢ is convex, i.e., ¥((z +y)/2 > (¢Y(z) + ¥(y))/2 for every
z,y € [0,1]. The followings are examples of impurity functions:

— The prediction error: ¢ (z) = min(z,1 — z) [7,10].
— The information entropy: 2 (z) = —zlogz — (1 — z) log(1 — ) [13].
— The Gini index: ¢3(x) = 22(1 — =) [7].

Then, the object function of our optimized pattern discovery based on 1, for
every pattern 7', D and ¢,

Obj§ ((H) = Ny - 4b(M /N1) + No - (Mo /No),

where (M, Mgy, N1, Ny) is a contingency table defined by the pattern H over
S and £. A pattern H is -optimal within class C (or optimal, for short if
Objé (H) = mingec Objl (H).

Let C be the class of candidate patterns and @ be any impurity function.
Now, we state our data mining problem, called the opitimal pattern discovery
problem for labeled ordered trees as follows.

»-OPTIMIZED PATTERN DISCOVERY PROBLEM((C)
Given: A set D = {Dy,...,D,,} of documents and an objective condition
¢:D - {0,1}.




Algorithm OPTT
Input: A label alphabet £, an integer k > 0, a set D of labeled ordered trees over £ and
an objective condition £ : D — {0, 1}, and an impurity function ¢ : [0, 1] — [0, 1].
Output: A -optimal pattern T of size at most k within 7, on S and £.
Variable: A queue or stack BD C T of patterns, called boundary set, and a priority
queue R C T x R of patterns with real weight.
1. BD :=(L,RMO(Ll))), where RMO(L) is the preorder traversal of D.
2. While BD # 0, do:
(a) (S,RMO(S)) := Pop(BD);
(b) Compute eval := Obj;/)),g(s, RMO(S));
Insert (S, eval) into R with eval as the key;
(¢) If Lookahead(S, RMO(S)) > Opt(R) then
— Skip Step 2 (d) and go to the beginning of Step 2;
(d) For each (T, RMO(T)) € Expand-A-Tree(S, RMO(S)), do:
— Push((T, RMO(T)), BD);
3. Return an optimal pattern (P, eval) := Delete Min(R).

Fig.3. An efficient algorithm for discovering the optimal pattern of bounded size,
where search strategy is either breadth-first or depth-first depending on the choice of
the boundary set BD

Problem: Find an optimal pattern H € C that minimizes the value Objfé”E (T)
over all patterns in C.

Particularly, we consider the optimal pattern discovery problem for the class of
labeled ordered trees. From recent, development in learning theory, it is known
that any algorithm that efficiently solves the classification error minimization
problem can best approximate arbitrary unknown probability distributions pos-
sibly with classification noise within a given hypothesis space [10].

3 Mining Algorithms

In this section, we present efficient algorithms for solving the optimal pattern
discovery problem for ordered trees. Our algorithm employs the following obser-
vations: (i) Based on the rightmost expansion technique of [3,21], one can gen-
erate all labeled ordered trees without duplicates by attaching a new rightmost
leaf one by one; (ii) By taking the rightmost leaf of a pattern as the reference
point [3], one can compactly represents the occurrence information of a pattern
by maintaining the list of all nodes where the rightmost leaf of the pattern maps.
This is enough to incrementally computing the rightmost occurrences through
the expansion process of (i); (iii) Using the technique by Morishita and Sese [14]
based on the convexity of the statistical measure Objgbﬁg(-), one can efficiently
prune unpromising branch in a search process.

In Fig. 3, we present our algorithms OPTT for discovering an optimal pattern
that minimizes a given statistical measure within the class of labeled ordered
trees of bounded size k on a data tree D. The algorithm uses either a queue
(FIFO list) or a stack (FILO list) to implement the boundary set DB consisting
of candidate patterns to be expanded. The search strategy is the breadth-first
search or levelwise search if BD is a queue and the depth-first search if BD is a
stack.

Let & > 0 be the maximum size of patterns, D be a set of data trees and
¢ be an objective condition on D. Starting from the empty pattern L of size
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Fig. 4. The rightmost expansion for ordered trees

zero, OPTT-B searches the hypothesis space T* of labeled ordered trees of size
at most k£ with growing candidate pattern trees by attaching a new node one by
one using the subprocedure Expand-A-Tree. Whenever a new pattern tree T is
generated from its predecessor S, its occurrence list RM O(T) in the data tree D
is incrementally computed from RM O(S) of its predecessor S in Expand-A-Tree.
In the rest of this section, we will describe the details of the algorithms.

3.1 Efficient Enumeration of Ordered Trees

To implement the search of optimal pattern efficiently, the search should enumer-
ate all pattern trees in the hypothesis space 7 without duplicates. A possible
way to do this is to design an acyclic binary relation — on 7*, called an ex-
pansion relation, and for each candidate pattern P € BD, to compute the set
of all immediate successor of P w.r.t. —. If the obtained graph (7%, —), called
an enumeration graph, forms a rooted tree, then this strategy combined with
breadth-first or depth-first search yields non-duplicate enumeration of 7*. The
basic idea will be illustrated in Fig. 4(a).

To do this, we expand a given pattern S by attaching a new leaf, but with
the resriction that the new leaf should be attached on the rightmost branch
and the rightmost child. Let £ be the label alphabet, S € T be any pattern
tree of size k — 1 > 0 and rml(S) = k — 1 be the rightmost leaf of S. For
every 0 < pdepth(rml(S)) and every label ¢ € L, the (p,£)-expansion of S is
the labeled ordered tree T obtained from S by attaching a new node, namely
k, to the node y = wgP(x) with label ¢ as the rightmost child of y. We define
a rightmost expansion of pattern S or to be the (p, £)-expansion T of S for any
p>0and f € L, and write S —, T.

By the following theorem, we can enumerate members of 7 without dupli-
cates using an appropriate tree traversal method.

Theorem 1 (Asai et al., [3]). For every nonnegative integer k, the enumera-
tion graph (T*,—.) forms a tree with the root L.

3.2 Updating Occurrence Lists

The second key of our algorithm is how to efficiently store the information of
a matching ¢ of each pattern T into the data tree D. Instead of recording
the full information (p(1),...,9(k)) of ¢, our algorithm maintains only the
rightmost occurrences Rmo(p) = (k) as the partial information on ¢, that
is, Rmo(yp) is the node of D that the rightmost leaf & of T maps. We define



Algorithm Expand-A-Tree(S, RMO(S))
Set Succ := 0; For each pairs (p,£) € {0,...,d— 1} x L, where d = depth(rml(S))
is the depth of the rightmost leaf of S, do the followings:
— Compute the (p, £)-expansion T of S;
RMO(T) := Update-RMO(RMO(S), p, £); /* See Fig. 6 */
— Succ := Succ U{T, RMO(T)};
Return Swucc;

Fig. 5. The algorithm for computing all successors of a pattern

Algorithm Update-RMO(RMO, p, ¢)
1. Set RMOpew to be the empty list £ and check := null.
2. For each element x € RMO, do:
(a) If p=0, let y be the leftmost child of z.
(b) Otherwise, p > 1. Then, do:
If check = wpP(z) then skip z and go to the beginning of Step 2
(Duplicate-Detection).
Else, let 3 be the next sibling of 7p? !(z) (the (p — 1)st parent of z in
D) and set check := mp®(z).
(¢) While y # null, do the following:
If Lp(y) < £, then RMOpnew := RM Oqew - (y); /* Append */
y := next(y); /* the next sibling */
3. Return RMOnew.

Fig. 6. The incremental algorithm for updating the rightmost occurrence list of the
(p, £)-expansion of a given pattern T from that of T

RMO(T) = {Rmo(p) | ¢ is a matching function of T into D } to be the set of
the rightmost occurrences of T'.

Ezample 2. In Fig. 2, the pattern tree T has three rightmost occurrences 4, 6
and 10 in the data tree D. Then, the root-occurrences 2 and 7 of T' can be easily
computed by taking the parents of 4,6 and 10 in D.

Fig. 6 shows the algorithm Update-RMO that, given the (p, £)-expansion T of
a pattern S and the list of the rightmost occurrence RM O(S) of S, computes the
list of the rightmost occurrences RM O(T') without duplicates. This algorithm is
base on the following observation: For every node y, y is in RM O(T) iff there is
anode 2z in RMO(S) such that y is the strict younger sibling of the (p — 1)-th
parent of . Although a straightforward implementation of this idea still results
duplications, the Duplicate-Detection technique [3] ensures the uniqueness of
the rightmost occurrences computed by the algorithm (See [3], for detail).

Lemma 1 (Asai et al. [3]). For a pattern S, the algorithm Update-RMO ez-
actly computes all the elements in RMO(T) from RMO(S) without duplicates,
where T is a rightmost expansion of S.

3.3 Pruning by Convexity
For the optimal pattern discovery, Morishita et al. [14] presented an efficient
pruning technique as follows.

Let (D, &) be an input collection. For every pattern T, the value of the objec-
tive function Ob‘ng(T) is determined by the contingency table (M{, MT NI N{)



defined by T on (D, &). If we fixed the instance (D, §), Objgg(T) can be regarded
as a function of a point (M{, M) in 2-dimensional plane [0, 1]2. Hence, we can
write Objfé”g(MlT,MOT) for Objg’E(T). Then, we say that Objg’g(T) is convex if
Objgg(-, -) is convex in the usual sense on [0, 1]2. We note that if a pattern tree

T is a direct or indirect successor of S, i.e., S 5 T, then the point (M{, M) for
T is interior of the point (Mg, M) for S. Then, Morishita and Sese [14] showed
the following theorem.

Theorem 2 (Morishita and Sese [14]). For pattern trees S, T, if S 5 T and
the contingency table for T is (M, Mo, N1, Ng) then

min{Obj§ (0, Mo), Obj§ ¢ (M1,0)} < Obj§ ((Mi, My). (1)

In the algorithm OPTT of Fig. 3, we used the pruning technique based on
the above theorem in Step 2 (c), where the subprocedure Lookahead computes
the value of the left hand side of Eq. 1. From [13, 14], the objective functions
based on the following impurity functions v have the convexity: the classification
error, the information entropy, Gini index function, and Chi? index function.

3.4 Theoretical Analysis: The Case of Bounded Pattern Size

Now, we give a case analysis on the performance of our algorithm in the case
that maximum pattern size is bounded by a constant k£ > 0. Let b > 0 be the
branching factor of input data trees. Suppose that we have a growing series
(D;)ien of data trees. For every i, let N; be the size of the data tree D; and
L; be the number of distinct labels appearing in D;. Since we encode attribute
names, attribute values, and the text contents as the node labels, in practice L;
is not a constant and typically bounded by slowly growing function L; = f(N;),
eg, f(N)=NforO<a<l.

Now, we will estimate the time complexity of a straightforward enumeration-
and-test algorithm. Let Z; be the number of distinct labeled ordered trees of size
k and with at most L; labels. Since Z; = 2(2°* -Lik) for some ¢ > 0, such an
algorithm requires ©(2°* N** . N) time, which is not linear even when k = O(1).

In contrast, the following theorem says that under the above assumptions,
the running time of the breadth-first/levelwise version of the OPTT algorithm
is linear in the total size N of D C T when k and b are constants. The same
upperbound holds for the depth-first version, too. This method also gives a more
precise estimation of the running time of the algorithm FREQT in [3].

Theorem 3. Under the above assumptions, the running time of OPTT on the
input collection D is bounded by O(K*T'b*N), where N is the total size of D.

Proof. We will estimate the upper bound of the sum Ry of the length the right-
most occurrences of the patterns generated in the k-th stage. By an argument
in [3], it follows that the running time of OPTT is bounded above by the sum

lk:_01 IR;. For every 0 < p < k, if we define Ry, to be the sum of the rightmost
occurrences of those trees in Ty generated in the k-th stage by (p, £)-expansion
for some ¢ then we have R, = Zﬁ;é Ry p. Trivially, Ry = Roo < N;. In-
ductively, we can show that Ry, < bRj_; for every 0 < p,q < k. Then, we

can show that R < Zlg;é Ry p < kbRjp_:. Solving this recurrence, we have
Ry = O(k*—1b*~1N;), and thus the result immediately follows. O



3.5 Theoretical Analysis: The Case of Unbounded Pattern Size

The maximum agreement problem (MA, for short) is a dual problem of the
classification error minimization problem and defined as follows: Given a pair
(D,§), find a pattern T that maximizes the agreement of T, i.e., the ratio of
documents in S that is correctly classified by T'.

Recently, Ben-David et al. [5] showed that for any € > 0, there is no polyno-
mial time (770/767 — e)-approximation algorithm for the maximum agreement
problem for Boolean conjunctions if P # NP. When we can use arbitrary many
labels, we can easily show the following theorem by using the approximation
factor preserving reduction [17]. The proof is easy, but it indicates that the re-
striction of bounded pattern size is really necessary for efficient optimized pattern
discovery. (The proof is attached in the appendix.)

Theorem 4. For any ¢ > 0, there ezists no polynomial time (770/767 — ¢)-
approzimation algorithm for the mazimum agreement problem for labeled ordered
trees of unbounded size on an unbounded label alphabet if P # N P. This is true
even when either the mazimum depth of trees is at most three or the mazimum
branching of trees is at most two.

4 Experimental Results

We have experimented with the algorithms on the following two data sets. The
data sets are Citeseers (5.6MB) and Imdb, where HTML/XML attributes and
text values are encoded by the tags and nodes in a labeled ordered tree. The
data set Citeseers is a collection of CGI generated HTML pages collected from
an online bibliographic archive Citeseers®, whose data tree has 196,247 nodes
and 7,125 unique tags. The data set Imdb is a collection of XML data generated
with a hand-coded Perl script from the HTML pages collected from an online
movie database, called the Internet Movie Database (IMDDb) *.

In the experiments, the tree mining algorithms we tested are the follow-
ings: The breadth-first /levelwise search version (OPTT+BF) and the depth-first
search version (OPTT+DF) of the optimized tree miner OPTT of this paper
(Fig. 3); The frequent tree miner FREQT of [3] with breadth-first /levelwise search
(OPTT+DF). We also implemented pruning with convexity (denoted by C). All
algorithms were implemented in Java (SUN JDK1.3.1 JIT) using a DOM li-
brary (OpenXML). Experiments were run on PC (Pentium IIT 600MHz) with
512 megabytes of main memory running Linux 2.2.14 or Windows 2000.

Scalability and Running Time

Fig. 7 shows the running time against the size of the data tree when the max-
imum size of the pattern trees is fixed to & = 5. The data set is Citeseers, and
the size of the input collection ranges from 5(pages)/316(KB)/22847(nodes) to
180(pages)/5.61(MB)/402740(nodes). Then, the running time seems to linearly
scale on this data set for fixed k. It fits to the theoretical bound in Section 3.4.

Fig. 8 shows the running time with varying the maximum pattern tree size
k from 1 to 11. The data set is a fragment of Imdb, and the size of the in-
put collection is fixed to 18(documents)/39.4(KB)/5835(nodes) containing 759
unique labels. Since the y-axis is log-scaled, the almost linear plot confirms the

3 http://citeseer.nj.nec.com/
4 http://www.imdb.com/
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Table 1. Comparison of tree mining algorithms in running time and space.

Algorithm|[OPTT+DF|OPTT+DF+C[[OPTT+BF|OPTT+BF+C|[FREQT(0.1%)+BF]|

Time 29.7 (sec) | 21.5 (sec) 20.2 (sec) | 20.0 (sec) 10.4 (sec) |
Space 8.0 (MB)| 8.0 (MB) |[96.4 (MB)| 96.4 (MB) 207 (MB) |

theoretical analysis of Section 3.5; when the data size is fixed, the running time
is exponential in the maximum pattern size k.

Search Strategies and Pruning Techniques

Table. 1 shows the running time of versions of optimized tree miners OPTT+DF,
OPTT+DF+C, OPTT+BF, OPTT+BF+C, and a frequent tree miner FREQTon
the same data set to that of Fig. 8. This experiment shows that on this small data
set, the difference in the running time between the depth-first search (denoted by
DF) and the breadth-first search (denoted by BF) in Section 3.1 is not significant,
while DF saves the main memory size more than ten times than BF. From this,
the depth-first search strategy is an attractive choice in situations that only
a limited amount of main memory is available. Also, the use of pruning with
convexity (denoted by C) in Section 3.3 is effective in the depth-first search;
OPTT+DF+C is 1.5 times faster than OPTT+DF.

5 Conclusion

In this paper, we studied the optimized pattern discovery problem for the class
of labeled ordered trees by modeling semi-structured data as labeled ordered
trees. We presented an efficient mining algorithm that finds the labeled ordered
trees that optimize a given statistical objective function on a binary labeled
collection of labeled ordered trees. Experimental results confirmed that the pro-
posed algorithm is scalable for mining trees of bounded size. We also compared
the breadth-first and the depth-first search strategies and the use of pruning
technique with convexity.
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A Appendix: Proof of Theorem 4
Note: This is not a part of the submitted paper.

Theorem 4 For any £ > 0, there exists no polynomial time (770/767 — ¢)-
approximation algorithm for the maximum agreement problem for labeled or-
dered trees of unbounded size on an unbounded label alphabet if P # N P. This
is true even when either the maximum depth of trees is at most three or the
maximum branching of trees is at most two.

Proof. Ben-David, Eiron, and Long [5] showed that for any € > 0, there exists
no polynomial time (770/767 — ¢)-approximation algorithm for the maximum
agreement problem for Boolean conjunctions if P # NP. Thus, we give an
approximation factor preserving reduction (f,g) (See, e.g., [17] for definition)
from the optimized pattern discovery problem (MA, for short) for the class
of Boolean conjunctions to MA for labeled ordered trees as follows. We use
term notation to represent labeled trees. Let {z1,...,z,} be the set of Boolean
variables and I} = (S, &) be an instance of MA for conjunctions. Let £ = {C} U
{1;,0;|i = 1,...,n }. Then, mapping f transforms I; into the instance I, =
(S',&") such that (i) for each a = (a1, ...,an) € S, f(a) = C(pa(ar), ..., un(an)),
S' = f(S), and £'(f(a)) = &(a), where p;(1) = 1; and p;(0) = 0;. Conversely,
the mapping ¢ transforms any solution S’ € Sola(f(I1)) into some solution
S = g(S) € Soly(I,) defined as follows. For every labeled tree T over L, g(T) =
Ly A+ A L, is the conjunction defined as follows: For every i = 1,...,n, L;
is x; if T contains 1;, Z; if T contains 0;, and T otherwise. Let I; = (S,¢)
and I = f(I) = (f(S), f(§)). Then, we can show that for every assignment
a € {0,1}™ and every tree T, g(T')(a) = 1 iff T matches f(a). Thus, it follows
that VI'.3F = g(T) [ETT&& (F) = ETTf(S),f(g) (T)]

Conversely, we can transform any conjunction F = L; A - A L, into a tree
h(F) = C(T,...,T,), where T; is 1; if L; is positive, 0; if L; is negative,

)

and the empty tree if L, = T. Then, we have VF.3T = h(F) [Errse(F) =
Errys).50 (Tl

Combining above arguments, we have VI;.3I, = f(I;) [OPT(I1) > OPT(I,)]
and VT € Sol(I3).3F = ¢g(T) € Sol(I,) [Obj(I1,F) < Obj(I5,T)]. Therefore,
(f,9) is an approximation factor preserving reduction from MA for conjunction
to MA for labeled ordered trees. Thus, it immediately follows from the result of
Ben-David, Eiron, and Long [5] that for any € > 0, there is no polynomial time
(770/767 — €)-approximation algorithm for the maximum agreement problem for
labeled ordered trees if P # N P. This proves the theorem. 0



