SN KREZZ2MTIER Y R b

Kyushu University Institutional Repository

O (log n)-Approximation Algorithm for Grammar-
Based Compression

Sakamoto, Hiroshi
Department of Informatics, Kyushu University

Shimozono, Shinichi
Department of Artificial Intelligence, Kyushu Institute of Technology

Shinohara, Ayumi
Department of Informatics, Kyushu University

Takeda, Masayuki

Department of Informatics, Kyushu University

https://hdl. handle. net/2324/3049

HhRIE$R : DOI Technical Report. 201, 2002-01. Department of Informatics, Kyushu University
N—=2 3

HEFIBAMR

O(log n)-Approximation Algorithm for
Grammar-Based Compression

(This paper is submitted to track A)

Hiroshi Sakamotof, Shinichi Shimozono?, Ayumi Shinoharaf,
Masayuki Takeda!

"Department of Informatics, Kyushu University
Fukuoka 812-8581, Japan
iDepartment of Artificial Intelligence, Kyushu Institute of Technology
Tizuka 820-8502, Japan
{hiroshi, ayumi, takeda}@i.kyushu-u.ac.jp
sin@ai.kyutech.ac. jp

Abstract. Inthe grammar-based compression scheme, a given text string
is transformed into a context-free grammar G such that L(G) = {w}
and then encoded in an appropriate manner. The compression is thus
regarded as an optimization problem of minimizing the size of G for
a given string w of length n. For the APX-hard problem an O(logn)-
approximation algorithm with arbitrary string is presented. The previ-
ously known best approximation ratio was O(4/n/logn) [8].

Keywords: grammar-based compression, approzimation algorithm, data
compression, string algorithm.

Correspondence:

Dr. Hiroshi Sakamoto

Department of Informatics, Kyushu Univ.
hiroshi@i.kyushu-u.ac.jp

phone: +81-92-642-2693, fax: +81-92-642-2698

1 Introduction

Text compression is a task of reducing the amount of space needed to store
text files on computers or of reducing the amount of time taken to transmit
information over a channel of given bandwidth. Users want to reduce the size of
their data as small as possible, but want to minimize the time needed for this
task. The main criteria for choosing compression methods are therefore the com-
pression ratio and the compression time. Many studies have been undertaken to
develop a new compression method for improving the compression ratio and/or
the compression time. The Lempel-Ziv algorithms [20,21], often referred to as
LZ77 and LZ78, and their variants (e.g., [18,15]) are most widely-used universal
lossless compression algorithms, together with the arithmetic coding algorithms
(see, e.g., [13]).

Finding the minimum representation of a given text string is regarded as a
combinatorial optimization problem. One interesting topic is to analyze the time
complexity of this optimization problem under some reasonable encoding scheme.
Storer and Szymanski [16] presented several abstract compression schemes, and
discussed the intractabilities of the minimization problems under the schemes.
Especially, one of the schemes is a generalization of the LZ77 compression, and
the corresponding minimization problem was shown to be NP-hard. Also, De
Agostino and Storer [2] generalized the LZ78 scheme and then proved that the
computation of the optimum parsing is NP-hard.

Recently, there have emerged new compression algorithms, such as Sequitur
[11,10] and Re-Pair [7], which often outperform the Lempel-Ziv family in the
compression ratio comparison. Although they require much more compression
time than the Lempel-Ziv family, it becomes not so crucial due to the recent
progress in computer technology. These compression methods can be general-
ized into a new compression scheme called grammar transform (see [5]). In this
scheme, a text string w is transformed into a context-free grammar G that gen-
erates the language {w}, and then G is encoded in some appropriate manner.
A context-free grammar that generates a single string is said to be admissible.
Yang and Kieffer [19] presented a grammar transform algorithm, and showed
that the algorithm is asymptotically optimum (i.e. universal) for a broad class
of sources, including stationary, ergodic sources.

Very recently, Lehman and Shelat [8] showed that even approximating the
size of the smallest grammar within a small constant factor is NP-hard, and
established upper and lower bounds on the approximation ratios of four existing
grammar-based compression algorithms. In particular, the BISECTION algo-
rithm [6] has the upper bound O(y/n/logn) and the lower bound £2(y/n/logn)
for the size n of an instance string.

It has not been known the technique for the relative approximation of this
problem. In fact all the upper bounds of known algorithms were proved by the
absolute error. So in this paper we introduce the method for the relative compar-
ison which enable us to analyze the performance ratio of an optimum solution
and an algorithm for a same instance. Consequently, for the problem MIN AD-
MISSIBLE GRAMMAR, we present a polynomial-time algorithm that approximates

the problem within 9(1 + 21In|w|) for every string w. This ratio is exponentially
smaller than the previously known result.

The rest of this paper is organized as follows. In Section 2 we introduce
some standard definitions for strings and context-free grammars, and then de-
fine our minimization problem. In this section MIN ADMISSIBLE GRAMMAR is
reduced to a sub-problem for finding a restricted grammar. The reduced problem
is equivalent to MIN ADMISSIBLE GRAMMAR with respect to a constant factor.
In Section 3 the problem MIN INTERVAL COVER is defined, which is closely
related to the reduced MIN ADMISSIBLE GRAMMAR. We present a polynomial-
time O(logn)-approximation algorithm for MIN INTERvVAL COVER and show
that the size of an optimum solution for it is smaller than that for the reduced
MIN ADMISSIBLE GRAMMAR. Moreover we present an algorithm that constructs
an admissible grammar from a solution for MIN INTERVAL COVER whose size is
at most the size of the solution. Thus our algorithm achieves the performance
ratio O(log n). Section 4 contains final remarks and states open problems.

2 Notions and Definitions

Let A be a finite alphabet. The set of all the strings formed from symbols in A,
including the empty string e, is denoted by A*. The length of a string w € A*
is denoted by |w|, and w[i] with 1 < i < |w]| refers to the ith symbol of w.
A string wli, j] formed from the symbols from the ith to the jth of w, with
1<i<j<|wl, is said to be a substring of w.

Let ¥ and N be finite alphabets, and we assume a fixed order for each
alphabet. In the following we distinguish these notions and say a symbol in ¥
a terminal (symbol) and a symbol in N a non-terminal (symbol). A context-free
grammar (CFG) G = (¥, N, P) is a triple where P is a relation between N
and (X U N)T. An element of P is said to be a production rule of G, which
represents a rewriting rule of symbols in strings over X U N, and is denoted in
the form a — 3y - - - Bi.. The size size(G) of a grammar G is the total lengths of
production rules in P. A context-free language L(G) for G is a possibly infinite
set of all the strings derived from the first symbol in N with respect to P. A
context-free grammar is said to be an admissible grammar if the language L(G)
produced by G is a singleton set, i.e. |L(G)| = 1. We say an admissible grammar
G is a straight-line program if every rule in P implies from a non-terminal to a
pair of symbols, i.e. is of the form o« = X - Y with X, Y € YU N.

Our target is the following minimization problem.

Problem 1. (MIN ADMISSIBLE GRAMMAR)

INSTANCE: A string w € X*.

SOLUTION: An admissible grammar G such that L(G) = {w}.
MEASURE: The size size(G) of G.

From now on, we only consider the case where the target grammars are
straight-line program. The following lemma simply tells us that in contrast to
the hardness of this problem that will be shown it is powerful enough without
loss of generality.

Lemma 1. For any string w, the size size(G) of a smallest admissible grammar
G for w and the size of a smallest straight-line program G' for w satisfies the
inequality size(G') < 2 - size(G).

This can be verified by the fact that every rule with k& symbols in its right-
hand side can be replaced with at most 2k rules implied from new non-terminal
symbols introduced for each rules.

3 Approximation Algorithm for Min Admissible
Grammar Problem

In this section we present a polynomial-time approximation algorithm for MiN
ADMISSIBLE GRAMMAR consisting of two algorithms A1 and A2. The algorithm
Al solves minimum interval cover problem, which is a relaxed version of the tar-
get problem MIN ADMISSIBLE GRAMMAR. The algorithm A2 receives an output
of A1 and constructs an SLP G.

3.1 Minimum interval cover problem

First we use the following nonstandard notions for any string w € X*.

— Suby(w) refers the set of all the substrings of w whose lengths are at least
two, L.e. Subs(w) = {wli,j] |1 <i<j<|w|and j>i+1}.

— wyy refers the kth string in Subs(w) with respect to the lexicographic order
on X*.

— Int(w) refers the set of all the intervals longer than two, attached with the
corresponding substrings in Subs(w), i.e. Int(w) = {(i, j; k) | wi, j] = wu) €
Subs(w)}.

Two integers ¢ and j of (i, j; k) are said to be the start-point and end-point
of the interval, respectively. An integer i’ is said to be contained by an interval
(i,5;k) it i <i' < j.

Definition 1. Two intervals are said to be well-parenthesized if (1) the start-
point and end-point of one are both contained by the other, or (2) neither the
start-point nor end-point of one are contained by the other. Moreover we say
that two intervals overlap if they are not well-parenthesized.

Example 1. If the intervals t; = (2,4; k1), t2 = (1,5;k2), and t3 = (5,6; k3) are
defined for some integers ki, ks, and k3, then #; and ty are well-parenthesized
and so is t; and t3, but t5 and t3 overlap each other.

Definition 2. Let S and S’ be sets of intervals. We say that S covers S’ if for
each interval t' € S', there exists an interval t € S that either coincides t' or
overlaps t'.

We define in spite of MIN ADMISSIBLE GRAMMAR the following relaxed prob-
lem with an idea of intervals of a string.

Problem 2. (MIN INTERVAL COVER)

INSTANCE: A string w € X*.

SOLUTION: An interval cover C of Int(w), i.e. a subset C C Int(w) of well-
parenthesized intervals which covers Int(w).

MEASURE: The cardinality of {k | (i, j; k) € C}, which is denoted by size(C).

Now we explain how MIN INTERVAL COVER relates to MIN ADMISSIBLE
GRAMMAR by an example below.

Ezample 2. Let w = ababb. Then all w)’s are the following nine substrings.
Subs(w) = wey = ab, wp) =ba, ws) =bb, wy) = aba, wi) = abb, '
w(g)y = bab, w7y = abab, wgy = babb, wyy =w

The set Int(w) of intervals is defined as

4’) < =0 >7 <47
) 1

1), (2,3;2), (4,5;3),
15), (2,4;6), (1,

(1,2;1), (3, 5;3
1 3, 4;7)7(2,5;8),(175;9)}'

2;1
(1,3;4), (

The following two sets C; and Cy both cover all intervals of Int(w). However
the first two elements (2, 3;2) and (3, 5;5) of Cy overlap each other. Thus C; is
not a solution for the instance. On the other hand, since all intervals in C, are
well-parenthesized, Cs is one of solutions.

Cl = {<27352>7<3/5:5>/ <174a7>7<1/519>},
Cy ={(1,2;1),(3,4;1),(1,4;7),(1,5;9)}.

Int(w) = {

The size of an interval cover is the number of different indexes k of substrings
w(yy attached to the intervals. In this case size(Cy) = 3. Any pair of intervals in
Cs are well-parenthesized. Therefore, from C5 we can straightforwardly construct
aset P={S — Ab,A — BB, B — ab} of production rules of an SLP G. This
grammar is fortunately a smallest SLP for w.

It is easy to see that MIN INTERVAL COVER is well-defined as follows. For
any SLP G = (¥, N, P) for w € X*, let Intg(w) be the set of intervals with
respect to G such that

Intg(w) = {(i,j; k) | « € N derives wli, j] = w)}-

All intervals in Intg(w) is well-parenthesized and Intg(w) covers Int(w), that
is, Intg(w) is an interval cover of Int(w). Thus MIN INTERVAL COVER has at
least one solution of size at most size(Intg(w)) < |Intg(w)| = |w| — 1.

We next estimate for a same instance the sizes of optimum solutions for MIN
ADMISSIBLE GRAMMAR and for MIN INTERVAL COVER.

Lemma 2. Let G,y be a smallest SLP for w € X*, and let Cyp be a minimum
interval cover for Int(w). Then the inequality size(Cop) < 1size(Gopy) holds.

Proof. Let G = (X, N, P) be an SLP for w, then obviously Intg(w) is an interval
cover of Int(w) and size(Intg(w)) is at most |N|. Since every rule has size two,
generally size(Intg(w)) < |[N| = Lsize(@) holds. m

The aim of the remained parts of this paper is to show that MIN INTERVAL
COVER is approximable within O(logn) and a small interval cover produces no
more than two times SLP for the same string. We present two algorithms Al
and A2 dealing with the difficulty of according to the following scenario.

The algorithm A1 computes a solution C for MIN INTERVAL, COVER defined
by a string of length n. Let C,p; be an optimum solution. Then for the solution
C, we show that (1) size(C) is at most O(logn) times greater than size(Copt).

Next we present the algorithm A2 which computes an SLP G = (X, N, P)
from the set C of well-parenthesized intervals and show (2) 3size(G) = |[N| <
size(C).

Let G, = (X, Ny, Phyy) and Gope = (X, Nopt, Popt) be an optimum SLP
and admissible grammar for w, respectively. Then, by (1) and (2), and using (3)

size(Copt) < |NJ,,¢, lemma 1 and lemma 2, we can conclude

size(G) < 2-size(G) _ 2|N| < 2 - size(C)
size(Gopt) ~ size(Gly) — [Nppl = [N
2 - size(C)
1 .
= size(Copt) = Ollogn)

3.2 A greedy algorithm for finding interval covers

The algorithm A1 is presented in Fig. 1 and the function f called in line 4 of
Al is also presented in Fig. 2. The algorithm A1 greedily finds a set S C Iy of
well-parenthesized intervals for a fixed index k so that S cover as many remained
intervals as possible. In the following we show that Al finds an interval cover for
any instance w whose size is no greater than O(logn) times an optimum.

Let m be the size of xp found in Step 2 (b) at the first iteration of Step 2,
i.e. the largest number |zx| during an execution of the algorithm. We say, for
1 < h < m, all the iterations of Step 2 where the size |z | equals h the hth phase
of the algorithm. The notion ¢, refers to the number of iterations in the hth
phase, i.e. the number of indices k € Int(w) that are chosen in the hth phase.
Let X} be the union of all x;’s subtracted from I in the hth phase. Clearly,
| X1| = h - £ holds.

The function f(k,I) shown in the following computes a maximal set of in-
tervals of w) in I that covers points in P as many as possible and are not
overlapping each other. Then its result IV, is adopted into S and intervals in zy
that cannot be used in an SLP with them are wasted.

Now let us see that the following lemma holds.

Algorithm A1 for minimum interval cover problem of input string w.
Step 1. Let S < 0, I < Int(w), and K < {1, ... ,|Subz(w)|}.
Step 2. While I # @ do the following:

(a) For every k € K, compute the set N, = f(k,I) and
calculate the set z;, = {t € I | Ju € N}, that overlaps t}.
/* The function f(k,I) is defined in Fig. 2. %/
(b) Find %k that maximizes |z|.
(c) Let S« SUN, I + I\ zx, and K « K\ {k}.
Step 3. Output S.

© 00 O Ui W N -

Fig. 1. Algorithm for MIN INTERVAL COVER.

1 Function f(k,I) for an index k and a set I C Int(w) of uncovered intervals.

2 Step 1. Let N < 0, let I3y be the set of intervals of wy in I, and

3 let P C Z™" be the set of all start-points and end-points of intervals in I.

4 Step 2. While I, # 0 do the following:

5 (a) Let t be the left-most interval in I(;) and T < {u € I(;) | t overlaps u}.
6 (b) Choose an interval ¢ € T that maximizes |[P Nt'|, then let N U {¢'} and
8 Step 3. Output N.

Fig. 2. Function called by A1l for finding a set of well-parenthesized intervals so that
it covers as many as remained intervals possible.

Lemma 3. Let S be the output of A1 for an input string w. Then the following
three conditions hold:

1. Algorithm Al always terminates.
2. S covers I(w) and all intervals in S are well-parenthesized.
3. For any interval (i, j; k) € S with |wy| > 3, either

(a) (i,j— LK) €S,

(b) (i+1,5;k')€S, or

(c) (i,i'; k'), (i" +1,4;k"Y € S with i <i' < j exist.

Proof. The function f in Al produces a set of intervals that do not overlap each
other. The algorithm A1 wastes all intervals that overlap at least one of them,
so at any iteration of Step 2 the intervals remained in I are guaranteed not to
overlap any interval chosen in S. It is sufficient to the conditions 1 and 2.

The condition 3 claims that any interval (i,j;k) € S longer than three is
exactly divided into two left-aligned and right-aligned intervals either in S or
of length one. Any interval strictly contained in (i, j; k) coincides to or can be
contained in either a left-aligned or a right-aligned interval which can be as long
as possible. Also an interval cover for (i, j; k) must include all possible intervals

that are longer than one and do not overlap each other. So an interval cover has
two left-aligned and right-aligned intervals that exactly divides (i, j; k) into two
intervals. a

The next lemma shows that the function f guarantees an output contain
points no less than % times the best.

Lemma 4. Let I be the set of uncovered intervals in I(w) and P be the set of
all the start-points and end-points of intervals in I. Then p(f(k,I)) > % -p(I")
for any I' C Iy, where p(S) for S C I refers the cardinality of the set {i € P |
dt € S [t contains i |}.

Proof. Each repetition of the function chose an interval that contains the largest
number of points among intervals that overlap (and is identical) to the left-most
one. Let #; and t;11 be non-overlapping intervals of w(;) that have been chosen
at ith and 7 + 1th iterations, respectively. Then the number of points that are
in between t; and t;;; and can be contained by intervals of w(g) is at most the
total number of points contained by ¢; and ¢;11, because all of those remained
points must be contained in two intervals ¢; and #;_ ; that overlap to #; and #;,1,
respectively. Therefore the number of start-points and end-points of remained
intervals which are contained in intervals of w() is at most three times the
number of points contained in the output of f(k,I). O

Using the above lemma we can show the next lemma which derives the upper
bound of the number of intervals covered by intervals of w(;) at one iteration of
each hth phase.

Lemma 5. For each hth phase and each set Iy of intervals of w(y, the number
of intervals in Xy, U ---U Xy covered by the intervals in Iy is less than 9h.

Proof. We set I = X, U---U X; for short, which is the set of all intervals not
covered yet. Let P be the set of all the start-points and end-points of intervals
in 1.

For any ¢ and j with i < j, it is clear that i,j € P iff there is an interval
(i,7; k') in I. An interval (i, j; k') is removed from I only if either it is chosen or
an interval overlapping it is chosen. Thus the number of intervals in I covered
by Iy is at most maxy = p(I)) - (p(I) — p(I()))-

On the other hand, by using Lemma 4, the number of intervals in I covered
by the set returned by f(k,I) on hth phase is

h>p(f(k, 1)) - (P(I) = p(f(k. 1)) > gp(I)) - (p(I) = 5p(f(k,1))) > gmazy.

Hence the number of intervals in I covered by intervals in () is at most 9h
even if we chose all the intervals in [(4). O

Theorem 1. Let C,p be an optimum solution for an instance of MIN INTERVAL
COVER and C' 41 be the output of algorithm A1l for the same instance for a string
w. Then it holds that size(Ca1)/size(Copt) < 9(1 + 21n |w)).

Proof. Again let I = X, U---U X; be the set of all intervals not covered at hth
phase yet. By lemma 5, at any iteration of Ath phase, no more than 95 intervals
are covered by intervals of [(;) for any k. Thus in order to cover all the intervals
in I, the intervals for at least |I|/9h different indexes k are needed. Thus we can
show the upper bound of size(Ca1)/size(Copi) by the following analysis like [3].
For each h =1,... ,m and m = |wl|?,

) I hep + -+ ¢
S'LZ@(COPt) Z % = %

From this relation,

By using Lemma 5 again, we obtain

1 1 . 1 1 1
1« I
=3 Zﬂg =9 size(Car).
g=1
Therefore size(Ca1)/size(Copt) = 9(1 +1nm) = 9(1 + 21n |w]). O

3.3 Construction of grammars

In this subsection we present the algorithm A2 which computes a small SLP from
an output of A2 for input string w. By Lemma 3, we can regard any output of
C 41 as a binary tree T'4; such that the yield of it is w, where the yield of a tree
is the concatenation of all leaves from the left to right order.

Let V be the set of all the nodes of T'41 and T'41(v) be the subtree rooted by
v € V. Let yield(v) be the yield of T4 (v) and §T4; = [{yield(v) | v € V}|. In
particular yield(T') denotes yield(v) for the root v of T'.

Lemma 6. For each input string w for Al, it holds that $Tx; = size(Ca1).

Proof. Let wli, j] = w(x) be a substring of w. If there is a node v € V' such that
yield(v) = w() and the left most and right most leaves of Taq(v) is i and j,
respectively, then it holds that (i, j; k) € Ca1, and clearly, the converse direction
is also true. a

The aim of A2 is to construct a tree 7' such that the number of different
subtrees is at most size(C 41). This condition is equivalent to the following claim.
Such a tree T satisfying the claim directly derives the derivation tree of the SLP
G = (¥, N, P) for |[N| < size(Ca1), and thus, G is at most O(log n) times greater
than G, by Theorem 1.

Claim. For any nodes u and v of T, yield(u) = yield(v) iff yield(u1) = yield(vy)
and yield(us) = yield(ve) for the left children u; of u and vy of v, and the right
children us of u and vs of w.

Ezxample 3. In this example we illustrate the above claim by the string w =
ababaaba. The following parenthesized strings w; and ws correspond to the
derivation trees of grammars for w.

w1 = (((a(ba))(ba))((ab)a)), w2 = (((a(ba))(ba))(a(ba))).

The number of different yields in w; and in w» is six and four, respectively. The
tree wo is obtained by replacing the subtree ((ab)a)) of wy with (a(ba)). The
tree wo satisfies the claim and it corresponds to the smallest SLP.

1 Algorithm A2 for a binary tree T'a1 returned by Al for a string w.

2 Step 1. Let T < T'a; and let V' be the set of nodes in T'.

3 Step 2. Select each w; in lexicographically small order and do the following:
4 (a) Compute V' = {v € V| yield(v) = w}.

5 (b) Find a smallest {7 (v) and replace T(v') by T'(v) for all v’ € V.

6 Step 3. Output the tree Tas < T.

Fig. 3. Algorithm for minimizing the number of different subtrees of input tree by
replacing subtrees.

Lemma 7. The algorithm A2 always terminates and the output tree T satisfies
the claim.

Proof. Since Step 2 in A2 is executed at most |w| times, A2 terminates for
any input. For the output tree T' of A2, we show that T satisfies the claim by
induction on ith iteration of Step 2. For i = 1, there are only two types of binary
trees such that their yield are w;) for selected substring w) of length three.
Then all such threes are replaced by one of them. Thus the claim is true for
i = 1. We assume the hypothesis on ith iteration of Step 2 and let w;) be the
substring selected i + 1th iteration of Step 2. If yield(v) = w(y) for v € V, then
v has exactly two children v; and w2 such that W) = W1 - Wa, yield(vi) = wn,
and yield(vy) = wsy. Since wy and wo are selected in Step 2 before Wk, by
the assumption, the claim holds for all internal nodes in T'(v1) and T'(v1). In
the i + 1th iteration, a node v’ which minimizes §7'(v") is found and all T'(v) is
replaced if yield(v) = w. Then all replaced T'(v) also satisfy the claim. Hence
the proof of this induction is completed. a

Theorem 2. MIN ADMISSIBLE GRAMMAR is approzimable within O(log|w]|)
for every string w.

Proof. Let C4; be the output of A1 for an input string w and T'4; be the cor-
responding tree. Let T'4o be the output of A2 for input T4y and G = (¥, N, P)
be the SLP equivalent to T42. By Lemma 7, |N| = #(T'42). Thus, since §(T42) <
#(Ta1) and §(Ta1) = size(Ca1), we obtain |N| < size(C41). Therefore by The-
orem 1 and Lemma 2, we can show that size(G)/size(Gopt) < 9(1 + 21n|wl|) =
O(log |w|) for a optimum G- O

4 Conclusion

We have investigated the approximability of MIN ADMISSIBLE GRAMMAR known
to be APX-hard. For this problem, we have presented the polynomial-time
O(log n)-approximation algorithm. Its performance ratio is exponentially smaller
than the previously known results. However it still remains open whether MIN
ADMISSIBLE GRAMMAR is in APX, i.e. it is approximable within a constant.

More general compression scheme collage system is presented in [4] in which
k-times repetition of a nonterminal and affiz truncation of a string represented
by a nonterminal are allowed as well as concatenation of symbols. Collage system
covers LZ77 scheme while grammar-based compression does not. So one of our
future works is to investigate the approximability of the optimization problem
with respect to collage system.

References

1. G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and
M. Protasi. Complezity and approzimation: combinatorial optimization problems
and their approximability properties.

Springer, 1999.

2. S. De Agostino and J. A. Storer. On-line versus off-line computation in dynamic
text compression. Inform. Process. Lett., 59:169 174, 1996.

3. D.S. Johnson. Approximation algorithms for combinatorial problems. J. Computer
and System Science, 9:256 278, 1974.

4. T. Kida, Y. Shibata, M. Takeda, A. Shinohara, and S. Arikawa. Collage system:
a unifying framework for compressed pattern matching. Theoret. Comput. Sci.,
2001. (to appear).

5. J. C. Kieffer and E. Hui Yang. Grammar-based codes: a new class of universal
lossless source codes. IEEE Trans. on Inform. Theory, 46(3):737 754, 2000.

6. J. C. Kieffer, E.-H. Yang, G. Nelson, and P. Cosman. Universal lossless compression
via multilevel pattern matching. IEEE Trans. Inform. Theory, 1T-46(4), 1227-
1245, 2000.

7. N. J. Larsson and A. Moffat. Offline dictionary-based compression. In Proc. Data
Compression Conference (DCC’99), pages 296 305. IEEE Computer Society, 1999.

8. E. Lehman and A. Shelat. Approximation algorithms for grammar-based compres-
sion. In Proc. 13th Ann. ACM-SIAM Sympo. on Discrete Algorithms, 2002. (to
appear).

9. M. Lothaire. Combinatorics on words, volume 17 of Encyclopedia of Mathematics
and Its Applications. Addison-Wesley, 1983.

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

C. Nevill-Manning and I. Witten. Compression and explanation using hierarchical
grammars. Computer Journal, 40(2/3):103 116, 1997.

C. Nevill-Manning and I. Witten. Identifying hierarchical structure in sequences:
a linear-time algorithm. J. Artificial Intelligence Research, 7:67 82, 1997.

C. H. Papadimitriou. Computational complezity. Addison Wesley, 1993.

D. Salomon. Data compression: the complete reference. Springer, second edition,
1998.

D. Sieling and I. Wegener. Reduction of obdds in linear time. Inf. Process. Lett.,
48:139-144, 1993.

J. Storer and T. Szymanski. Data compression via textual substitution. J. Assoc.
Comput. Mach., 29(4):928 951, 1982.

J. A. Storer and T. G. Szymanski. The macro model for data compressoin. In Proc.
10th Ann. Sympo. on Theory of Computing, pages 30 39, San Diego, California,
1978. ACM Press.

V. V. Vazirani. Approximation algorithm. Springer, 2001.

T. A. Welch. A technique for high performance data compression. IEEE Comput.,
17:8 19, 1984.

E. Hui Yang and J. C. Kieffer. Efficient universal lossless data compression algo-
rithms based on a greedy sequential grammar transform part one: without context
models. IEEE Trans. on Inform. Theory, 46(3):755-777, 2000.

J. Ziv and A. Lempel. A universal algorithm for sequential data compression.
IEEE Trans. on Inform. Theory, 1T-23(3):337 349, 1977.

J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding.
IEEE Trans. on Inform. Theory, 24(5):530-536, 1978.

