
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Ο(log n)-Approximation Algorithm for Grammar-
Based Compression

Sakamoto, Hiroshi
Department of Informatics, Kyushu University

Shimozono, Shinichi
Department of Artificial Intelligence, Kyushu Institute of Technology

Shinohara, Ayumi
Department of Informatics, Kyushu University

Takeda, Masayuki
Department of Informatics, Kyushu University

https://hdl.handle.net/2324/3049

出版情報：DOI Technical Report. 201, 2002-01. Department of Informatics, Kyushu University
バージョン：
権利関係：

O(log n)-Approximation Algorithm forGrammar-Based Compression(This paper is submitted to tra
k A)Hiroshi Sakamotoy, Shini
hi Shimozonoz, Ayumi Shinoharay,Masayuki TakedayyDepartment of Informati
s, Kyushu UniversityFukuoka 812-8581, JapanzDepartment of Arti�
ial Intelligen
e, Kyushu Institute of Te
hnologyIizuka 820-8502, Japanfhiroshi, ayumi, takedag�i.kyushu-u.a
.jpsin�ai.kyute
h.a
.jpAbstra
t. In the grammar-based
ompression s
heme, a given text stringis transformed into a
ontext-free grammar G su
h that L(G) = fwgand then en
oded in an appropriate manner. The
ompression is thusregarded as an optimization problem of minimizing the size of G fora given string w of length n. For the APX-hard problem an O(log n)-approximation algorithm with arbitrary string is presented. The previ-ously known best approximation ratio was O(pn= log n) [8℄.Keywords: grammar-based
ompression, approximation algorithm, data
ompression, string algorithm.
Corresponden
e:Dr. Hiroshi SakamotoDepartment of Informati
s, Kyushu Univ.hiroshi�i.kyushu-u.a
.jpphone: +81-92-642-2693, fax: +81-92-642-2698

1 Introdu
tionText
ompression is a task of redu
ing the amount of spa
e needed to storetext �les on
omputers or of redu
ing the amount of time taken to transmitinformation over a
hannel of given bandwidth. Users want to redu
e the size oftheir data as small as possible, but want to minimize the time needed for thistask. The main
riteria for
hoosing
ompression methods are therefore the
om-pression ratio and the
ompression time. Many studies have been undertaken todevelop a new
ompression method for improving the
ompression ratio and/orthe
ompression time. The Lempel-Ziv algorithms [20, 21℄, often referred to asLZ77 and LZ78, and their variants (e.g., [18, 15℄) are most widely-used universallossless
ompression algorithms, together with the arithmeti

oding algorithms(see, e.g., [13℄).Finding the minimum representation of a given text string is regarded as a
ombinatorial optimization problem. One interesting topi
 is to analyze the time
omplexity of this optimization problem under some reasonable en
oding s
heme.Storer and Szymanski [16℄ presented several abstra
t
ompression s
hemes, anddis
ussed the intra
tabilities of the minimization problems under the s
hemes.Espe
ially, one of the s
hemes is a generalization of the LZ77
ompression, andthe
orresponding minimization problem was shown to be NP-hard. Also, DeAgostino and Storer [2℄ generalized the LZ78 s
heme and then proved that the
omputation of the optimum parsing is NP-hard.Re
ently, there have emerged new
ompression algorithms, su
h as Sequitur[11, 10℄ and Re-Pair [7℄, whi
h often outperform the Lempel-Ziv family in the
ompression ratio
omparison. Although they require mu
h more
ompressiontime than the Lempel-Ziv family, it be
omes not so
ru
ial due to the re
entprogress in
omputer te
hnology. These
ompression methods
an be general-ized into a new
ompression s
heme
alled grammar transform (see [5℄). In thiss
heme, a text string w is transformed into a
ontext-free grammar G that gen-erates the language fwg, and then G is en
oded in some appropriate manner.A
ontext-free grammar that generates a single string is said to be admissible.Yang and Kie�er [19℄ presented a grammar transform algorithm, and showedthat the algorithm is asymptoti
ally optimum (i.e. universal) for a broad
lassof sour
es, in
luding stationary, ergodi
 sour
es.Very re
ently, Lehman and Shelat [8℄ showed that even approximating thesize of the smallest grammar within a small
onstant fa
tor is NP-hard, andestablished upper and lower bounds on the approximation ratios of four existinggrammar-based
ompression algorithms. In parti
ular, the BISECTION algo-rithm [6℄ has the upper bound O(pn= logn) and the lower bound
(pn= logn)for the size n of an instan
e string.It has not been known the te
hnique for the relative approximation of thisproblem. In fa
t all the upper bounds of known algorithms were proved by theabsolute error. So in this paper we introdu
e the method for the relative
ompar-ison whi
h enable us to analyze the performan
e ratio of an optimum solutionand an algorithm for a same instan
e. Consequently, for the problem Min Ad-missible Grammar, we present a polynomial-time algorithm that approximates

the problem within 9(1 + 2 ln jwj) for every string w. This ratio is exponentiallysmaller than the previously known result.The rest of this paper is organized as follows. In Se
tion 2 we introdu
esome standard de�nitions for strings and
ontext-free grammars, and then de-�ne our minimization problem. In this se
tion Min Admissible Grammar isredu
ed to a sub-problem for �nding a restri
ted grammar. The redu
ed problemis equivalent to Min Admissible Grammar with respe
t to a
onstant fa
tor.In Se
tion 3 the problem Min Interval Cover is de�ned, whi
h is
loselyrelated to the redu
ed Min Admissible Grammar. We present a polynomial-time O(log n)-approximation algorithm for Min Interval Cover and showthat the size of an optimum solution for it is smaller than that for the redu
edMin Admissible Grammar. Moreover we present an algorithm that
onstru
tsan admissible grammar from a solution for Min Interval Cover whose size isat most the size of the solution. Thus our algorithm a
hieves the performan
eratio O(log n). Se
tion 4
ontains �nal remarks and states open problems.2 Notions and De�nitionsLet A be a �nite alphabet. The set of all the strings formed from symbols in A,in
luding the empty string ", is denoted by A�. The length of a string w 2 A�is denoted by jwj, and w[i℄ with 1 � i � jwj refers to the ith symbol of w.A string w[i; j℄ formed from the symbols from the ith to the jth of w, with1 � i � j � jwj, is said to be a substring of w.Let � and N be �nite alphabets, and we assume a �xed order for ea
halphabet. In the following we distinguish these notions and say a symbol in �a terminal (symbol) and a symbol in N a non-terminal (symbol). A
ontext-freegrammar (CFG) G = (�;N; P) is a triple where P is a relation between Nand (� [N)+. An element of P is said to be a produ
tion rule of G, whi
hrepresents a rewriting rule of symbols in strings over � [N , and is denoted inthe form �! �1 � � ��k. The size size(G) of a grammar G is the total lengths ofprodu
tion rules in P . A
ontext-free language L(G) for G is a possibly in�niteset of all the strings derived from the �rst symbol in N with respe
t to P . A
ontext-free grammar is said to be an admissible grammar if the language L(G)produ
ed by G is a singleton set, i.e. jL(G)j = 1. We say an admissible grammarG is a straight-line program if every rule in P implies from a non-terminal to apair of symbols, i.e. is of the form �! X � Y with X;Y 2 � [N .Our target is the following minimization problem.Problem 1. (Min Admissible Grammar)Instan
e: A string w 2 ��.Solution: An admissible grammar G su
h that L(G) = fwg.Measure: The size size(G) of G.From now on, we only
onsider the
ase where the target grammars arestraight-line program. The following lemma simply tells us that in
ontrast tothe hardness of this problem that will be shown it is powerful enough withoutloss of generality.

Lemma 1. For any string w, the size size(G) of a smallest admissible grammarG for w and the size of a smallest straight-line program G0 for w satis�es theinequality size(G0) � 2 � size(G).This
an be veri�ed by the fa
t that every rule with k symbols in its right-hand side
an be repla
ed with at most 2k rules implied from new non-terminalsymbols introdu
ed for ea
h rules.3 Approximation Algorithm for Min AdmissibleGrammar ProblemIn this se
tion we present a polynomial-time approximation algorithm for MinAdmissible Grammar
onsisting of two algorithms A1 and A2. The algorithmA1 solves minimum interval
over problem, whi
h is a relaxed version of the tar-get problemMin Admissible Grammar. The algorithm A2 re
eives an outputof A1 and
onstru
ts an SLP G.3.1 Minimum interval
over problemFirst we use the following nonstandard notions for any string w 2 ��.{ Sub2(w) refers the set of all the substrings of w whose lengths are at leasttwo, i.e. Sub2(w) = fw[i; j℄ j 1 � i � j � jwj and j � i+ 1g.{ w(k) refers the kth string in Sub2(w) with respe
t to the lexi
ographi
 orderon ��.{ Int(w) refers the set of all the intervals longer than two, atta
hed with the
orresponding substrings in Sub2(w), i.e. Int(w) = fhi; j; ki j w[i; j℄ = w(k) 2Sub2(w)g.Two integers i and j of hi; j; ki are said to be the start-point and end-pointof the interval, respe
tively. An integer i0 is said to be
ontained by an intervalhi; j; ki if i � i0 � j.De�nition 1. Two intervals are said to be well-parenthesized if (1) the start-point and end-point of one are both
ontained by the other, or (2) neither thestart-point nor end-point of one are
ontained by the other. Moreover we saythat two intervals overlap if they are not well-parenthesized.Example 1. If the intervals t1 = h2; 4; k1i, t2 = h1; 5; k2i, and t3 = h5; 6; k3i arede�ned for some integers k1, k2, and k3, then t1 and t2 are well-parenthesizedand so is t1 and t3, but t2 and t3 overlap ea
h other.De�nition 2. Let S and S0 be sets of intervals. We say that S
overs S0 if forea
h interval t0 2 S0, there exists an interval t 2 S that either
oin
ides t0 oroverlaps t0.

We de�ne in spite ofMin Admissible Grammar the following relaxed prob-lem with an idea of intervals of a string.Problem 2. (Min Interval Cover)Instan
e: A string w 2 ��.Solution: An interval
over C of Int(w), i.e. a subset C � Int(w) of well-parenthesized intervals whi
h
overs Int(w).Measure: The
ardinality of fk j hi; j; ki 2 Cg, whi
h is denoted by size(C).Now we explain how Min Interval Cover relates to Min AdmissibleGrammar by an example below.Example 2. Let w = ababb. Then all w(k)'s are the following nine substrings.Sub2(w) = � w(1) = ab; w(2) = ba; w(3) = bb; w(4) = aba; w(5) = abb;w(6) = bab; w(7) = abab; w(8) = babb; w(9) = w � :The set Int(w) of intervals is de�ned asInt(w) = � h1; 2; 1i; h3; 4; 1i; h2; 3; 2i; h4; 5; 3i;h1; 3; 4i; h3; 5; 5i; h2; 4; 6i; h1; 4; 7i; h2; 5; 8i; h1; 5; 9i� :The following two sets C1 and C2 both
over all intervals of Int(w). Howeverthe �rst two elements h2; 3; 2i and h3; 5; 5i of C1 overlap ea
h other. Thus C1 isnot a solution for the instan
e. On the other hand, sin
e all intervals in C2 arewell-parenthesized, C2 is one of solutions.C1 = fh2; 3; 2i; h3; 5; 5i; h1; 4; 7i; h1; 5; 9ig;C2 = fh1; 2; 1i; h3; 4; 1i; h1; 4; 7i; h1; 5; 9ig:The size of an interval
over is the number of di�erent indexes k of substringsw(k) atta
hed to the intervals. In this
ase size(C2) = 3. Any pair of intervals inC2 are well-parenthesized. Therefore, from C2 we
an straightforwardly
onstru
ta set P = fS ! Ab;A ! BB;B ! abg of produ
tion rules of an SLP G. Thisgrammar is fortunately a smallest SLP for w.It is easy to see that Min Interval Cover is well-de�ned as follows. Forany SLP G = (�;N; P) for w 2 ��, let IntG(w) be the set of intervals withrespe
t to G su
h thatIntG(w) = fhi; j; ki j � 2 N derives w[i; j℄ = w(k)g:All intervals in IntG(w) is well-parenthesized and IntG(w)
overs Int(w), thatis, IntG(w) is an interval
over of Int(w). Thus Min Interval Cover has atleast one solution of size at most size(IntG(w)) � jIntG(w)j = jwj � 1.We next estimate for a same instan
e the sizes of optimum solutions forMinAdmissible Grammar and for Min Interval Cover.

Lemma 2. Let Gopt be a smallest SLP for w 2 ��, and let Copt be a minimuminterval
over for Int(w). Then the inequality size(Copt) � 12size(Gopt) holds.Proof. Let G = (�;N; P) be an SLP for w, then obviously IntG(w) is an interval
over of Int(w) and size(IntG(w)) is at most jN j. Sin
e every rule has size two,generally size(IntG(w)) � jN j = 12size(G) holds. 2The aim of the remained parts of this paper is to show that Min IntervalCover is approximable within O(log n) and a small interval
over produ
es nomore than two times SLP for the same string. We present two algorithms A1and A2 dealing with the diÆ
ulty of a

ording to the following s
enario.The algorithm A1
omputes a solution C forMin Interval Cover de�nedby a string of length n. Let Copt be an optimum solution. Then for the solutionC, we show that (1) size(C) is at most O(log n) times greater than size(Copt).Next we present the algorithm A2 whi
h
omputes an SLP G = (�;N; P)from the set C of well-parenthesized intervals and show (2) 12size(G) = jN j �size(C).Let G0opt = (�;N 0opt; P 0opt) and Gopt = (�;Nopt; Popt) be an optimum SLPand admissible grammar for w, respe
tively. Then, by (1) and (2), and using (3)size(Copt) � jN j0opt, lemma 1 and lemma 2, we
an
on
ludesize(G)size(Gopt) � 2 � size(G)size(G0opt) = 2jN jjN 0optj � 2 � size(C)jN 0optj� 2 � size(C)size(Copt) = O(log n):3.2 A greedy algorithm for �nding interval
oversThe algorithm A1 is presented in Fig. 1 and the fun
tion f
alled in line 4 ofA1 is also presented in Fig. 2. The algorithm A1 greedily �nds a set S � I(k) ofwell-parenthesized intervals for a �xed index k so that S
over as many remainedintervals as possible. In the following we show that A1 �nds an interval
over forany instan
e w whose size is no greater than O(log n) times an optimum.Let m be the size of xk found in Step 2 (b) at the �rst iteration of Step 2,i.e. the largest number jxk j during an exe
ution of the algorithm. We say, for1 � h � m, all the iterations of Step 2 where the size jxk j equals h the hth phaseof the algorithm. The notion `h refers to the number of iterations in the hthphase, i.e. the number of indi
es k 2 Int(w) that are
hosen in the hth phase.Let Xh be the union of all xk's subtra
ted from I in the hth phase. Clearly,jXhj = h � `h holds.The fun
tion f(k; I) shown in the following
omputes a maximal set of in-tervals of w(k) in I that
overs points in P as many as possible and are notoverlapping ea
h other. Then its result Nk is adopted into S and intervals in xkthat
annot be used in an SLP with them are wasted.Now let us see that the following lemma holds.

1 Algorithm A1 for minimum interval
over problem of input string w.2 Step 1. Let S ;, I Int(w), and K f1; : : : ; jSub2(w)jg.3 Step 2. While I 6= ; do the following:4 (a) For every k 2 K,
ompute the set Nk = f(k; I) and5
al
ulate the set xk = ft 2 I j 9u 2 Nk that overlaps tg:6 =� The fun
tion f(k; I) is de�ned in Fig. 2. �=7 (b) Find k that maximizes jxkj.8 (
) Let S S [Nk, I I n xk, and K K n fkg.9 Step 3. Output S.Fig. 1. Algorithm for Min Interval Cover.1 Fun
tion f(k; I) for an index k and a set I � Int(w) of un
overed intervals.2 Step 1. Let N ;, let I(k) be the set of intervals of w(k) in I, and3 let P � Z+ be the set of all start-points and end-points of intervals in I.4 Step 2. While I(k) 6= ; do the following:5 (a) Let t be the left-most interval in I(k) and T fu 2 I(k) j t overlaps ug.6 (b) Choose an interval t0 2 T that maximizes jP \ t0j, then let N [ft0g and7 I(k) I(k) n T .8 Step 3. Output N .Fig. 2. Fun
tion
alled by A1 for �nding a set of well-parenthesized intervals so thatit
overs as many as remained intervals possible.Lemma 3. Let S be the output of A1 for an input string w. Then the followingthree
onditions hold:1. Algorithm A1 always terminates.2. S
overs I(w) and all intervals in S are well-parenthesized.3. For any interval hi; j; ki 2 S with jwkj � 3, either(a) hi; j � 1; k0i 2 S,(b) hi+ 1; j; k0i 2 S, or(
) hi; i0; k0i; hi0 + 1; j; k0i 2 S with i < i0 < j exist.Proof. The fun
tion f in A1 produ
es a set of intervals that do not overlap ea
hother. The algorithm A1 wastes all intervals that overlap at least one of them,so at any iteration of Step 2 the intervals remained in I are guaranteed not tooverlap any interval
hosen in S. It is suÆ
ient to the
onditions 1 and 2.The
ondition 3
laims that any interval hi; j; ki 2 S longer than three isexa
tly divided into two left-aligned and right-aligned intervals either in S orof length one. Any interval stri
tly
ontained in hi; j; ki
oin
ides to or
an be
ontained in either a left-aligned or a right-aligned interval whi
h
an be as longas possible. Also an interval
over for hi; j; ki must in
lude all possible intervals

that are longer than one and do not overlap ea
h other. So an interval
over hastwo left-aligned and right-aligned intervals that exa
tly divides hi; j; ki into twointervals. 2The next lemma shows that the fun
tion f guarantees an output
ontainpoints no less than 13 times the best.Lemma 4. Let I be the set of un
overed intervals in I(w) and P be the set ofall the start-points and end-points of intervals in I. Then p(f(k; I)) � 13 � p(I 0)for any I 0 � I(k), where p(S) for S � I refers the
ardinality of the set fi 2 P j9t 2 S [t
ontains i ℄g.Proof. Ea
h repetition of the fun
tion
hose an interval that
ontains the largestnumber of points among intervals that overlap (and is identi
al) to the left-mostone. Let ti and ti+1 be non-overlapping intervals of w(k) that have been
hosenat ith and i + 1th iterations, respe
tively. Then the number of points that arein between ti and ti+1 and
an be
ontained by intervals of w(k) is at most thetotal number of points
ontained by ti and ti+1, be
ause all of those remainedpoints must be
ontained in two intervals t0i and t0i+1 that overlap to ti and ti+1,respe
tively. Therefore the number of start-points and end-points of remainedintervals whi
h are
ontained in intervals of w(k) is at most three times thenumber of points
ontained in the output of f(k; I). 2Using the above lemma we
an show the next lemma whi
h derives the upperbound of the number of intervals
overed by intervals of w(k) at one iteration ofea
h hth phase.Lemma 5. For ea
h hth phase and ea
h set I(k) of intervals of w(k), the numberof intervals in Xh [� � � [X1
overed by the intervals in I(k) is less than 9h.Proof. We set I = Xh [� � � [X1 for short, whi
h is the set of all intervals not
overed yet. Let P be the set of all the start-points and end-points of intervalsin I .For any i and j with i < j, it is
lear that i; j 2 P i� there is an intervalhi; j; k0i in I . An interval hi; j; k0i is removed from I only if either it is
hosen oran interval overlapping it is
hosen. Thus the number of intervals in I
overedby I(k) is at most maxk = p(I(k)) � (p(I)� p(I(k))).On the other hand, by using Lemma 4, the number of intervals in I
overedby the set returned by f(k; I) on hth phase ish � p(f(k; I)) � (P (I)� p(f(k; I))) � 13p(I(k)) � (p(I)� 13p(f(k; I))) � 19maxk .Hen
e the number of intervals in I
overed by intervals in I(k) is at most 9heven if we
hose all the intervals in I(k). 2Theorem 1. Let Copt be an optimum solution for an instan
e of Min IntervalCover and CA1 be the output of algorithm A1 for the same instan
e for a stringw. Then it holds that size(CA1)=size(Copt) � 9(1 + 2 ln jwj).

Proof. Again let I = Xh [� � � [X1 be the set of all intervals not
overed at hthphase yet. By lemma 5, at any iteration of hth phase, no more than 9h intervalsare
overed by intervals of I(k) for any k. Thus in order to
over all the intervalsin I , the intervals for at least jI j=9h di�erent indexes k are needed. Thus we
anshow the upper bound of size(CA1)=size(Copt) by the following analysis like [3℄.For ea
h h = 1; : : : ;m and m = jwj2,size(Copt) � jI j9h = h`h + � � �+ `19h :From this relation,(12 + 13 + � � �+ 1m) � size(Copt) � 19 m�1Xg=1 g`g(1g � 1m):By using Lemma 5 again, we obtain(1 + 12 + � � �+ 1m) � size(Copt) � 19m mXg=1 g`g + 19 m�1Xg=1 g`g(1g � 1m)= 19 mXg=1 `g = 19 � size(CA1):Therefore size(CA1)=size(Copt) = 9(1 + lnm) = 9(1 + 2 ln jwj). 23.3 Constru
tion of grammarsIn this subse
tion we present the algorithm A2 whi
h
omputes a small SLP froman output of A2 for input string w. By Lemma 3, we
an regard any output ofCA1 as a binary tree TA1 su
h that the yield of it is w, where the yield of a treeis the
on
atenation of all leaves from the left to right order.Let V be the set of all the nodes of TA1 and TA1(v) be the subtree rooted byv 2 V . Let yield(v) be the yield of TA1(v) and ℄TA1 = jfyield(v) j v 2 V gj. Inparti
ular yield(T) denotes yield(v) for the root v of T .Lemma 6. For ea
h input string w for A1, it holds that ℄TA1 = size(CA1).Proof. Let w[i; j℄ = w(k) be a substring of w. If there is a node v 2 V su
h thatyield(v) = w(k) and the left most and right most leaves of TA1(v) is i and j,respe
tively, then it holds that hi; j; ki 2 CA1, and
learly, the
onverse dire
tionis also true. 2The aim of A2 is to
onstru
t a tree T 0 su
h that the number of di�erentsubtrees is at most size(CA1). This
ondition is equivalent to the following
laim.Su
h a tree T 0 satisfying the
laim dire
tly derives the derivation tree of the SLPG = (�;N; P) for jN j � size(CA1), and thus,G is at most O(logn) times greaterthan Gopt by Theorem 1.

Claim. For any nodes u and v of T 0, yield(u) = yield(v) i� yield(u1) = yield(v1)and yield(u2) = yield(v2) for the left
hildren u1 of u and v1 of v, and the right
hildren u2 of u and v2 of v.Example 3. In this example we illustrate the above
laim by the string w =ababaaba. The following parenthesized strings w1 and w2
orrespond to thederivation trees of grammars for w.w1 = (((a(ba))(ba))((ab)a)); w2 = (((a(ba))(ba))(a(ba))).The number of di�erent yields in w1 and in w2 is six and four, respe
tively. Thetree w2 is obtained by repla
ing the subtree ((ab)a)) of w1 with (a(ba)). Thetree w2 satis�es the
laim and it
orresponds to the smallest SLP.1 Algorithm A2 for a binary tree TA1 returned by A1 for a string w.2 Step 1. Let T TA1 and let V be the set of nodes in T .3 Step 2. Sele
t ea
h w(k) in lexi
ographi
ally small order and do the following:4 (a) Compute V 0 = fv 2 V j yield(v) = w(k)g.5 (b) Find a smallest ℄T (v) and repla
e T (v0) by T (v) for all v0 2 V 0.6 Step 3. Output the tree TA2 T .Fig. 3. Algorithm for minimizing the number of di�erent subtrees of input tree byrepla
ing subtrees.Lemma 7. The algorithm A2 always terminates and the output tree T satis�esthe
laim.Proof. Sin
e Step 2 in A2 is exe
uted at most jwj times, A2 terminates forany input. For the output tree T of A2, we show that T satis�es the
laim byindu
tion on ith iteration of Step 2. For i = 1, there are only two types of binarytrees su
h that their yield are w(k) for sele
ted substring w(k) of length three.Then all su
h threes are repla
ed by one of them. Thus the
laim is true fori = 1. We assume the hypothesis on ith iteration of Step 2 and let w(k) be thesubstring sele
ted i+ 1th iteration of Step 2. If yield(v) = w(k) for v 2 V , thenv has exa
tly two
hildren v1 and v2 su
h that w(k) = w1 � w2, yield(v1) = w1,and yield(v2) = w2. Sin
e w1 and w2 are sele
ted in Step 2 before w(k), bythe assumption, the
laim holds for all internal nodes in T (v1) and T (v1). Inthe i+ 1th iteration, a node v0 whi
h minimizes ℄T (v0) is found and all T (v) isrepla
ed if yield(v) = w(k). Then all repla
ed T (v) also satisfy the
laim. Hen
ethe proof of this indu
tion is
ompleted. 2Theorem 2. Min Admissible Grammar is approximable within O(log jwj)for every string w.

Proof. Let CA1 be the output of A1 for an input string w and TA1 be the
or-responding tree. Let TA2 be the output of A2 for input TA1 and G = (�;N; P)be the SLP equivalent to TA2. By Lemma 7, jN j = ℄(TA2). Thus, sin
e ℄(TA2) �℄(TA1) and ℄(TA1) = size(CA1), we obtain jN j � size(CA1). Therefore by The-orem 1 and Lemma 2, we
an show that size(G)=size(Gopt) � 9(1 + 2 ln jwj) =O(log jwj) for a optimum Gopt. 24 Con
lusionWe have investigated the approximability ofMin Admissible Grammar knownto be APX-hard. For this problem, we have presented the polynomial-timeO(log n)-approximation algorithm. Its performan
e ratio is exponentially smallerthan the previously known results. However it still remains open whether MinAdmissible Grammar is in APX, i.e. it is approximable within a
onstant.More general
ompression s
heme
ollage system is presented in [4℄ in whi
hk-times repetition of a nonterminal and aÆx trun
ation of a string representedby a nonterminal are allowed as well as
on
atenation of symbols. Collage system
overs LZ77 s
heme while grammar-based
ompression does not. So one of ourfuture works is to investigate the approximability of the optimization problemwith respe
t to
ollage system.Referen
es1. G. Ausiello, P. Cres
enzi, G. Gambosi, V. Kann, A. Mar
hetti-Spa

amela, andM. Protasi. Complexity and approximation:
ombinatorial optimization problemsand their approximability properties.Springer, 1999.2. S. De Agostino and J. A. Storer. On-line versus o�-line
omputation in dynami
text
ompression. Inform. Pro
ess. Lett., 59:169{174, 1996.3. D. S. Johnson. Approximation algorithms for
ombinatorial problems. J. Computerand System S
ien
e, 9:256{278, 1974.4. T. Kida, Y. Shibata, M. Takeda, A. Shinohara, and S. Arikawa. Collage system:a unifying framework for
ompressed pattern mat
hing. Theoret. Comput. S
i.,2001. (to appear).5. J. C. Kie�er and E. Hui Yang. Grammar-based
odes: a new
lass of universallossless sour
e
odes. IEEE Trans. on Inform. Theory, 46(3):737{754, 2000.6. J. C. Kie�er, E.-H. Yang, G. Nelson, and P. Cosman. Universal lossless
ompressionvia multilevel pattern mat
hing. IEEE Trans. Inform. Theory, IT-46(4), 1227{1245, 2000.7. N. J. Larsson and A. Mo�at. O�ine di
tionary-based
ompression. In Pro
. DataCompression Conferen
e (DCC'99), pages 296{305. IEEE Computer So
iety, 1999.8. E. Lehman and A. Shelat. Approximation algorithms for grammar-based
ompres-sion. In Pro
. 13th Ann. ACM-SIAM Sympo. on Dis
rete Algorithms, 2002. (toappear).9. M. Lothaire. Combinatori
s on words, volume 17 of En
y
lopedia of Mathemati
sand Its Appli
ations. Addison-Wesley, 1983.

10. C. Nevill-Manning and I. Witten. Compression and explanation using hierar
hi
algrammars. Computer Journal, 40(2/3):103{116, 1997.11. C. Nevill-Manning and I. Witten. Identifying hierar
hi
al stru
ture in sequen
es:a linear-time algorithm. J. Arti�
ial Intelligen
e Resear
h, 7:67{82, 1997.12. C. H. Papadimitriou. Computational
omplexity. Addison Wesley, 1993.13. D. Salomon. Data
ompression: the
omplete referen
e. Springer, se
ond edition,1998.14. D. Sieling and I. Wegener. Redu
tion of obdds in linear time. Inf. Pro
ess. Lett.,48:139{144, 1993.15. J. Storer and T. Szymanski. Data
ompression via textual substitution. J. Asso
.Comput. Ma
h., 29(4):928{951, 1982.16. J. A. Storer and T. G. Szymanski. The ma
ro model for data
ompressoin. In Pro
.10th Ann. Sympo. on Theory of Computing, pages 30{39, San Diego, California,1978. ACM Press.17. V. V. Vazirani. Approximation algorithm. Springer, 2001.18. T. A. Wel
h. A te
hnique for high performan
e data
ompression. IEEE Comput.,17:8{19, 1984.19. E. Hui Yang and J. C. Kie�er. EÆ
ient universal lossless data
ompression algo-rithms based on a greedy sequential grammar transform{part one: without
ontextmodels. IEEE Trans. on Inform. Theory, 46(3):755{777, 2000.20. J. Ziv and A. Lempel. A universal algorithm for sequential data
ompression.IEEE Trans. on Inform. Theory, IT-23(3):337{349, 1977.21. J. Ziv and A. Lempel. Compression of individual sequen
es via variable-rate
oding.IEEE Trans. on Inform. Theory, 24(5):530{536, 1978.

