
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Ο(log n)-Approximation Algorithm for Grammar-
Based Compression

Sakamoto, Hiroshi
Department of Informatics, Kyushu University

Shimozono, Shinichi
Department of Artificial Intelligence, Kyushu Institute of Technology

Shinohara, Ayumi
Department of Informatics, Kyushu University

Takeda, Masayuki
Department of Informatics, Kyushu University

https://hdl.handle.net/2324/3049

出版情報：DOI Technical Report. 201, 2002-01. Department of Informatics, Kyushu University
バージョン：
権利関係：

O(log n)-Approximation Algorithm forGrammar-Based Compression(This paper is submitted to trak A)Hiroshi Sakamotoy, Shinihi Shimozonoz, Ayumi Shinoharay,Masayuki TakedayyDepartment of Informatis, Kyushu UniversityFukuoka 812-8581, JapanzDepartment of Arti�ial Intelligene, Kyushu Institute of TehnologyIizuka 820-8502, Japanfhiroshi, ayumi, takedag�i.kyushu-u.a.jpsin�ai.kyuteh.a.jpAbstrat. In the grammar-based ompression sheme, a given text stringis transformed into a ontext-free grammar G suh that L(G) = fwgand then enoded in an appropriate manner. The ompression is thusregarded as an optimization problem of minimizing the size of G fora given string w of length n. For the APX-hard problem an O(log n)-approximation algorithm with arbitrary string is presented. The previ-ously known best approximation ratio was O(pn= log n) [8℄.Keywords: grammar-based ompression, approximation algorithm, dataompression, string algorithm.
Correspondene:Dr. Hiroshi SakamotoDepartment of Informatis, Kyushu Univ.hiroshi�i.kyushu-u.a.jpphone: +81-92-642-2693, fax: +81-92-642-2698

1 IntrodutionText ompression is a task of reduing the amount of spae needed to storetext �les on omputers or of reduing the amount of time taken to transmitinformation over a hannel of given bandwidth. Users want to redue the size oftheir data as small as possible, but want to minimize the time needed for thistask. The main riteria for hoosing ompression methods are therefore the om-pression ratio and the ompression time. Many studies have been undertaken todevelop a new ompression method for improving the ompression ratio and/orthe ompression time. The Lempel-Ziv algorithms [20, 21℄, often referred to asLZ77 and LZ78, and their variants (e.g., [18, 15℄) are most widely-used universallossless ompression algorithms, together with the arithmeti oding algorithms(see, e.g., [13℄).Finding the minimum representation of a given text string is regarded as aombinatorial optimization problem. One interesting topi is to analyze the timeomplexity of this optimization problem under some reasonable enoding sheme.Storer and Szymanski [16℄ presented several abstrat ompression shemes, anddisussed the intratabilities of the minimization problems under the shemes.Espeially, one of the shemes is a generalization of the LZ77 ompression, andthe orresponding minimization problem was shown to be NP-hard. Also, DeAgostino and Storer [2℄ generalized the LZ78 sheme and then proved that theomputation of the optimum parsing is NP-hard.Reently, there have emerged new ompression algorithms, suh as Sequitur[11, 10℄ and Re-Pair [7℄, whih often outperform the Lempel-Ziv family in theompression ratio omparison. Although they require muh more ompressiontime than the Lempel-Ziv family, it beomes not so ruial due to the reentprogress in omputer tehnology. These ompression methods an be general-ized into a new ompression sheme alled grammar transform (see [5℄). In thissheme, a text string w is transformed into a ontext-free grammar G that gen-erates the language fwg, and then G is enoded in some appropriate manner.A ontext-free grammar that generates a single string is said to be admissible.Yang and Kie�er [19℄ presented a grammar transform algorithm, and showedthat the algorithm is asymptotially optimum (i.e. universal) for a broad lassof soures, inluding stationary, ergodi soures.Very reently, Lehman and Shelat [8℄ showed that even approximating thesize of the smallest grammar within a small onstant fator is NP-hard, andestablished upper and lower bounds on the approximation ratios of four existinggrammar-based ompression algorithms. In partiular, the BISECTION algo-rithm [6℄ has the upper bound O(pn= logn) and the lower bound
(pn= logn)for the size n of an instane string.It has not been known the tehnique for the relative approximation of thisproblem. In fat all the upper bounds of known algorithms were proved by theabsolute error. So in this paper we introdue the method for the relative ompar-ison whih enable us to analyze the performane ratio of an optimum solutionand an algorithm for a same instane. Consequently, for the problem Min Ad-missible Grammar, we present a polynomial-time algorithm that approximates

the problem within 9(1 + 2 ln jwj) for every string w. This ratio is exponentiallysmaller than the previously known result.The rest of this paper is organized as follows. In Setion 2 we introduesome standard de�nitions for strings and ontext-free grammars, and then de-�ne our minimization problem. In this setion Min Admissible Grammar isredued to a sub-problem for �nding a restrited grammar. The redued problemis equivalent to Min Admissible Grammar with respet to a onstant fator.In Setion 3 the problem Min Interval Cover is de�ned, whih is loselyrelated to the redued Min Admissible Grammar. We present a polynomial-time O(log n)-approximation algorithm for Min Interval Cover and showthat the size of an optimum solution for it is smaller than that for the reduedMin Admissible Grammar. Moreover we present an algorithm that onstrutsan admissible grammar from a solution for Min Interval Cover whose size isat most the size of the solution. Thus our algorithm ahieves the performaneratio O(log n). Setion 4 ontains �nal remarks and states open problems.2 Notions and De�nitionsLet A be a �nite alphabet. The set of all the strings formed from symbols in A,inluding the empty string ", is denoted by A�. The length of a string w 2 A�is denoted by jwj, and w[i℄ with 1 � i � jwj refers to the ith symbol of w.A string w[i; j℄ formed from the symbols from the ith to the jth of w, with1 � i � j � jwj, is said to be a substring of w.Let � and N be �nite alphabets, and we assume a �xed order for eahalphabet. In the following we distinguish these notions and say a symbol in �a terminal (symbol) and a symbol in N a non-terminal (symbol). A ontext-freegrammar (CFG) G = (�;N; P) is a triple where P is a relation between Nand (� [N)+. An element of P is said to be a prodution rule of G, whihrepresents a rewriting rule of symbols in strings over � [N , and is denoted inthe form �! �1 � � ��k. The size size(G) of a grammar G is the total lengths ofprodution rules in P . A ontext-free language L(G) for G is a possibly in�niteset of all the strings derived from the �rst symbol in N with respet to P . Aontext-free grammar is said to be an admissible grammar if the language L(G)produed by G is a singleton set, i.e. jL(G)j = 1. We say an admissible grammarG is a straight-line program if every rule in P implies from a non-terminal to apair of symbols, i.e. is of the form �! X � Y with X;Y 2 � [N .Our target is the following minimization problem.Problem 1. (Min Admissible Grammar)Instane: A string w 2 ��.Solution: An admissible grammar G suh that L(G) = fwg.Measure: The size size(G) of G.From now on, we only onsider the ase where the target grammars arestraight-line program. The following lemma simply tells us that in ontrast tothe hardness of this problem that will be shown it is powerful enough withoutloss of generality.

Lemma 1. For any string w, the size size(G) of a smallest admissible grammarG for w and the size of a smallest straight-line program G0 for w satis�es theinequality size(G0) � 2 � size(G).This an be veri�ed by the fat that every rule with k symbols in its right-hand side an be replaed with at most 2k rules implied from new non-terminalsymbols introdued for eah rules.3 Approximation Algorithm for Min AdmissibleGrammar ProblemIn this setion we present a polynomial-time approximation algorithm for MinAdmissible Grammar onsisting of two algorithms A1 and A2. The algorithmA1 solves minimum interval over problem, whih is a relaxed version of the tar-get problemMin Admissible Grammar. The algorithm A2 reeives an outputof A1 and onstruts an SLP G.3.1 Minimum interval over problemFirst we use the following nonstandard notions for any string w 2 ��.{ Sub2(w) refers the set of all the substrings of w whose lengths are at leasttwo, i.e. Sub2(w) = fw[i; j℄ j 1 � i � j � jwj and j � i+ 1g.{ w(k) refers the kth string in Sub2(w) with respet to the lexiographi orderon ��.{ Int(w) refers the set of all the intervals longer than two, attahed with theorresponding substrings in Sub2(w), i.e. Int(w) = fhi; j; ki j w[i; j℄ = w(k) 2Sub2(w)g.Two integers i and j of hi; j; ki are said to be the start-point and end-pointof the interval, respetively. An integer i0 is said to be ontained by an intervalhi; j; ki if i � i0 � j.De�nition 1. Two intervals are said to be well-parenthesized if (1) the start-point and end-point of one are both ontained by the other, or (2) neither thestart-point nor end-point of one are ontained by the other. Moreover we saythat two intervals overlap if they are not well-parenthesized.Example 1. If the intervals t1 = h2; 4; k1i, t2 = h1; 5; k2i, and t3 = h5; 6; k3i arede�ned for some integers k1, k2, and k3, then t1 and t2 are well-parenthesizedand so is t1 and t3, but t2 and t3 overlap eah other.De�nition 2. Let S and S0 be sets of intervals. We say that S overs S0 if foreah interval t0 2 S0, there exists an interval t 2 S that either oinides t0 oroverlaps t0.

We de�ne in spite ofMin Admissible Grammar the following relaxed prob-lem with an idea of intervals of a string.Problem 2. (Min Interval Cover)Instane: A string w 2 ��.Solution: An interval over C of Int(w), i.e. a subset C � Int(w) of well-parenthesized intervals whih overs Int(w).Measure: The ardinality of fk j hi; j; ki 2 Cg, whih is denoted by size(C).Now we explain how Min Interval Cover relates to Min AdmissibleGrammar by an example below.Example 2. Let w = ababb. Then all w(k)'s are the following nine substrings.Sub2(w) = � w(1) = ab; w(2) = ba; w(3) = bb; w(4) = aba; w(5) = abb;w(6) = bab; w(7) = abab; w(8) = babb; w(9) = w � :The set Int(w) of intervals is de�ned asInt(w) = � h1; 2; 1i; h3; 4; 1i; h2; 3; 2i; h4; 5; 3i;h1; 3; 4i; h3; 5; 5i; h2; 4; 6i; h1; 4; 7i; h2; 5; 8i; h1; 5; 9i� :The following two sets C1 and C2 both over all intervals of Int(w). Howeverthe �rst two elements h2; 3; 2i and h3; 5; 5i of C1 overlap eah other. Thus C1 isnot a solution for the instane. On the other hand, sine all intervals in C2 arewell-parenthesized, C2 is one of solutions.C1 = fh2; 3; 2i; h3; 5; 5i; h1; 4; 7i; h1; 5; 9ig;C2 = fh1; 2; 1i; h3; 4; 1i; h1; 4; 7i; h1; 5; 9ig:The size of an interval over is the number of di�erent indexes k of substringsw(k) attahed to the intervals. In this ase size(C2) = 3. Any pair of intervals inC2 are well-parenthesized. Therefore, from C2 we an straightforwardly onstruta set P = fS ! Ab;A ! BB;B ! abg of prodution rules of an SLP G. Thisgrammar is fortunately a smallest SLP for w.It is easy to see that Min Interval Cover is well-de�ned as follows. Forany SLP G = (�;N; P) for w 2 ��, let IntG(w) be the set of intervals withrespet to G suh thatIntG(w) = fhi; j; ki j � 2 N derives w[i; j℄ = w(k)g:All intervals in IntG(w) is well-parenthesized and IntG(w) overs Int(w), thatis, IntG(w) is an interval over of Int(w). Thus Min Interval Cover has atleast one solution of size at most size(IntG(w)) � jIntG(w)j = jwj � 1.We next estimate for a same instane the sizes of optimum solutions forMinAdmissible Grammar and for Min Interval Cover.

Lemma 2. Let Gopt be a smallest SLP for w 2 ��, and let Copt be a minimuminterval over for Int(w). Then the inequality size(Copt) � 12size(Gopt) holds.Proof. Let G = (�;N; P) be an SLP for w, then obviously IntG(w) is an intervalover of Int(w) and size(IntG(w)) is at most jN j. Sine every rule has size two,generally size(IntG(w)) � jN j = 12size(G) holds. 2The aim of the remained parts of this paper is to show that Min IntervalCover is approximable within O(log n) and a small interval over produes nomore than two times SLP for the same string. We present two algorithms A1and A2 dealing with the diÆulty of aording to the following senario.The algorithm A1 omputes a solution C forMin Interval Cover de�nedby a string of length n. Let Copt be an optimum solution. Then for the solutionC, we show that (1) size(C) is at most O(log n) times greater than size(Copt).Next we present the algorithm A2 whih omputes an SLP G = (�;N; P)from the set C of well-parenthesized intervals and show (2) 12size(G) = jN j �size(C).Let G0opt = (�;N 0opt; P 0opt) and Gopt = (�;Nopt; Popt) be an optimum SLPand admissible grammar for w, respetively. Then, by (1) and (2), and using (3)size(Copt) � jN j0opt, lemma 1 and lemma 2, we an onludesize(G)size(Gopt) � 2 � size(G)size(G0opt) = 2jN jjN 0optj � 2 � size(C)jN 0optj� 2 � size(C)size(Copt) = O(log n):3.2 A greedy algorithm for �nding interval oversThe algorithm A1 is presented in Fig. 1 and the funtion f alled in line 4 ofA1 is also presented in Fig. 2. The algorithm A1 greedily �nds a set S � I(k) ofwell-parenthesized intervals for a �xed index k so that S over as many remainedintervals as possible. In the following we show that A1 �nds an interval over forany instane w whose size is no greater than O(log n) times an optimum.Let m be the size of xk found in Step 2 (b) at the �rst iteration of Step 2,i.e. the largest number jxk j during an exeution of the algorithm. We say, for1 � h � m, all the iterations of Step 2 where the size jxk j equals h the hth phaseof the algorithm. The notion `h refers to the number of iterations in the hthphase, i.e. the number of indies k 2 Int(w) that are hosen in the hth phase.Let Xh be the union of all xk's subtrated from I in the hth phase. Clearly,jXhj = h � `h holds.The funtion f(k; I) shown in the following omputes a maximal set of in-tervals of w(k) in I that overs points in P as many as possible and are notoverlapping eah other. Then its result Nk is adopted into S and intervals in xkthat annot be used in an SLP with them are wasted.Now let us see that the following lemma holds.

1 Algorithm A1 for minimum interval over problem of input string w.2 Step 1. Let S ;, I Int(w), and K f1; : : : ; jSub2(w)jg.3 Step 2. While I 6= ; do the following:4 (a) For every k 2 K, ompute the set Nk = f(k; I) and5 alulate the set xk = ft 2 I j 9u 2 Nk that overlaps tg:6 =� The funtion f(k; I) is de�ned in Fig. 2. �=7 (b) Find k that maximizes jxkj.8 () Let S S [Nk, I I n xk, and K K n fkg.9 Step 3. Output S.Fig. 1. Algorithm for Min Interval Cover.1 Funtion f(k; I) for an index k and a set I � Int(w) of unovered intervals.2 Step 1. Let N ;, let I(k) be the set of intervals of w(k) in I, and3 let P � Z+ be the set of all start-points and end-points of intervals in I.4 Step 2. While I(k) 6= ; do the following:5 (a) Let t be the left-most interval in I(k) and T fu 2 I(k) j t overlaps ug.6 (b) Choose an interval t0 2 T that maximizes jP \ t0j, then let N [ft0g and7 I(k) I(k) n T .8 Step 3. Output N .Fig. 2. Funtion alled by A1 for �nding a set of well-parenthesized intervals so thatit overs as many as remained intervals possible.Lemma 3. Let S be the output of A1 for an input string w. Then the followingthree onditions hold:1. Algorithm A1 always terminates.2. S overs I(w) and all intervals in S are well-parenthesized.3. For any interval hi; j; ki 2 S with jwkj � 3, either(a) hi; j � 1; k0i 2 S,(b) hi+ 1; j; k0i 2 S, or() hi; i0; k0i; hi0 + 1; j; k0i 2 S with i < i0 < j exist.Proof. The funtion f in A1 produes a set of intervals that do not overlap eahother. The algorithm A1 wastes all intervals that overlap at least one of them,so at any iteration of Step 2 the intervals remained in I are guaranteed not tooverlap any interval hosen in S. It is suÆient to the onditions 1 and 2.The ondition 3 laims that any interval hi; j; ki 2 S longer than three isexatly divided into two left-aligned and right-aligned intervals either in S orof length one. Any interval stritly ontained in hi; j; ki oinides to or an beontained in either a left-aligned or a right-aligned interval whih an be as longas possible. Also an interval over for hi; j; ki must inlude all possible intervals

that are longer than one and do not overlap eah other. So an interval over hastwo left-aligned and right-aligned intervals that exatly divides hi; j; ki into twointervals. 2The next lemma shows that the funtion f guarantees an output ontainpoints no less than 13 times the best.Lemma 4. Let I be the set of unovered intervals in I(w) and P be the set ofall the start-points and end-points of intervals in I. Then p(f(k; I)) � 13 � p(I 0)for any I 0 � I(k), where p(S) for S � I refers the ardinality of the set fi 2 P j9t 2 S [t ontains i ℄g.Proof. Eah repetition of the funtion hose an interval that ontains the largestnumber of points among intervals that overlap (and is idential) to the left-mostone. Let ti and ti+1 be non-overlapping intervals of w(k) that have been hosenat ith and i + 1th iterations, respetively. Then the number of points that arein between ti and ti+1 and an be ontained by intervals of w(k) is at most thetotal number of points ontained by ti and ti+1, beause all of those remainedpoints must be ontained in two intervals t0i and t0i+1 that overlap to ti and ti+1,respetively. Therefore the number of start-points and end-points of remainedintervals whih are ontained in intervals of w(k) is at most three times thenumber of points ontained in the output of f(k; I). 2Using the above lemma we an show the next lemma whih derives the upperbound of the number of intervals overed by intervals of w(k) at one iteration ofeah hth phase.Lemma 5. For eah hth phase and eah set I(k) of intervals of w(k), the numberof intervals in Xh [� � � [X1 overed by the intervals in I(k) is less than 9h.Proof. We set I = Xh [� � � [X1 for short, whih is the set of all intervals notovered yet. Let P be the set of all the start-points and end-points of intervalsin I .For any i and j with i < j, it is lear that i; j 2 P i� there is an intervalhi; j; k0i in I . An interval hi; j; k0i is removed from I only if either it is hosen oran interval overlapping it is hosen. Thus the number of intervals in I overedby I(k) is at most maxk = p(I(k)) � (p(I)� p(I(k))).On the other hand, by using Lemma 4, the number of intervals in I overedby the set returned by f(k; I) on hth phase ish � p(f(k; I)) � (P (I)� p(f(k; I))) � 13p(I(k)) � (p(I)� 13p(f(k; I))) � 19maxk .Hene the number of intervals in I overed by intervals in I(k) is at most 9heven if we hose all the intervals in I(k). 2Theorem 1. Let Copt be an optimum solution for an instane of Min IntervalCover and CA1 be the output of algorithm A1 for the same instane for a stringw. Then it holds that size(CA1)=size(Copt) � 9(1 + 2 ln jwj).

Proof. Again let I = Xh [� � � [X1 be the set of all intervals not overed at hthphase yet. By lemma 5, at any iteration of hth phase, no more than 9h intervalsare overed by intervals of I(k) for any k. Thus in order to over all the intervalsin I , the intervals for at least jI j=9h di�erent indexes k are needed. Thus we anshow the upper bound of size(CA1)=size(Copt) by the following analysis like [3℄.For eah h = 1; : : : ;m and m = jwj2,size(Copt) � jI j9h = h`h + � � �+ `19h :From this relation,(12 + 13 + � � �+ 1m) � size(Copt) � 19 m�1Xg=1 g`g(1g � 1m):By using Lemma 5 again, we obtain(1 + 12 + � � �+ 1m) � size(Copt) � 19m mXg=1 g`g + 19 m�1Xg=1 g`g(1g � 1m)= 19 mXg=1 `g = 19 � size(CA1):Therefore size(CA1)=size(Copt) = 9(1 + lnm) = 9(1 + 2 ln jwj). 23.3 Constrution of grammarsIn this subsetion we present the algorithm A2 whih omputes a small SLP froman output of A2 for input string w. By Lemma 3, we an regard any output ofCA1 as a binary tree TA1 suh that the yield of it is w, where the yield of a treeis the onatenation of all leaves from the left to right order.Let V be the set of all the nodes of TA1 and TA1(v) be the subtree rooted byv 2 V . Let yield(v) be the yield of TA1(v) and ℄TA1 = jfyield(v) j v 2 V gj. Inpartiular yield(T) denotes yield(v) for the root v of T .Lemma 6. For eah input string w for A1, it holds that ℄TA1 = size(CA1).Proof. Let w[i; j℄ = w(k) be a substring of w. If there is a node v 2 V suh thatyield(v) = w(k) and the left most and right most leaves of TA1(v) is i and j,respetively, then it holds that hi; j; ki 2 CA1, and learly, the onverse diretionis also true. 2The aim of A2 is to onstrut a tree T 0 suh that the number of di�erentsubtrees is at most size(CA1). This ondition is equivalent to the following laim.Suh a tree T 0 satisfying the laim diretly derives the derivation tree of the SLPG = (�;N; P) for jN j � size(CA1), and thus,G is at most O(logn) times greaterthan Gopt by Theorem 1.

Claim. For any nodes u and v of T 0, yield(u) = yield(v) i� yield(u1) = yield(v1)and yield(u2) = yield(v2) for the left hildren u1 of u and v1 of v, and the righthildren u2 of u and v2 of v.Example 3. In this example we illustrate the above laim by the string w =ababaaba. The following parenthesized strings w1 and w2 orrespond to thederivation trees of grammars for w.w1 = (((a(ba))(ba))((ab)a)); w2 = (((a(ba))(ba))(a(ba))).The number of di�erent yields in w1 and in w2 is six and four, respetively. Thetree w2 is obtained by replaing the subtree ((ab)a)) of w1 with (a(ba)). Thetree w2 satis�es the laim and it orresponds to the smallest SLP.1 Algorithm A2 for a binary tree TA1 returned by A1 for a string w.2 Step 1. Let T TA1 and let V be the set of nodes in T .3 Step 2. Selet eah w(k) in lexiographially small order and do the following:4 (a) Compute V 0 = fv 2 V j yield(v) = w(k)g.5 (b) Find a smallest ℄T (v) and replae T (v0) by T (v) for all v0 2 V 0.6 Step 3. Output the tree TA2 T .Fig. 3. Algorithm for minimizing the number of di�erent subtrees of input tree byreplaing subtrees.Lemma 7. The algorithm A2 always terminates and the output tree T satis�esthe laim.Proof. Sine Step 2 in A2 is exeuted at most jwj times, A2 terminates forany input. For the output tree T of A2, we show that T satis�es the laim byindution on ith iteration of Step 2. For i = 1, there are only two types of binarytrees suh that their yield are w(k) for seleted substring w(k) of length three.Then all suh threes are replaed by one of them. Thus the laim is true fori = 1. We assume the hypothesis on ith iteration of Step 2 and let w(k) be thesubstring seleted i+ 1th iteration of Step 2. If yield(v) = w(k) for v 2 V , thenv has exatly two hildren v1 and v2 suh that w(k) = w1 � w2, yield(v1) = w1,and yield(v2) = w2. Sine w1 and w2 are seleted in Step 2 before w(k), bythe assumption, the laim holds for all internal nodes in T (v1) and T (v1). Inthe i+ 1th iteration, a node v0 whih minimizes ℄T (v0) is found and all T (v) isreplaed if yield(v) = w(k). Then all replaed T (v) also satisfy the laim. Henethe proof of this indution is ompleted. 2Theorem 2. Min Admissible Grammar is approximable within O(log jwj)for every string w.

Proof. Let CA1 be the output of A1 for an input string w and TA1 be the or-responding tree. Let TA2 be the output of A2 for input TA1 and G = (�;N; P)be the SLP equivalent to TA2. By Lemma 7, jN j = ℄(TA2). Thus, sine ℄(TA2) �℄(TA1) and ℄(TA1) = size(CA1), we obtain jN j � size(CA1). Therefore by The-orem 1 and Lemma 2, we an show that size(G)=size(Gopt) � 9(1 + 2 ln jwj) =O(log jwj) for a optimum Gopt. 24 ConlusionWe have investigated the approximability ofMin Admissible Grammar knownto be APX-hard. For this problem, we have presented the polynomial-timeO(log n)-approximation algorithm. Its performane ratio is exponentially smallerthan the previously known results. However it still remains open whether MinAdmissible Grammar is in APX, i.e. it is approximable within a onstant.More general ompression sheme ollage system is presented in [4℄ in whihk-times repetition of a nonterminal and aÆx trunation of a string representedby a nonterminal are allowed as well as onatenation of symbols. Collage systemovers LZ77 sheme while grammar-based ompression does not. So one of ourfuture works is to investigate the approximability of the optimization problemwith respet to ollage system.Referenes1. G. Ausiello, P. Cresenzi, G. Gambosi, V. Kann, A. Marhetti-Spaamela, andM. Protasi. Complexity and approximation: ombinatorial optimization problemsand their approximability properties.Springer, 1999.2. S. De Agostino and J. A. Storer. On-line versus o�-line omputation in dynamitext ompression. Inform. Proess. Lett., 59:169{174, 1996.3. D. S. Johnson. Approximation algorithms for ombinatorial problems. J. Computerand System Siene, 9:256{278, 1974.4. T. Kida, Y. Shibata, M. Takeda, A. Shinohara, and S. Arikawa. Collage system:a unifying framework for ompressed pattern mathing. Theoret. Comput. Si.,2001. (to appear).5. J. C. Kie�er and E. Hui Yang. Grammar-based odes: a new lass of universallossless soure odes. IEEE Trans. on Inform. Theory, 46(3):737{754, 2000.6. J. C. Kie�er, E.-H. Yang, G. Nelson, and P. Cosman. Universal lossless ompressionvia multilevel pattern mathing. IEEE Trans. Inform. Theory, IT-46(4), 1227{1245, 2000.7. N. J. Larsson and A. Mo�at. O�ine ditionary-based ompression. In Pro. DataCompression Conferene (DCC'99), pages 296{305. IEEE Computer Soiety, 1999.8. E. Lehman and A. Shelat. Approximation algorithms for grammar-based ompres-sion. In Pro. 13th Ann. ACM-SIAM Sympo. on Disrete Algorithms, 2002. (toappear).9. M. Lothaire. Combinatoris on words, volume 17 of Enylopedia of Mathematisand Its Appliations. Addison-Wesley, 1983.

10. C. Nevill-Manning and I. Witten. Compression and explanation using hierarhialgrammars. Computer Journal, 40(2/3):103{116, 1997.11. C. Nevill-Manning and I. Witten. Identifying hierarhial struture in sequenes:a linear-time algorithm. J. Arti�ial Intelligene Researh, 7:67{82, 1997.12. C. H. Papadimitriou. Computational omplexity. Addison Wesley, 1993.13. D. Salomon. Data ompression: the omplete referene. Springer, seond edition,1998.14. D. Sieling and I. Wegener. Redution of obdds in linear time. Inf. Proess. Lett.,48:139{144, 1993.15. J. Storer and T. Szymanski. Data ompression via textual substitution. J. Asso.Comput. Mah., 29(4):928{951, 1982.16. J. A. Storer and T. G. Szymanski. The maro model for data ompressoin. In Pro.10th Ann. Sympo. on Theory of Computing, pages 30{39, San Diego, California,1978. ACM Press.17. V. V. Vazirani. Approximation algorithm. Springer, 2001.18. T. A. Welh. A tehnique for high performane data ompression. IEEE Comput.,17:8{19, 1984.19. E. Hui Yang and J. C. Kie�er. EÆient universal lossless data ompression algo-rithms based on a greedy sequential grammar transform{part one: without ontextmodels. IEEE Trans. on Inform. Theory, 46(3):755{777, 2000.20. J. Ziv and A. Lempel. A universal algorithm for sequential data ompression.IEEE Trans. on Inform. Theory, IT-23(3):337{349, 1977.21. J. Ziv and A. Lempel. Compression of individual sequenes via variable-rate oding.IEEE Trans. on Inform. Theory, 24(5):530{536, 1978.

