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1 IntrodutionBy rapid progress of network and storage tehnolo-gies, a huge amount of eletroni data suh as Webpages and XML data has been available on intra andinternet. These eletroni data are heterogeneousolletion of ill-strutured data that have no rigidstrutures, and often alled semi-strutured data [1℄.Hene, there have been inreasing demands for au-tomati methods for extrating useful information,partiularly, for disovering rules or patterns fromlarge olletions of semi-strutured data, namely,semi-strutured data mining [7, 11, 16, 17, 19, 25℄.In this paper, we model suh semi-strutured dataand patterns by labeled ordered trees, and study theproblem of disovering all frequent tree-like patternsthat have at least a minsup support in a given ol-letion of semi-strutured data.We present an eÆient pattern mining algorithmFind-Freq-Trees for disovering all frequent treepatterns from a large olletion of labeled orderedtrees.Previous algorithms for �nding tree-like patterns ba-sially adopted a straightforward generate-and-teststrategy [17, 24℄. In ontrast, our algorithm Find-Freq-Trees is an inremental algorithm that si-multaneously onstruts the set of frequent patternsand their ourrenes level by level. For the purpose,we devise an eÆient enumeration tehnique for or-dered trees by generalizing the itemset enumerationtree by Bayardo [9℄.The key of our method is the notion of the rightmostexpansion, a tehnique to grow a tree by attahingnew nodes only on the rightmost branh of the tree.Furthermore, we show that it is suÆient to main-tain only the ourrenes of the rightmost leaves toeÆiently implement inremental omputation.Combining the above tehniques, we show that ouralgorithm sales almost linearly in the total size ofmaximal tree patterns ontained in an input olle-tion slightly depending on the size of the longest pat-tern. We also developed a pruning tehnique thatsigni�antly speeds-up the searh.Experiments on real-world datasets show that theour algorithm runs eÆiently on real-life datasetsombined with a proposed pruning tehnique in the

f person: f name:Alan,tel:7786,tel:2133 g,person: fname: ffirst:Sara, last:Green g,tel:6877 g,person: f name:Fred, tel:6312, age:33 gg Figure 1: semi-strutured data<person><name>Alan</name><tel>7786</tel><tel>2133</tel></person><person><name><first>Sara</first><last>Green</last></name><tel>6877</tel></person><person><name>Fred</name><tel>6312</tel><age>33</age></person>Figure 2: a XML doumentwide range of parameters.1.1 Related WorksSemi-strutured data is suh data represented as atree-like struture as shown in Fig. 1. There area number of studies on a semi-strutured database.For example, a onsiderable amount of studies onquery languages and index strutures are exeuted[2, 10, 22℄. On the other hand, the lasses of taggedtexts suh as HTML and XML [21℄, as shown inFig. 2 an also be regarded as semi-strutured data.There are standardization ativities of query lan-guages and data strutures of XML[21, 23℄.But, there are still not many researhes about datamining for semi-strutured data. Wang and Liu[25℄onsidered a shema disovery problem for semi-strutured data, and presented the algorithm for dis-overing assoiation rules where an item is a path.Miyahara et al.[17℄ also onsidered the same prob-lem based on the speial tree-like patterns, alled1
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12Figure 3: a databasetag tree patterns.Several mining methods for a tree or a graph stru-ture are proposed although they are not diretlyappliable to semi-strutured data mining. Wang,Shapiro, Shasha et al.[24℄ devised the algorithm fordisovering approximately ommon subtree, and ap-plied it to a motif disovery in multiple RNA se-ondary strutures in genomis. Dehaspe et al.[11℄presented the eÆient algorithm solving the frequentsubstruture disovery problem for labeled graphs,and applied it to the problem of funtion preditionof hemial ompounds. Matsuda and Motoda etal.[16℄ presented the algorithm for extrating typi-al patterns from a direted graph. Their algorithmuses a method alled the graph-based indution.In the assoiation rule disovery problem, Agrawalet al.[4, 5℄ developed an algorithm, alled Apriori,whih is a popular data mining problem. Their al-gorithm disovers frequent itemsets eÆiently by us-ing a subset lattie of an itemset. Atually the algo-rithms [11, 25℄ desribed above are based on Apriori.But it is said that the eÆieny of Apriori slowdownsif a database ontains long itemsets.To ope with this problem, Bayardo[9℄ proposedthe algorithm disovering long itemsets eÆiently.The algorithm is based on the itemset enumera-tion tehnique, alled set-enumeration tree, whihenumerates all the frequent itemsets without repe-tition. Sese and Morishita[20℄ presented the algo-rithm disovering optimal itemsets, based on theset-enumeration tree and a method of merging o-urrene lists of eah itemset. In addition to theseworks, there are many works that omplement Apri-ori algorithm [3, 4, 5, 9, 14, 20℄ Our results gener-alizes the tehniques of [9℄ and [20℄ above, and thusan be regarded as a tree-ounter part of the seond

generation of the assoiation mining tehniques.1.2 OrganizationThe rest of this paper is organized as follows. InSetion 2, we prepare basi notions and de�nitions.In Setion 3, we desribe our searh strategy usedfor enumerating all labeled ordered tree without du-pliates. In Setion 3, we present our algorithm fordisovering all frequent patterns from a olletionof labeled ordered trees using inremental updatetehnique of the ourrene information ombinedwith the enumeration tehnique shown in the previ-ous setion. In Setion 4, we desribe how we anspeed-up the searh by using pruning tehniques. InSetion 5, we run experiments on real datasets andshow the eÆieny and the sale-up properties of ourmining algorithm. In Setion 6, we onlude and givefuture works.2 PreliminariesIn this setion, we introdue basi notions and de�-nitions on semi-strutured data and our data miningproblems.2.1 Labeled Ordered TreesFor a set A, #A denotes the ardinality of A. LetL = fl; l0; l1; : : :g be a �nite set of labels orrespond-ing to attributes in semi-strutured data or tags intagged texts. We model semi-strutured databasesand patterns over them with labeled ordered trees [6℄de�ned as follows.De�nition 1 A labeled ordered tree on L (anordered tree, for short) is a 6-tuple T =(V;E;L; L; v0;�), where� G = (V;E; v0) is a tree with a root v0, where Vis a �nite set of nodes and E � V 2 is the set ofedges. For a node v 2 V , we denote by paT (v)the parent node of v, and by hT (v) the set ofall the hild nodes of v.� L : V ! L is a labeling funtion that assigns alabel L(v) to eah node v 2 V .� � � V 2 is a binary relation, alled the siblingrelation for T , satisfying the followings: (i) If2
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12Figure 4: a databasenodes v1; v2 2 V have a same parent then v1 �v2 or v2 � v1, (ii) otherwise neither v1 � v2 norv2 � v1. For an internal node, its hildren areordered from left to right as u1 � � � � � un forsome n � 0, where u � v i� u � v but v 6� u.In Fig. 4 and Fig. 5, we show examples of labeledordered trees, where a irle indiates a node and asymbol appears in a irle indiates a label.Let T be a labeled ordered tree. The size of T isde�ned by the number of its nodes jT j = #V . For apath � = (x0; : : : ; xn�1) (n � 0) in T , we de�ne thelength of the path to be j�j = n. For a node v 2 V ,the depth of v, denoted by depth(v), is de�ned asthe length of the path from the root v0 to v. Thedepth of a labeled ordered tree T is the length of thelongest path from the root to some leaf in T . Foran ordered tree T = (V;E;L; L; v0;�), we refer toV;E;L; and � as VT ; ET ; LT ; and �T respetively, ifit is lear from ontext.2.2 Problem StatementA semi-strutured database (a dataset , for short) isa triple D = hD;�; Æi, where� D is an ordered tree on L, and is alled a datatree. We assume that the root v0 of D, has aspeial label that does not belong to L.� � = fd1; : : : ; dmg is a set of doument names.� Æ : VDnfv0g ! � is a doument name funtionde�ned as follows. Let Di be a subtree whoseroot is the i-th hild of v0. Then, Æ is de�nedas the funtion that satis�es Æ(v) = di for allv 2 VDi .
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963 85Figure 5: an ordered tree of normal formIn Fig. 4, we show an example of semi-strutureddatabases. Intuitively, D is a labeled tree obtainedby merging a olletion of labeled trees D1; : : : ;Dm,where eah subtree Di represents a Web page or anXML douments. Thus, we refer to the maximalsubtree of D whose nodes are labeled with the samedoument name as a doument . We de�ne the sizeof D by the total number jjDjj = #VD of its nodes.A labeled ordered tree T of size k � 1 is said to be ofnormal form if it satis�es the following onditions:� The set of the nodes of T is VT = f1; : : : ; kg.� All elements in VT are numbered by preordertraversal [6℄ of T .The following lemma immediately follows from thede�nition.Lemma 1 Let T be any labeled ordered tree with knodes. If T is of normal form then the root is v0 = 1and the rightmost leaf is vk�1 = k in T .Fig. 5 shows an ordered tree of normal form, wherea symbol in a irle represents a label, and a numberattahed to the right of a irle represents a node-name. The size of the tree is 9, and we see that theroot is 1 and the rightmost leaf is 9.For a nonnegative integer k � 1, a substruture pat-tern of size k (a k-pattern, for short) is an orderedtree T on L of normal form and jT j = k. For everyk � 1, we denote the set of all k-patterns by Tk andthe set of all patterns by T := Sk Tk. We also de�neT �n := Snk=1 Tk for every positive integer n � 1.To de�ne our data mining problem, we need the no-tions of the ourrenes of a pattern in a dataset,whih is not straightforward in the ase for orderedtrees unlike the ase for itemsets. We �rst start withde�ning the notion of mathing funtions.3



De�nition 2 Let T and D be ordered trees. Then,a mathing funtion from T to D is any funtion' : VT ! VD that satis�es the following onditions(i){(iv) for any v; v1; v2 2 VT .(i) ' is a one-to-one mapping . That is, if v1 6= v2then '(v1) 6= '(v2).(ii) ' preserves the parent-hild relation. That is,(v1; v2) 2 ET i� ('(v1); '(v2)) 2 ED.(iii) ' preserves the sibling relation. That is, v1 �Tv2 i� '(v1) �D '(v2).(iv) ' preserves the label of eah node. That is,LT (v) = LD('(v)).We say that T ours inD if there exists some math-ing funtion from T to D.The above de�nition of mathing funtions is avariant of those widely used in the ommunity ofstring/tree pattern mathing [15℄. Note that '(v1)and '(v2) need not be adjaent even if v1 and v2are adjaent in the ondition (iii) of our de�nition.Equivalently, a tree T mathes another tree D i� Tis obtained from a subtree D0 of D by repeatedlyremoving leaves and inident edges from D0.Unlike the ase for itemsets or strings, the mathingproblem for labeled ordered tree patterns is not easyto solve [24℄. A straightforward algorithm deide themathing, if T mathes D, in O(mn) time and thisis improved to O(m0:75n) time in [15℄, while it isnot known if it is possible to solve this problem inO(m+ n), where m = jT j and n = jDj.Most straightforward notion of an ourrene of a k-pattern T in a dataset will be a mathing funtion ' :VT ! VD from T toD itself. However, this de�nitionof ourrenes has a drawbak that a pattern hasunneessarily many ourrenes. In reality, we ansee that a k-pattern may have exponentially manyourrenes in the size k of the pattern on a datasetof total size n.Instead, we will de�ne the ourrenes of a patternbased on the set of nodes of the data tree D towhih a designated node in the pattern maps. LetD = hD;�; Æi be a dataset, and k be a positive inte-ger. Reall that for any k-pattern T , it follows fromLemma 1 that the nodes 1 and k 2 VT are the root

and the rightmost leaf of T , respetively. Given ak-pattern T 2 Tk and a mathing funtion ' fromT to D, we de�ne the root ourrene (the our-rene or O, for short), the rightmost ourrene(the rml-ourrene or Ro for short), and the do-ument ourrene (the do-ourrene or Do, forshort) of T w.r.t. ' to be '(1), '(k), and Æ('(1)),respetively.Based on the above notions of the ourrenes, wede�ne the root-ourrene list (Oo(T )), the rml-ourrene list (Ro(T )), and the doument our-rene list (Do(T )) as follows.� O(T ) =f'(1) j ' : VT ! VD is a mathing funtiong.� Ro(T ) =f'(k) j ' : VT ! VD is a mathing funtiong.� Do(T ) = fÆ(v) j v 2 O(T )g.Though the de�nition of the rml-ourrene may ap-pear to be strange at �rst glane and it is not usedin the de�nitions below, the disussion in Setion 3and Setion 4 will reveal that it possesses a numberof good properties and will play a key role in ouralgorithms.Given a dataset D = hD;�; Æi and a k-pattern T , wede�ne the ourrene-frequeny (the o-frequeny,for short) and the doument-frequeny (the do-frequeny, for short) of as follows.� freqD(T ) = #O(T )jjDjj :� dofreqD(T ) = #Do(T )#� :Let 0 < � � 1 be a positive number. A k-pattern Tis �-frequent w.r.t. the ourrene frequeny in D iffreqD(T ) � � and is �-frequent w.r.t. the doumentfrequeny in D if dofreqD(T ) � �.An instane of our data mining problem is a triplethL;D; �i, a set of labels L, a dataset D = hD;�; Æi,and a positive number 0 < � � 1, alled the min-imum support (minsup, for short). We now stateour data mining problem, alled the frequent pat-tern disovery problem, as follows.Frequent Pattern Disovery Problem4



Problem: Find all patterns T 2 T that are �-frequent w.r.t. the ourrene frequeny in D, i.e.,freqD(T ) � �.This problem is a generalization of the frequent item-set disovery problem in assoiation rule mining [4℄.The following problem is a natural variation of theabove problem in Web mining appliations.Do-Frequent Pattern Disovery ProblemProblem: Find all patterns T 2 T that are �-frequent w.r.t. the doument frequeny in D, i.e.,dofreqD(T ) � �.2.3 Representation of Ordered TreesIn this paper, we assume that ordered trees are rep-resented by the �rst-hild, right-sibling representa-tion [6℄. In this representation, eah node v 2 VTof a ordered tree T has two informations, the �rsthild hild(v) and the right sibling next(v). The�rst hild of v is a leftmost hild of v, and the rightsibling is a next sibling of v. If v does not havethe �rst hild (resp., the right sibling) then we as-sume that hild(v) = NIL (resp., next(v) = NIL).This representation is also adopted in a standard ofdata format and appliation interfae of XML, alledDOM [1℄.3 A Basi Mining AlgorithmIn this setion, we present an eÆient algorithm fordisovering all frequent tree patterns that sales al-most linearly in the total size of the maximal pat-terns embedded in a dataset. In the rest of this se-tion, we desribe the eÆient enumeration of labeledordered tree patterns in Subsetion 3.2 and the in-remental omputation of the rml-ourrene lists inSubsetion 3.3.3.1 Overview of the AlgorithmIn Fig. 6, we present our algorithm Find-Freq-Trees for disovering all frequent ordered tree pat-terns that have the frequeny at least the given min-imum support threshold 0 � � < 1 in a dataset D.As the basi design of the algorithm, we adoptedthe levelwise searh as in the Apriori algorithm [4℄ombined with eÆient enumeration tehnique [9℄.

Algorithm Find-Freq-TreesInput : A dataset D = hD;�; Æi, a set L of labels,and a minsup 0 < � � 1.Output : A set F of all �-frequent patterns in D.Method :1 F1 := the set of �-frequent 1-patterns, and2 ompute the set Ro1 of their rml-ourrenes;3 k := 2;4 while Fk�1 6= ; do begin5 hCk; Roki := Expand-Trees(Fk�1; Rok�1);6 foreah pattern T 2 Ck do7 Compute freqD(T ) from Rok(T );8 if freqD(T ) � � then Fk = Fk [ fTg;9 k := k + 1;10 end /* while-loop */11 return F = F1 [ � � � [ Fk�1;Figure 6: The algorithm for disovering all frequentordered tree patterns in a dataset D, where for everyk � 1, Fk is the set of all �-frequent patterns in Dand Rok is the set of their rightmost ourrenelists.In the �rst pass, the algorithm simply ounts thenumber and the positions of the ourrenes of thedistint labels by traversing the data tree D. The re-sults are stored in the set F1 and Ro1, respetively.In the subsequent pass k � 2, the algorithm om-putes the set Fk of all frequent k-patterns and theset Rok of their rightmost ourrene lists simulta-neously by using the sub-proedure Expand-Treesshown in Fig. 9. Repeating this proess until nomore frequent patterns are generated, the algorithmomputes all �-frequent patterns in D.3.2 EÆient Enumeration of OrderedTreesOur enumeration algorithm uses a similar tehniqueto the set enumeration tree searh of Bayardo [9℄.A basi idea of our enumeration algorithm will beillustrated in Fig. 7. In the searh, starting with a setof trees onsisting of single nodes, the enumerationalgorithm expands a given ordered tree of size k� 1by attahing a new node at a leaf position to yieldlarger tree of size k. We an easily see that thissearh strategy yields all k-patterns in Tk by at mostk appliations of expansion.5



Figure 7: A searh graph for (unlabeled) orderedtreesHowever, when expansion at arbitrary positions mayause that some ordered tree may have more thanone predeessor. This auses the dupliated enu-meration and makes the Apriori-like algorithm [4℄behave poorly on the datasets ontaining long fre-quent patterns. To overome this problem, we givethe restrited form of expansion, alled a rightmostexpansion, as follows. We denote the rightmost leafof an ordered tree T by rml(T ).De�nition 3 For a labeled ordered tree T , therightmost branh of T is the unique path from theroot to the rightmost leaf in T .Equivalently, the rightmost branh is a path � inT starting from the root suh that every x 2 �is maximal in �. Reall that for any k-pattern T ,rml(T ) = k by Lemma 1.Let A be a set, f : A! A be a funtion, and n � 0be a nonnegative integer. Then, fn is a funtionde�ned as f0(x) = x and fk(x) = f(fk�1(x)) forany x 2 A and k = 1; : : : ; n.De�nition 4 Let T 2 T be patterns over L, 0 �p < depth(rml(T )) be any integer, and l 2 L be anylabel. Suppose that x = rml(T ) is the rightmostleaf of T , and y = paT p(x) is the p-th parent of x.Then, the (p; l)-expansion of T is the labeled orderedtree S obtained by attahing a new node k with thelabel l to the node y so that the attahed node is therightmost hild of y. (See Fig. 8).A rightmost expansion of an ordered tree T is the(p; l)-expansion S of T for some integer p � 0 and
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paTFigure 8: (p; l)-expansionsome label l 2 L. Then, we say that either S isthe predeessor of T or T is a suessor of S. Foronvention, we assume a speial labeled ordered tree,alled the empty tree, ? suh that j?j = 0 and anysingle node tree is a suessor of ?.De�nition 5 Let L be the set of labels and T bethe set of ordered trees on L. The enumeration dagfor T based on the rightmost expansion is a diretedgraph G de�ned as follows. There is the unique root?. Eah node of the tree G is an ordered tree onL. There exists an out-going edge from a node S toanother node T i� T is a rightmost expansion of S.In Fig. 7, we show an example of the enumerationdag for the unlabeled ordered trees. The dag ofFig. 7 is atually a tree in this ase. We will formallyshow this laim in the last part of this setion. Thelevel of a node S is the minimum length of the pathsfrom the root to S. For every k � 0, the k-th layerof G is the set of all nodes of level k. We see that Gis atually ayli beause an appliation of the ex-pansion inreases the size of a tree by one. We havethe following properties on the rightmost expansion.Reall that a k-pattern is a labeled ordered tree ofsize k in normal form.Lemma 2 For every k � 2, if T is a (k � 1)-pattern then any rightmost expansion of T is alsoa k-pattern.Proof. If T 0 is the rightmost expansion of T , thentrivially jT 0j = k. Sine the new node vk = k isattahed to a node on the rightmost branh of T , itshould be the last node in the preorder traversal ofT 0. This shows the lemma. 2Lemma 3 For every k � 2, if T is a k-pattern then6



there exists the unique (k � 1)-pattern T 0 suh thatT is a rightmost expansion of T 0.Proof. Suppose that T is obtained from some (k �1)-pattern T 0 by attahing the node k as a rightmostleaf. Then, we see that removing the attahed leaf kfrom T is the only way to build any predeessor ofT . Sine this hoie of k as the rml of T is unique,the predeessor of T is also unique. 2From Lemma 2 and Lemma 3 above, we see thatthe enumeration graph has good properties for thesearh of T as follows.Theorem 4 Let G be the enumeration dag for Tbased on the rightmost expansion. Then, for everyk � 0, the k-th layer exatly ontains the membersof Tk, and the whole G exatly ontains the membersof T . Furthermore, G forms a tree, i.e., all nodesbut the root have the unique predeessor.By the above theorem, we all the dag G the enu-meration tree for T in what follows. Using the enu-meration dag for T , all labeled ordered tree in T anbe enumerated.In Fig. 9, we present the algorithm Expand-Treesthat omputes Fk and the orresponding set Rok ofthe rml-ourrene lists. Given a set Fold � T andthe set Roold of the orresponding rml-ourrenelists, the algorithm Expand-Trees omputes theset F of the suessors of those trees in Fold by us-ing the rightmost expansion tehnique shown above.The omputation of the set Ro of rml-ourrenelists in step 6 and the orretness of the whole algo-rithm will be disussed in detail in the next subse-tion.3.3 Updating Ourene ListsTo ompute the frequeny of eah enumerated pat-tern T 2 T , it is suÆient to ompute the rml-ourrene list Ro(T ) of T sine either Do(T ) orO(T ) is easily omputable from Ro(T ). Thus, weonentrate on the problem of omputing Ro(T ) forall andidates T 2 Ck.In this subsetion, we give the algorithm Update-Ro for inrementally updates the rml-ourenelist Ro(T ) of a k-pattern T obtained by the right-most expansion. (Fig. 10.)

Algorithm Expand-Trees(Fold; Roold)Input : A set Fold of patterns, and the indexed setRoold of their rml-ourrenes indexed by treesin Fold.Output : The set F of the rightmost expansions oftrees in Fold and the indexed set Roold oftheir rml-ourrenes indexed by trees in F.Method :1 F := ;; Ro := ;;2 foreah tree T 2 Fold do3 foreah position 0 � p < depth(rml(T )) do4 foreah label l 2 L do begin5 Compute the (p; l)-expansion S of T ;6 Ro(S) := Update-Ro(Roold(T ); p; l);7 F = F [ fSg;8 end9 return hF; Roi;Figure 9: The algorithm for omputing all right-most expansions of a set of trees. The sub-proedureUpdate-Ro will be later desribed in Subse-tion 3.3.The key of the algorithm Update-Ro is how toeÆiently store the information of the mathing ' :VT ! VD from eah pattern T 2 Ck to the datatree D. Instead of reording the full informationh'(1); : : : ; '(k)i of the mathing funtions ' : VT !VD, the algorithm maintains only the information ofthe rml-ourrenes '(k), where k = rml(T ) is therightmost leaf.The following lemma is useful to inrementally om-pute Ro(T ) from Ro(S) of its predeessor S.Lemma 5 Suppose a (k � 1)-pattern T ours in adata tree D, and ' : VT ! VD is a mathing funtionfrom T to D. Let T 0 be a (p; l)-expansion of T , thenthe funtion  : VT 0 ! VD satisfying the followingthree onditions is a mathing funtion from T 0 to D.(1)  is an extension of ' as a mapping. That is, (i) = '(i) holds for any i = 1; : : : ; k � 1.(2)  (k) is a hild of paD(i) for any p � 0, and (k) � i if p 6= 0, where i = paDp�1('(k � 1)).(3) LD( (k)) = l holds.The next lemma immediately follows from Lemma 5.7



Algorithm Update-Ro(OldRo; p; l)Input : A node list OldRo, a nonnegativeinteger p � 0, and a label l 2 L.Output : A node list newlist.Method :NewRo := �;1 for eah last 2 OldRo do2 if p = 0 then3 v = hild(last); /* the �rst hild of last */4 else then5 ur := paDp�1(last);6 v := next(ur); /* the right sibling of ur */7 while v 6= NIL do begin8 if LD(v) = l then9 NewRo = NewRo [ fvg;10 v = next(v);11 end /* while-loop */12end /* for-loop */13return NewRo;Figure 10: An inremental algorithm for updatingthe rml-ourene list of a given k-patternLemma 6 Let T 2 Tk, 0 � p < depth(rml(T )) � k,and l 2 L be any label. The algorithm Update-Roomputes, given an input hRo(T ); p; li, the rml-ourrene list Ro(S) of the (p; l)-expansion S of Tin time O(kbn), where b is the maximum branhingof D and n = #Ro(T ).A straightforward algorithm omputes Ro(T ) intime O(km) from srath, where k = jT j and m =jjDjj. Therefore, the proposed algorithm above runsfaster than the straightforward algorithm when theprodut bn is muh smaller than jjDjj, that is, thefrequeny of T in D is low.Consider the algorithm Expand-Trees of Fig. 9.The algorithm maintains two data F and Ro. Fis a set of suessors enumerated by the rightmostexpansion tehnique. Ro � T �(VD)� is an indexedset of ourrene lists suh that for every T 2 T ,Ro(T ) denotes the list of ourrenes orrespondingto T . For F � T , we de�ne Ro(F) = f(T;Ro(T )) :T 2 F g. We de�ne the size of Ro by jjRojj =PT2F Ro(T ).Now, we show the orretness of the algorithmExpand-Trees of Fig. 9 and the main algorithm

Find-Freq-Trees of Fig. 6 as follows. FromLemma 6, we have the next orollary.Corollary 7 Let Fold � T and Roold = Ro(Fold).Given an input hFold; Rooldi, The algorithmExpand-Trees omputes the pair hF ; Ro(F)i intime O(k2`bN), where k is the maximum size of pat-terns in Fold, ` = #L, b is the maximum branhingof D and N = jjRooldjj =PT2Fold #Ro(T ).We prepare some notations. In the following, D is aninput dataset on L and 0 < � � 1 is a real number,` = #L, b is the maximum branhing of D. Let F�be the set of all �-frequent patterns in D. Then, kdenotes the maximum size of the frequent patterns inF�. A frequent pattern is maximal if any rightmostexpansion of the pattern is no longer frequent onD. From the next theorem, we an expet that thealgorithm runs with reasonable time omplexity inpratie sine both F� and jjRo(F�)jj will not beextremely large.Theorem 8 Let D be a database, L be a label set,and 0 < � � 1 be a real number. Then, the al-gorithm Find-Freq-Trees of Fig. 6 �nds all �-frequent patterns in T in time O(jjDjj + k2b`N),where N = jjRo(F�)jj is the total ourrenes ofthe frequent patterns.Furthermore, the next theorem indiates that the al-gorithm sales almost linearly in the sum of the sizesof the maximal frequent patterns as in MaxMiner [9℄when the maximum size k and ` = #L grows slowly.Thus, the algorithm is eÆient for datasets with longpatterns.Theorem 9 The algorithm Find-Freq-Trees ofFig. 6 enumerates at most O(k`M) patterns duringthe omputation, where M is the sum of the sizes ofthe maximal �-frequent patterns.3.4 An ExampleConsider the dataset D onsisting of j�j = 4 dou-ments in Fig. 4 and assume that the minimum sup-port is � = 0:5 and L = fA;B;Cg. This valueof � implies that the minimum do-ourene is 2douments. We show the patterns generated by thesub-proedure Expand-Trees of Fig. 9 in Fig. 11and the orresponding rml-ourene lists omputed8



Figure 11: an example of Find-Freq-Trees: awhite pattern represents a frequent pattern, and ashadowed pattern represents an infrequent pattern.The number attahed to eah pattern represents theID of the pattern.by the sub-proedure Update-Ro of Fig. 10 in Ta-ble 1. In Fig. 11, eah dotted line indiates the gen-eration of a pattern of size k � 1 from its predeessorof size k � 1 by the rightmost expansion.First, the algorithm omputes the set F1 of the fre-quent 1-patterns in step 1 by traversing the data treeD and reords their ourrenes in Ro1. CallingExpand-Trees with F1 and Ro1 gives the andi-date set C2 and the set of their rml-ourene listsRo2. In Table 1, we see that C2 ontains patterns207, 208, 209. In the entry for 207, we see that thepattern 207 is obtained from its predeessor 103 withlabel C by attahing a new leaf with label A. Therml-ourene list of 207 is f4; 11; 20g, and the do-ourene list is f1; 2; 4g, orresponding to the �rst,seond and the fourth douments of D in Fig. 4.Then, the pattern 209 has frequeny 0:25 < � = 0:5,and thus, it is disarded from F2.Calling Expand-Trees with F2 and Ro2 gives C3and Ro3. In the entry for C3 in Table 1, we seethat the suessors of 208, say 319{324, have do-frequeny less than � = 0:5. Thus, they are removedfrom F3. Only one suessor of 207, namely 315,has do-frequeny no less than 0.5 and are frequent.Finally, sine none of suessor of 315 in C4 appearin the dataset, the algorithm terminates and returnsF = F1 [ F2 [ F3.

Algorithm Sanning-Siblings(OldRo; p)Input : A node list OldRo, and a nonnegativeinteger p � 0.Output : A set of rml-ourene listsfNewRo(l) j l 2 Lg.Method :for eah l 2 L doNewRo(l) := ;;for eah last 2 OldRo doif p = 0 thenv = hild(last); /* the �rst hild of last */else thenur := paDp�1(last);v := next(ur); /* the right sibling of ur */while v 6= NIL do begin� = LD(v) ;NewRo(�) = NewRo(�) [ fvg;v = next(v);end /* while-loop */end /* for-loop */return fNewRo(l) j l 2 Lg;Figure 12: An improved algorithm of Update-Ro4 ImprovementIn this setion, we onsider some improvements ofthe proposal algorithms.4.1 The Algorithm Sanning-SiblingsThe algorithm Sanning-Siblings, shown inFig. 12, is an improvement of the algorithmUpdate-Ro of Fig. 10. Let T be a pattern,then Sanning-Siblings alulates all the rml-ourene lists w.r.t. eah (p; l)-expansion of Tfor a given nonnegative integer p and a given rml-ourene list OldRo. The algorithm performsas follows. First the algorithm reates the emptylists NewRo(l) for every l 2 L. Then, for eahv 2 OldRo it adds v to NewRo(�) where � isa label of v. Note that Sanning-Siblings sanseah node v 2 Ro(T ) only at one, while Update-Ro sans them #L times for alulating all the rml-ourene lists w.r.t. eah (p; l)-expansion of T for a�xed p � 0. Therefore Sanning-Siblings is moreeÆient than Update-Ro by fator of O(#L).9



Table 1: Ro(T ), Do(T ) and dofreqD(T ) of the patterns in Fig. 11stage k Ck predeessor Fk Ro(T ) Do(T ) dofreqD(T ){ { 101 f4,11,13,16,18,20g f1,2,3,4g 1.01 { { 102 f3,6,7,9,15,17g f1,2,3g 0.75{ { 103 f2,5,8,10,12,14,19,21,22g f1,2,3,4g 1.0207 103 207 f4,11,20g f1,2,4g 0.752 208 103 208 f3,9,15g f1,2,3g 0.75209 103 { f21g f4g 0.25� � � � � � � � � � � � � � � � � �313 207 { ; ; 0314 207 { f6g f1g 0.25315 207 315 f5,12g f1,2g 0.5316 207 { ; ; 0317 207 { ; ; 03 318 207 { f21g f4g 0.25319 208 { ; ; 0320 208 { ; ; 0321 208 { ; ; 0322 208 { f4g f1g 0.25323 208 { ; ; 0324 208 { ; ; 0� � � � � � � � � � � � � � � � � �4.2 The Pruning Using Frequent1-patternsLet T be a �-in frequent 1-pattern and the labelof the unique node of T be l. Then, the followingobviously holds: The label l does not appear in any�-frequent pattern T 0 2 T +.Suppose the set of the labels evaluated to all the�-frequent 1-patterns is alled the frequent label setand is denoted L+. Then the rightmost expansionsof any pattern is generated for eah l 2 L+ insteadof L beause of the fat.4.3 The Pruning Using Frequent2-patternsLet T be a �-frequent 2-pattern with the labels ofthe root and the leaf of T be l1 and l2. Then, thefollowing assertion holds: For any �-frequent patternT 0 2 T + and nodes v1; v2 of T 0, if L0(v1) = l1 andL0(v2) = l2 holds then (v1; v2) 62 E0 also holds.The algorithm with the pruning method based onthis assertion are developed as follows. First the

algorithm reords the pairs of labels for every �-frequent 2-pattern. Then it heks the pair of labelsof a new node and the node attahed it to, on gen-erating a rightmost expansion. If the heked pairof labels is not �-frequent, then the algorithm prunethis rightmost expansion sine it is not �-frequent.4.4 The AlgorithmDupliate-DetetionThis optimization is shown to be most e�etive in theproposed tehniques in this setion from experimentsof Setion 5. Let T be a �-frequent pattern and T 0be a rightmost expansion of T . When the algorithmUpdate-Ro or the algorithm Sanning-Siblingsomputes the rml-ourene list Ro(T 0), it sans allthe nodes of hD(v) if p = 0, and on all the nodesthat are to the right of pap�1D (v) if p � 1, for anyv 2 Ro(T ). But this method often sans the samenodes more than one if p � 1.This problem is solved by improving the algorithmSanning-Siblings and this yields an optimiza-tion tehnique Dupliate-Detetion, as follows.First the algorithm initializes a variable last to NIL.10



Table 2: the URL of the orresponding searh engineof eah datasetdatasets URLallsites (mixture of 30 sites)altavista http://www.altavista.om/google http://www.google.om/WebCrawler http://www.webrawler.om/lyos http://www.lyos.om/fast http://www.fastsearh.om/argos http://argos.evansville.edu/iteseers http://iteseer.nj.ne.om/Next, for eah v 2 Ro(T ) it heks the value of lastbefore sanning on the nodes of D. If last = papD(v)then it skips the manipulation for v 2 Ro(T ) andgoes to the next nodes of v in Ro(T ). Otherwise thealgorithm substitutes the variable last for papD(v).Dupliate-Detetion enumerates all the nodes ofrml-ourene list without repetition, if the followingtwo onditions are satis�ed: (i) all the elements ofRo(T ) are ordered in the preorder of D for any 1-pattern T , and (ii) the algorithm piks up all thenodes of Ro(T ) in the order of Ro(T ). Details areomitted here and will be given in the full paper.5 Experimental ResultsTo evaluate the e�etiveness of our algorithm andthe pruning tehniques, we run several experimentson real-life datasets.We desribe the datasets used in the experiments.The datasets are olletions of HTML pages fromseveral Web searh site. We listed the URL of thesites in Table 2. We olleted HTML pages by giv-ing a set of keywords suh as \Honda" or \NP op-timization problems" to a searh engine and simplyolleted the gi-generated HTML pages returned bythe searh engine.The dataset allsites is a olletion of gi-generated288 HTML pages of 3.6MB from 30 Web databasesand searh engine sites. This dataset attempt tomodel information extration from heterogeneoussoures in internet. This dataset was used for theperformane omparison among versions of miningalgorithms.

The remaining datasets used in our experimentswere also olletions of gi-generated HTML pages,but eah dataset onsists of HTML pages obtainedfrom the same searh engines. Thus, these datasetsare homogeneous and may ontains evident regular-ities embedded in the HTML pages. These datasetsinlude altavista, google, WebCrawler, lyos, fast,argos. These �ve datasets ontains the list of thesearh results with title, summary, URL, relatedpages and so on. These datasets were used for theperformane evaluation varying the minimum sup-port.The last dataset, iteseers, is the largest olletion of5.6MB and ontains the list of bibliographi data inHTML pages for online researh papers onsistingof title, authors, abstrats, soures, itations, andother bibliographi informations. This dataset wasused for the sale-up experiments.Table 3 shows the parameters of these datasets. The�rst four entries show the size of the HTML pages,the number of pages, the number of nodes in theorresponding data tree D, the number of distintlabels/HTML tags. The next three entries showthe average, the variane, and the maximum of thebranhing fator of the data tree. The last threeentries show the average, the variane, and the max-imum of the depth of the data tree.All experiments were performed on PC (PentiumIII600MHz, 512 megabytes RAM, linux 2.2.14). The al-gorithms were implemented in Java (SUN JDK1.3.1,JIT ompiler) with a DOM library (OpenXML).We implemented the following three variations of thebasi algorithm Find-Freq-Trees of Fig. 6 om-bined with the pruning methods desribed in Se-tion 4.� basi : Find-Freq-Trees + Sanning-Siblings� middle : basi + the pruning using 1-patternsand 2-patterns� full : middle + Dupliate-DetetionThe algorithm basi is the base algorithm equippedwith the optimization Sanning-Siblings ofFig. 12 in Subsetion 4.1. The algorithm middleis basi equipped with pruning tehniques with11



Table 3: datasetsdataset D size tag branhing depthpagesize (byte) #� jjDjj #L ave. var. max. ave. var. max.allsites 3,633,255 288 72,317 53 2.10 11.18 571 9.10 6.37 96altavista 2,336,474 100 69,726 32 2.31 4.47 100 8.67 1.29 12google 1,264,134 100 51,742 25 2.33 3.24 100 8.99 2.34 18WebCrawler 1,478,728 100 36,623 29 1.91 2.38 100 10.78 2.01 18lyos 2,399,679 100 61,591 43 1.96 4.80 601 10.30 2.48 17fast 1,269,455 100 25,750 29 1.99 3.84 200 11.32 2.94 16argos 1,312,475 100 45,440 24 2.17 4.80 100 8.69 1.48 14iteseers 5,614,548 180 144,356 22 { { { { { {
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Figure 13: the eÆieny omparison of the three al-gorithms (the ase � = 2:0(%) of middle are notreorded.)1-patterns and 2-patterns in Subsetion 4.2 andSubsetion 4.3. Finally, the third algorithm fullwill be the fastest one equipped with all optimiza-tion, namely, with Dupliate-Detetion in Se-tion 4.4.5.1 Basi Algorithm vs. ImprovedVersionsFig. 13 ompare the performane of the basi algo-rithm basi and its variants middle and full on theheterogeneous dataset allsites. The y-axis is loga-rithmially saled. At the points of � � 5%, there isno distintion on the performane is observed. Thisis beause up to this point, the maximum stage of

the omputation is at most two and thus the op-timization does not make any e�et. On the otherhand, at some data points with � larger than 5%, thefully optimized version full is over order of magni-tude faster than basi and middle. At these points,the maximum stages were from 5 to over 10, anddupliate detetion works well. At the data pointswith sigma larger than 2%, we stopped to run basiand middle sine the running time exeeds severalhours.Consequently, the dupliate detetion tehnique inSubsetion 4.4 is quite useful on this dataset, whihmimis heterogeneous soures. The speed-up ofmiddle by pruning with 1-pattern and 2-patternsagainst basi is not observed.5.2 Performane ComparisonFig. 14 shows the exeution times for the six real-world datasets from Web by varying the values ofminimum support from 5% to 0:25% at minimum,where eah dataset ontains a homogeneous olle-tion of gi-generated Web pages olleted from thesame searh engine site. We used the full optimizedversion full as a mining algorithm.We an see trends of our algorithm on a variety ofdatasets. As in the ase for itemset disovery [4℄,the exeution time inreases as the minimum sup-port dereases. Although these six datasets havesimilar harateristis in sizes, the number of nodes,the branhing fator, and the depth seen in Table 3,the detailed trends were quite di�erent.To indiates more detailed harateristis of thedatasets, in eah plot, we also show the number of12
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Figure 14: Main experiment: the exeution time of eah dataset
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frequent patterns in the dataset (dashed lines) andthe maximum stage, this equals the maximum size ofthe frequent patterns, (dotted lines). Then, we ob-served that the number of frequent patterns and thepu time were mainly dominated by the maximumstage or the maximum size of the frequent patternsin these datasets.5.3 Performanes for Eah StageTo give more detailed look on the exeution of ouralgorithm, we show in Fig. 15 the trends of the putime, the number of frequent patterns, and the aver-age number of the rightmost ourrenes per patternas the stage proeeds. The datasets were allsiteswith � = 1:5% used in the experiment in Subse-tion 5.1, google with � = 1:5% and WebCrawlerwith � = 0:75%. In allsites and WebCrawler, thenumber of frequent patterns dereases as the stageproeeds, while in google the number slightly in-reases and falls before the algorithm terminates.The pu times are monotonially dereasing in alldatasets.5.4 Sale-up ExperimentFig. 16 shows the sale-up property of the Find-Freq-Trees with all optimization tehnique (full).The dataset was iteseers, whih is the olletionsof HTML pages ontaining bibliographi reords ofonline papers of 5.6MB. We inreases the numberof HTML pages from 5 pages (316KB) to 180 pages(5,615KB) with the �xed minimum support � = 2%.We an observe that the exeution time sales almostlinearly. Similar sale-up properties were observedfor other datasets.For example, at the data point of 100 pages(4,000KB), the data tree ontains 102,392 nodes.Then, the algorithm found 34 frequent patterns withmaximum size 6 (nodes) in about 30 minutes. Below,we show three patterns among 34 patterns found bythe algorithm, where the label P; B; FONT and #TEXTstand for the tags for paragraphs, bold fonts, fontspei�ation (olor in this ase) and text nodes, re-spetively.� fP : f B; B : fFONT : f#TEXTgggg� fP : f#TEXT; B; #TEXT; #TEXT; #TEXTgg
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Figure 16: the sale-up experiment� fP : f#TEXT; #TEXT; B; #TEXT; #TEXTgg6 ConlusionIn this paper, we studied a data mining problem forsemi-strutured data by modeling semi-strutureddata as labeled ordered trees. We presented an eÆ-ient algorithm for �nding all frequent ordered treepatterns from a olletion of semi-strutured data,whih sales almost linearly in the total size of max-imal patterns. We run experiments on real-life Webdata to evaluate the proposed algorithms.Optimized pattern mining is to �nd those patternsthat optimize a given statistial measure and attrat-ing muh attention in both data mining and mahinelearning ommunities [13, 18℄. We have devised fastand robust mining algorithm for �nding simple textpatterns [8, 12℄ and it was shown that the optimizedpattern disovery is e�etive in text mining in ill de-�ned environment. Thus, it is our future problem todevelop optimized pattern disovery algorithm fortree-strutured data by extending our framework.In this paper, we onsider the mining problem fromsemi-strutured data in a simplest model, and ig-nore the omplex omponents suh as attributes andtexts. It will be interesting to extend the proposalalgorithm to deal with texts and attributes of Webpages or XML douments.
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