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Abstract

In this paper, we consider a data mining problem for semi-structured
data. Modeling semi-structured data as labeled ordered trees, we present
an efficient algorithm for discovering frequent substructures from a large
collection of semi-structured data. By extending the enumeration technique
developed by Bayardo (SIGMOD’98) for discovering long itemsets, our al-
gorithm scales almost linearly in the total size of maximal tree patterns
contained in an input collection depending mildly on the size of the longest
pattern. We also developed several pruning techniques that significantly
speed-up the search. Experiments on Web data show that the our algo-
rithm runs efficiently on real-life datasets combined with proposed pruning
techniques in the wide range of parameters.
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By rapid progress of network and storage technolo-
gies, a huge amount of electronic data such as Web
pages and XML data has been available on intra and
internet.
collection of ill-structured data that have no rigid
structures, and often called semi-structured data [1].
Hence, there have been increasing demands for au-
tomatic methods for extracting useful information,

These electronic data are heterogeneous

particularly, for discovering rules or patterns from
large collections of semi-structured data, namely,
semi-structured data mining [7, 11, 16, 17, 19, 25].

In this paper, we model such semi-structured data
and patterns by labeled ordered trees, and study the
problem of discovering all frequent tree-like patterns
that have at least a minsup support in a given col-
lection of semi-structured data.

We present an efficient pattern mining algorithm
FIND-FREQ-TREES for discovering all frequent tree
patterns from a large collection of labeled ordered
trees.

Previous algorithms for finding tree-like patterns ba-
sically adopted a straightforward generate-and-test
strategy [17, 24]. In contrast, our algorithm FIND-
FREQ-TREES is an incremental algorithm that si-
multaneously constructs the set of frequent patterns
and their occurrences level by level. For the purpose,
we devise an efficient enumeration technique for or-
dered trees by generalizing the itemset enumeration
tree by Bayardo [9].

The key of our method is the notion of the rightmost
expansion, a technique to grow a tree by attaching
new nodes only on the rightmost branch of the tree.
Furthermore, we show that it is sufficient to main-
tain only the occurrences of the rightmost leaves to
efficiently implement incremental computation.

Combining the above techniques, we show that our
algorithm scales almost linearly in the total size of
maximal tree patterns contained in an input collec-
tion slightly depending on the size of the longest pat-
tern. We also developed a pruning technique that
significantly speeds-up the search.

Experiments on real-world datasets show that the
our algorithm runs efficiently on real-life datasets
combined with a proposed pruning technique in the
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person: {

name: {first:Sara, last:Green },
tel: 6877 },
{ name: Fred, tel:6312, age:33 }
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Figure 1: semi-structured data

<person>
<name> Alan</name>
<tel> 7786</tel>
<tel> 2133</tel>
</person>
<person>
<name>
<first> Sara</first>
<last> Green</last>
</name>
<tel> 6877</tel>
</person>
<person>
<name> Fred</name>
<tel> 6312</tel>
<age> 33</age>
</person>

Figure 2: a XML document

wide range of parameters.

1.1 Related Works

Semi-structured data is such data represented as a
tree-like structure as shown in Fig. 1.
a number of studies on a semi-structured database.
For example, a considerable amount of studies on
query languages and index structures are executed
[2, 10, 22]. On the other hand, the classes of tagged
texts such as HTML and XML [21], as shown in
Fig. 2 can also be regarded as semi-structured data.
There are standardization activities of query lan-
guages and data structures of XML[21, 23].

There are

But, there are still not many researches about data
mining for semi-structured data. Wang and Liu[25]
considered a schema discovery problem for semi-
structured data, and presented the algorithm for dis-
covering association rules where an item is a path.
Miyahara et al.[17] also considered the same prob-
lem based on the special tree-like patterns, called



Figure 3: a database

tag tree patterns.

Several mining methods for a tree or a graph struc-
ture are proposed although they are not directly
applicable to semi-structured data mining. Wang,
Shapiro, Shasha et al.[24] devised the algorithm for
discovering approximately common subtree, and ap-
plied it to a motif discovery in multiple RNA sec-
ondary structures in genomics. Dehaspe et al.[11]
presented the efficient algorithm solving the frequent
substructure discovery problem for labeled graphs,
and applied it to the problem of function prediction
of chemical compounds. Matsuda and Motoda et
al.[16] presented the algorithm for extracting typi-
cal patterns from a directed graph. Their algorithm
uses a method called the graph-based induction.

In the association rule discovery problem, Agrawal
et al.[4, 5] developed an algorithm, called Apriori,
which is a popular data mining problem. Their al-
gorithm discovers frequent itemsets efficiently by us-
ing a subset lattice of an itemset. Actually the algo-
rithms [11, 25] described above are based on Apriori.
But it is said that the efficiency of Apriori slowdowns
if a database contains long itemsets.

To cope with this problem, Bayardo[9] proposed
the algorithm discovering long itemsets efficiently.
The algorithm is based on the itemset enumera-
tion technique, called set-enumeration tree, which
enumerates all the frequent itemsets without repe-
tition. Sese and Morishita[20] presented the algo-
rithm discovering optimal itemsets, based on the
set-enumeration tree and a method of merging oc-
currence lists of each itemset. In addition to these
works, there are many works that complement Apri-
ori algorithm [3, 4, 5, 9, 14, 20] Our results gener-
alizes the techniques of [9] and [20] above, and thus
can be regarded as a tree-counter part of the second

1.2 Organization

The rest of this paper is organized as follows. In
Section 2, we prepare basic notions and definitions.
In Section 3, we describe our search strategy used
for enumerating all labeled ordered tree without du-
plicates. In Section 3, we present our algorithm for
discovering all frequent patterns from a collection
of labeled ordered trees using incremental update
technique of the occurrence information combined
with the enumeration technique shown in the previ-
ous section. In Section 4, we describe how we can
speed-up the search by using pruning techniques. In
Section 5, we run experiments on real datasets and
show the efficiency and the scale-up properties of our
mining algorithm. In Section 6, we conclude and give
future works.

2 Preliminaries

In this section, we introduce basic notions and defi-
nitions on semi-structured data and our data mining
problems.

2.1 Labeled Ordered Trees

For a set A, #A denotes the cardinality of A. Let
L ={lly,l1,...} be a finite set of labels correspond-
ing to attributes in semi-structured data or tags in
tagged texts. We model semi-structured databases
and patterns over them with labeled ordered trees [6]
defined as follows.

Definition 1 A labeled ordered tree on L (an
ordered tree, for short) is a 6-tuple T =
(VV, EaEaLaUUa j)a where

e G=(V,E,vg) is a tree with a root vy, where V'
is a finite set of nodes and E C V2 is the set of
edges. For a node v € V, we denote by pap(v)
the parent node of v, and by chp(v) the set of
all the child nodes of v.

e L.:V — L is a labeling function that assigns a
label L(v) to each node v € V.

e < C V? is a binary relation, called the sibling
relation for T, satisfying the followings: (i) If



Figure 4: a database

nodes v1,v9 € V have a same parent then v-
vy or vy =< vy, (ii) otherwise neither v; < vg
v9 < v7. For an internal node, its children
ordered from left to right as u; < -+ < wuy .
some n > 0, where u < v iff u < v but v £ u.

In Fig. 4 and Fig. 5, we show examples of labeled
ordered trees, where a circle indicates a node and a
symbol appears in a circle indicates a label.

Let T be a labeled ordered tree. The size of T is
defined by the number of its nodes |T'| = #V. For a
path IT = (zg,...,2,—1) (n > 0) in T, we define the
length of the path to be |II| = n. For a node v € V,
the depth of v, denoted by depth(v), is defined as
the length of the path from the root vg to v. The
depth of a labeled ordered tree T' is the length of the
longest path from the root to some leaf in T'. For
an ordered tree T = (V. E, L, L,vg, <), we refer to
V,E,L,and < as Vp, Ep, L, and < respectively, if
it is clear from context.

2.2 Problem Statement

A semi-structured database (a dataset, for short) is
a triple D = (D, A, d), where

e [ is an ordered tree on £, and is called a data
tree. We assume that the root vy of D, has a
special label that does not belong to L.

L] A:{d],

,dm} is a set of document names.

e §:Vp\{vo} = A is a document name function
defined as follows. Let D; be a subtree whose
root is the i-th child of vy. Then, § is defined
as the function that satisfies d(v) = d; for all
NS VD,;-

Figure 5: an ordered tree of normal form

In Fig. 4, we show an example of semi-structured
databases. Intuitively, D is a labeled tree obtained
by merging a collection of labeled trees Dy, ..., Dy,
where each subtree D; represents a Web page or an
XML documents. Thus, we refer to the maximal
subtree of D whose nodes are labeled with the same
document name as a document. We define the size
of D by the total number ||D|| = #Vp of its nodes.

A labeled ordered tree T of size k > 1 is said to be of
normal form if it satisfies the following conditions:

e The set of the nodes of T'is Vi = {1,... k}.

e All elements in Vp are numbered by preorder
traversal [6] of T'.

The following lemma immediately follows from the
definition.

Lemma 1 Let T be any labeled ordered tree with k
nodes. If T is of normal form then the root is vy = 1
and the rightmost leaf is vp_1 =k in T.

Fig. 5 shows an ordered tree of normal form, where
a symbol in a circle represents a label, and a number
attached to the right of a circle represents a node-
name. The size of the tree is 9, and we see that the
root is 1 and the rightmost leaf is 9.

For a nonnegative integer k > 1, a substructure pat-
tern of size k (a k-pattern, for short) is an ordered
tree T' on L of normal form and |T| = k. For every
k > 1, we denote the set of all k-patterns by 7, and
the set of all patterns by 7 := {J;, Tx. We also define
T<n:=J}_, Tr for every positive integer n > 1.

To define our data mining problem, we need the no-
tions of the occurrences of a pattern in a dataset,
which is not straightforward in the case for ordered
trees unlike the case for itemsets. We first start with
defining the notion of matching functions.



a matching function from T to D is any function
¢ : Vp — Vp that satisfies the following conditions
(i)—(iv) for any v,v1,v9 € V.

(i) ¢ is a one-to-one mapping. That is, if v1 # v9
then p(v1) # ¢(v9).

(ii) ¢ preserves the parent-child relation. That is,
(vi,02) € Ep iff (p(v1), p(v2)) € Ep.

(iii) ¢ preserves the sibling relation. That is, vy <p
vg iff p(v1) <p p(ve).

(iv) ¢ preserves the label of each node. That is,

Ly(v) = Lp(e((v)).

We say that T occurs in D if there exists some match-
ing function from T to D.

The above definition of matching functions is a
variant of those widely used in the community of
string/tree pattern matching [15]. Note that ¢(v)
and ¢(v9) need not be adjacent even if v; and vgy
are adjacent in the condition (iii) of our definition.
Equivalently, a tree T matches another tree D iff T
is obtained from a subtree D' of D by repeatedly
removing leaves and incident edges from D’.

Unlike the case for itemsets or strings, the matching
problem for labeled ordered tree patterns is not easy
to solve [24]. A straightforward algorithm decide the
matching, if 7" matches D, in O(mn) time and this
is improved to O(m"™n) time in [15], while it is
not known if it is possible to solve this problem in
O(m + n), where m = |T'| and n = |D|.

Most straightforward notion of an occurrence of a k-
pattern 7" in a dataset will be a matching function ¢ :
Vi — Vp from T to D itself. However, this definition
of occurrences has a drawback that a pattern has
unnecessarily many occurrences. In reality, we can
see that a k-pattern may have exponentially many
occurrences in the size k of the pattern on a dataset
of total size n.

Instead, we will define the occurrences of a pattern
based on the set of nodes of the data tree D to
which a designated node in the pattern maps. Let
D = (D, A,d) be a dataset, and k be a positive inte-
ger. Recall that for any k-pattern 7', it follows from
Lemma 1 that the nodes 1 and & € Vi are the root

k-pattern T € T, and a matching function ¢ from
T to D, we define the root occurrence (the occur-
rence or QOcc, for short), the rightmost occurrence
(the rml-occurrence or Roc for short), and the doc-
ument occurrence (the doc-occurrence or Doc, for
short) of T' w.r.t. ¢ to be (1), p(k), and d(p(1)),
respectively.

Based on the above notions of the occurrences, we
define the root-occurrence list (Ooc(T)), the rml-
occurrence list (Roc(T)), and the document occur-
rence list (Doc(T')) as follows.

e Occ(T) =
{¢(1) | ¢ : Vi — Vp is a matching function}.

e Roc(T
{0 (k)

e Doc(T) = {0(v) | v e Oce(T)}.

) =
| ¢ : Vi — Vp is a matching function}.

Though the definition of the rml-occurrence may ap-
pear to be strange at first glance and it is not used
in the definitions below, the discussion in Section 3
and Section 4 will reveal that it possesses a number
of good properties and will play a key role in our
algorithms.

Given a dataset D = (D, A, ) and a k-pattern T', we
define the occurrence-frequency (the occ-frequency,
for short) and the document-frequency (the doc-
frequency, for short) of as follows.

e freqgp(T) = %T‘(T)
e docfreqp(T) = #%AC(T).

Let 0 < o <1 be a positive number. A k-pattern T’
is o-frequent w.r.t. the occurrence frequency in D if
freqp(T) > o and is o-frequent w.r.t. the document
frequency in D if docfreqp(T) > o.

An instance of our data mining problem is a triplet
(L,D,o), a set of labels £, a dataset D = (D, A, §),
and a positive number 0 < ¢ < 1, called the min-
imum support (minsup, for short). We now state
our data mining problem, called the frequent pat-
tern discovery problem, as follows.

Frequent Pattern Discovery Problem




frequent w.r.t. the occurrence frequency in D, i.e.,
fregp(T) > o.

This problem is a generalization of the frequent item-
set discovery problem in association rule mining [4].
The following problem is a natural variation of the
above problem in Web mining applications.

Doc-Frequent Pattern Discovery Problem

Problem: Find all patterns T € 7T that are o-
frequent w.r.t. the document frequency in D, i.e.,
docfreqp(T) > o.

2.3 Representation of Ordered Trees

In this paper, we assume that ordered trees are rep-
resented by the first-child, right-sibling representa-
tion [6]. In this representation, each node v € Vp
of a ordered tree T has two informations, the first
child child(v) and the right sibling next(v). The
first child of v is a leftmost child of v, and the right
sibling is a next sibling of v. If v does not have
the first child (resp., the right sibling) then we as-
sume that child(v) = NIL (resp., next(v) = NIL).
This representation is also adopted in a standard of
data format and application interface of XML, called
DOM [1].

3 A Basic Mining Algorithm

In this section, we present an efficient algorithm for
discovering all frequent tree patterns that scales al-
most linearly in the total size of the maximal pat-
terns embedded in a dataset. In the rest of this sec-
tion, we describe the efficient enumeration of labeled
ordered tree patterns in Subsection 3.2 and the in-
cremental computation of the rml-occurrence lists in
Subsection 3.3.

3.1 Overview of the Algorithm

In Fig. 6, we present our algorithm FIND-FREQ-
TREES for discovering all frequent ordered tree pat-
terns that have the frequency at least the given min-
imum support threshold 0 < ¢ < 1 in a dataset D.
As the basic design of the algorithm, we adopted
the levelwise search as in the Apriori algorithm [4]
combined with efficient enumeration technique [9].

Liigviibaiiil v se L vl
Input: A dataset D = (D, A, ), a set L of labels,
and a minsup 0 < o < 1.
Output: A set F of all o-frequent patterns in D.
Method:
F1 := the set of o-frequent 1-patterns, and
compute the set Roc; of their rml-occurrences;
k= 2;
while F; | # () do begin
(Ck, Rocy) := EXPAND-TREES(F;_1, Rocy_1);
foreach pattern T € C, do
Compute freqp(T) from Rocy(T);
if fregp(T) > o then F, = F, U{T};
k:=Fk+1;
10 end /* while-loop */
11 return F = F{ U---UF;_q1;

e
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Figure 6: The algorithm for discovering all frequent
ordered tree patterns in a dataset D, where for every
k > 1, F; is the set of all o-frequent patterns in D
and Rocy is the set of their rightmost occurrence
lists.

In the first pass, the algorithm simply counts the
number and the positions of the occurrences of the
distinct labels by traversing the data tree D. The re-
sults are stored in the set F; and Roc;, respectively.
In the subsequent pass & > 2, the algorithm com-
putes the set Fj of all frequent k-patterns and the
set Rocy, of their rightmost occurrence lists simulta-
neously by using the sub-procedure EXPAND-TREES
shown in Fig. 9. Repeating this process until no
more frequent patterns are generated, the algorithm
computes all o-frequent patterns in D.

3.2 Efficient Enumeration of Ordered
Trees

Our enumeration algorithm uses a similar technique
to the set enumeration tree search of Bayardo [9].
A basic idea of our enumeration algorithm will be
illustrated in Fig. 7. In the search, starting with a set
of trees consisting of single nodes, the enumeration
algorithm expands a given ordered tree of size k — 1
by attaching a new node at a leaf position to yield
larger tree of size k. We can easily see that this
search strategy yields all k-patterns in 7 by at most
k applications of expansion.



Figure 7: A search graph for (unlabeled) orde
trees

However, when expansion at arbitrary positions may
cause that some ordered tree may have more than
one predecessor. This causes the duplicated enu-
meration and makes the Apriori-like algorithm [4]
behave poorly on the datasets containing long fre-
quent patterns. To overcome this problem, we give
the restricted form of expansion, called a rightmost
expansion, as follows. We denote the rightmost leaf
of an ordered tree T by rml(T).

Definition 3 For a labeled ordered tree T, the
rightmost branch of T is the unique path from the
root to the rightmost leaf in 7.

Equivalently, the rightmost branch is a path II in
T starting from the root such that every = € II
is maximal in <. Recall that for any k-pattern T,
rml(T) = k by Lemma 1.

Let A be aset, f: A — A be a function, and n > 0
be a nonnegative integer. Then, f" is a function
defined as fO(z) = z and f*(z) = f(f*(z)) for
any r € Aand k=1,...,n.

Definition 4 Let T € T be patterns over £, 0 <
p < depth(rml(T)) be any integer, and [ € £ be any
label. Suppose that © = rml(T) is the rightmost
leaf of T', and y = payP(z) is the p-th parent of x.
Then, the (p,[)-expansion of T is the labeled ordered
tree S obtained by attaching a new node k with the
label [ to the node y so that the attached node is the
rightmost child of y. (See Fig. 8).

A rightmost expansion of an ordered tree T is the
(p,l)-expansion S of T for some integer p > 0 and

Figure 8: (p,[)-expansion

some label | € £. Then, we say that either S is
the predecessor of T or T is a successor of S. For
convention, we assume a special labeled ordered tree,
called the empty tree, L such that |L| = 0 and any
single node tree is a successor of 1.

Definition 5 Let £ be the set of labels and 7 be
the set of ordered trees on L. The enumeration dag
for 7 based on the rightmost expansion is a directed
graph G defined as follows. There is the unique root
1. Each node of the tree G is an ordered tree on
L. There exists an out-going edge from a node S to
another node 7T iff T is a rightmost expansion of S.

In Fig. 7, we show an example of the enumeration
dag for the unlabeled ordered trees. The dag of
Fig. 7 is actually a tree in this case. We will formally
show this claim in the last part of this section. The
level of a node S is the minimum length of the paths
from the root to S. For every k& > 0, the k-th layer
of GG is the set of all nodes of level k. We see that G
is actually acyclic because an application of the ex-
pansion increases the size of a tree by one. We have
the following properties on the rightmost expansion.
Recall that a k-pattern is a labeled ordered tree of
size k in normal form.

Lemma 2 For every k > 2, if T is a (k — 1)-
pattern then any rightmost expansion of T is also
a k-pattern.

Proof. If T' is the rightmost expansion of T', then
trivially |T'| = k. Since the new node vy = k is
attached to a node on the rightmost branch of T, it
should be the last node in the preorder traversal of
T'. This shows the lemma. O

Lemma 3 For every k > 2, if T s a k-pattern then



T is a rightmost expansion of'T'.

Proof. Suppose that T is obtained from some (k —
1)-pattern T" by attaching the node k as a rightmost
leaf. Then, we see that removing the attached leaf k
from T is the only way to build any predecessor of
T. Since this choice of k as the rml of T is unique,
the predecessor of T' is also unique. O

From Lemma 2 and Lemma 3 above, we see that
the enumeration graph has good properties for the
search of 7 as follows.

Theorem 4 Let G be the enumeration dag for T
based on the rightmost expansion. Then, for every
k > 0, the k-th layer exactly contains the members
of Tr, and the whole G exactly contains the members
of T. Furthermore, G forms a tree, i.e., all nodes
but the root have the unique predecessor.

By the above theorem, we call the dag G the enu-
meration tree for T in what follows. Using the enu-
meration dag for T, all labeled ordered tree in T can
be enumerated.

In Fig. 9, we present the algorithm EXPAND-TREES
that computes F; and the corresponding set Rocy of
the rml-occurrence lists. Given a set Fgq € 7 and
the set Rocgq of the corresponding rml-occurrence
lists, the algorithm EXPAND-TREES computes the
set F of the successors of those trees in F,q by us-
ing the rightmost expansion technique shown above.
The computation of the set Roc of rml-occurrence
lists in step 6 and the correctness of the whole algo-
rithm will be discussed in detail in the next subsec-
tion.

3.3 Updating Occurence Lists

To compute the frequency of each enumerated pat-
tern T € T, it is sufficient to compute the rml-
occurrence list Roc(T') of T since either Doc(T') or
Oce(T) is easily computable from Roc(T"). Thus, we
concentrate on the problem of computing Roc(T') for
all candidates T € Cy,.

In this subsection, we give the algorithm UPDATE-
Roc for incrementally updates the rml-occurence
list Roc(T) of a k-pattern T' obtained by the right-
most expansion. (Fig. 10.)

LAl b it LAl ALl L IvOI\ Y oldy £ ¢Y0la )

Input: A set Fyq of patterns, and the indexed set
Rocgg of their rml-occurrences indexed by trees
in fold-

Output: The set F of the rightmost expansions of
trees in Foq and the indexed set Rocgq of
their rml-occurrences indexed by trees in F.

Method:

1 F:=0; Roc := 0;

2 foreach tree T € F 4 do

3 foreach position 0 < p < depth(rmi(T)) do
4 foreach label [ € £ do begin

5 Compute the (p,l)-expansion S of T}

6 Roc(S) := UPDATE-ROC(Rocoq(T), p,1);
7 F=FU{S};

8 end

9 return (F, Roc);

Figure 9: The algorithm for computing all right-
most expansions of a set of trees. The sub-procedure
UprDATE-ROC will be later described in Subsec-
tion 3.3.

The key of the algorithm UPDATE-ROC is how to
efficiently store the information of the matching ¢ :
Vir — Vp from each pattern T € Cp to the data
tree D. Instead of recording the full information
(p(1),...,0(k)) of the matching functions ¢ : Vi —
Vp, the algorithm maintains only the information of
the rml-occurrences ¢(k), where k = rml(T) is the
rightmost leaf.

The following lemma is useful to incrementally com-
pute Roc(T) from Roc(S) of its predecessor S.

Lemma 5 Suppose a (k — 1)-pattern T occurs in a
data tree D, and ¢ : Vp — Vp is a matching function
from T to D. Let T' be a (p,l)-expansion of T, then
the function ¢ : Vipp — Vp satisfying the following
three conditions is a matching function from T" to D.

(1) 4 is an extension of ¢ as a mapping. That is,

¥(1) = (i) holds for any i =1,... k- 1.

(2) (k) is a child of pap(i) for any p > 0, and
Y(k) < if p# 0, where i = pap? ' (o(k — 1)).

(3) Lp((k)) =1 holds.

The next lemma immediately follows from Lemma 5.
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Input: A node list OldRoc, a nonnegative

integer p > 0, and a label [ € L.
Output: A node list newlist.
Method:
NewRoc := ¢;
1 for each last € OldRoc do
2 if p =0 then

v = child(last); /* the first child of last */
else then

cur := papP~'(last);

v := next(cur); /* the right sibling of cur */
while v # NIL do begin

if Lp(v) =1 then

NewRoc = NewRoc U {v};

10 v = next(v);
11  end /* while-loop */
12end /* for-loop */
13return NewRoc;

© 00~ O O s W

Figure 10: An incremental algorithm for updating
the rml-occurence list of a given k-pattern

Lemma 6 Let T € T, 0 < p < depth(rml(T)) < k,
and | € L be any label. The algorithm UPDATE-ROC
computes, given an input (Roc(T),p,l), the rml-
occurrence list Roc(S) of the (p,1)-expansion S of T
in time O(kbn), where b is the maximum branching

of D and n = #Roc(T).

A straightforward algorithm computes Roc(T) in
time O(km) from scratch, where k = |T'| and m =
||D||. Therefore, the proposed algorithm above runs
faster than the straightforward algorithm when the
product bn is much smaller than ||D||, that is, the
frequency of T in D is low.

Consider the algorithm EXPAND-TREES of Fig. 9.
The algorithm maintains two data F and Roc. F
is a set of successors enumerated by the rightmost
expansion technique. Roc C T x (Vp)* is an indexed
set of occurrence lists such that for every T € T,
Roc(T) denotes the list of occurrences corresponding
toT. For F C T, we define Roc(F) = {(T, Roc(T)) :
T € F}. We define the size of Roc by ||Roc|| =

>per Roc(T).

Now, we show the correctness of the algorithm
EXPAND-TREES of Fig. 9 and the main algorithm

Lemma 6, we have the next corollary.

Corollary 7 Let Foiq €T and Rocoq = Roc(Fog)-
Given an input (Foa, Rocola), The algorithm
EXPAND-TREES computes the pair (F, Roc(F)) in
time O(k*(bN), where k is the mazimum size of pat-
terns in Foa, £ = #L, b is the mazimum branching

of D and N = ||Rocoa|| = Yrer,, #Roc(T).

We prepare some notations. In the following, D is an
input dataset on £ and 0 < 0 <1 is a real number,
¢ =#L, b is the maximum branching of D. Let F,
be the set of all o-frequent patterns in D. Then, k
denotes the maximum size of the frequent patterns in
Fo. A frequent pattern is mazimal if any rightmost
expansion of the pattern is no longer frequent on
D. From the next theorem, we can expect that the
algorithm runs with reasonable time complexity in
practice since both F, and ||Roc(F,)|| will not be
extremely large.

Theorem 8 Let D be a database, L be a label set,
and 0 < o < 1 be a real number. Then, the al-
gorithm FIND-FREQ-TREES of Fig. 6 finds all o-
frequent patterns in T in time O(||D|| + k?b¢ N),
where N = ||Roc(F,)|| is the total occurrences of
the frequent patterns.

Furthermore, the next theorem indicates that the al-
gorithm scales almost linearly in the sum of the sizes
of the maximal frequent patterns as in MaxMiner [9]
when the maximum size k and ¢ = #L grows slowly.
Thus, the algorithm is efficient for datasets with long
patterns.

Theorem 9 The algorithm FIND-FREQ-TREES of
Fig. 6 enumerates at most O(k{M) patterns during
the computation, where M 1is the sum of the sizes of
the mazimal o-frequent patterns.

3.4 An Example

Consider the dataset D consisting of |A| = 4 docu-
ments in Fig. 4 and assume that the minimum sup-
port is 0 = 0.5 and £ = {A,B,C}. This value
of o implies that the minimum doc-occurence is 2
documents. We show the patterns generated by the
sub-procedure EXPAND-TREES of Fig. 9 in Fig. 11
and the corresponding rml-occurence lists computed
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Figure 11: an example of FIND-FREQ-TREES: a
white pattern represents a frequent pattern, and a
shadowed pattern represents an infrequent pattern.
The number attached to each pattern represents the
ID of the pattern.
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by the sub-procedure UPDATE-ROC of Fig. 10 in Ta-
ble 1. In Fig. 11, each dotted line indicates the gen-
eration of a pattern of size k& > 1 from its predecessor
of size k — 1 by the rightmost expansion.

First, the algorithm computes the set F; of the fre-
quent 1-patterns in step 1 by traversing the data tree
D and records their occurrences in Roc;. Calling
ExpPAND-TREES with F; and Roc; gives the candi-
date set Cy and the set of their rml-occurence lists
Rocy. In Table 1, we see that Co contains patterns
207, 208, 209. In the entry for 207, we see that the
pattern 207 is obtained from its predecessor 103 with
label C by attaching a new leaf with label A. The
rml-occurence list of 207 is {4,11,20}, and the doc-
occurence list is {1,2,4}, corresponding to the first,
second and the fourth documents of D in Fig. 4.
Then, the pattern 209 has frequency 0.25 < o = 0.5,
and thus, it is discarded from F5.

Calling EXPAND-TREES with F» and Rocs gives C3
and Rocz. In the entry for C3 in Table 1, we see
that the successors of 208, say 319 324, have doc-
frequency less than ¢ = 0.5. Thus, they are removed
from F3. Only one successor of 207, namely 315,
has doc-frequency no less than 0.5 and are frequent.
Finally, since none of successor of 315 in C4 appear
in the dataset, the algorithm terminates and returns

F=FUFUF.

LAl b AL U ATV T I D LN AN\ W VWL Ly )
Input: A node list OldRoc, and a nonnegative
integer p > 0.
Output: A set of rml-occurence lists
{NewRoc(l) |l € L}.
Method:
for each [ € £ do
NewRoc(l) := 0;
for each last € OldRoc do
if p =0 then
v = child(last); /* the first child of last */
else then
cur = papP~'(last);
v := next(cur); /* the right sibling of cur */
while v # NIL do begin
A= Lp(v);
NewRoc(\)
v = next(v);
end /* while-loop */
end /* for-loop */
return {NewRoc(l) |l € L};

= NewRoc(\) U {v};

Figure 12: An improved algorithm of UPDATE-ROC

4 Improvement

In this section, we consider some improvements of
the proposal algorithms.

4.1 The Algorithm SCANNING-SIBLINGS

The algorithm SCANNING-SIBLINGS, shown in
Fig. 12, is an improvement of the algorithm
UppATE-ROC of Fig. 10. Let T be a pattern,
then SCANNING-SIBLINGS calculates all the rml-
occurence lists w.r.t. each (p,l)-expansion of T
for a given nonnegative integer p and a given rml-
occurence list OldRoc. The algorithm performs
as follows. First the algorithm creates the empty
lists NewRoc(l) for every I € L. Then, for each
v € OldRoc it adds v to NewRoc(\) where X is
a label of v. Note that SCANNING-SIBLINGS scans
each node v € Roc(T) only at once, while UPDATE-
RoC scans them #L times for calculating all the rml-
occurence lists w.r.t. each (p,[)-expansion of T for a
fixed p > 0. Therefore SCANNING-SIBLINGS is more
efficient than UPDATE-ROC by factor of O(#L).
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stage k ‘ Cy ‘ predecessor ‘ Fr ‘ Roc(T) ‘ Doc(T) ‘ docfreqp(T)
101 | {4,11,13,16,18,20} {1234} | 1.0
1 - - 102 | {3,6,7.9,15,17} (1,23} | 0.75
103 | {2,5.8,10,12,14,19,21,22} | {1.2,3.4} | 1.0
207 103 207 | {4,11,20} 124} |0.75
2 | 208 103 208 | {3,9,15) (1,23} | 0.75
209 103 {21} {4} 0.25
313 207 - 0 0 0
314 207 {6} {1} 0.25
315 207 315 | {5,12}) 1,2} 0.5
316 207 0 0 0
317 207 - 0 0 0
3 | 318 207 {21} {4} 0.25
319 208 - 0 0 0
320 208 - 0 0 0
321 208 0 0 0
322 208 -y {1} 0.25
323 208 0 0 0
324 208 - 0 0 0

4.2 The Pruning Using Frequent
1-patterns

Let T be a o-in frequent 1-pattern and the label
of the unique node of 7" be [. Then, the following
obviously holds: The label [ does not appear in any
o-frequent pattern 7" € T+.

Suppose the set of the labels evaluated to all the
o-frequent 1-patterns is called the frequent label set
and is denoted £*. Then the rightmost expansions
of any pattern is generated for each | € LT instead
of £ because of the fact.

4.3 The Pruning Using Frequent
2-patterns

Let T' be a o-frequent 2-pattern with the labels of
the root and the leaf of T be [; and l5. Then, the
following assertion holds: For any o-frequent pattern
T' € T* and nodes vy,vy of T', if L'(v1) = I and
L'(vg) =I5 holds then (v1,v9) ¢ E' also holds.

The algorithm with the pruning method based on
this assertion are developed as follows. First the

algorithm records the pairs of labels for every o-
frequent 2-pattern. Then it checks the pair of labels
of a new node and the node attached it to, on gen-
erating a rightmost expansion. If the checked pair
of labels is not o-frequent, then the algorithm prune
this rightmost expansion since it is not o-frequent.

4.4 The Algorithm
DUPLICATE-DETECTION

This optimization is shown to be most effective in the
proposed techniques in this section from experiments
of Section 5. Let T be a o-frequent pattern and T’
be a rightmost expansion of 7. When the algorithm
UPDATE-ROC or the algorithm SCANNING-STIBLINGS
computes the rml-occurence list Roc(T"), it scans all
the nodes of chp(v) if p = 0, and on all the nodes
that are to the right of pa’,’{l(v) if p > 1, for any
v € Roc(T). But this method often scans the same
nodes more than once if p > 1.

This problem is solved by improving the algorithm
SCANNING-STBLINGS and this yields an optimiza-
tion technique DUPLICATE-DETECTION, as follows.
First the algorithm initializes a variable last to NIL.

10
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of each dataset

datasets URL

allsites (mixture of 30 sites)

altavista http://www.altavista.com/
google http://www.google.com/
WebCrawler | http://www.webcrawler.com/
lycos http://www.lycos.com/

fast http://www.fastsearch.com/
argos http://argos.evansville.edu/
citeseers http://citeseer.nj.nec.com/

Next, for each v € Roc(T) it checks the value of last
before scanning on the nodes of D. If last = pa’,(v)
then it skips the manipulation for v € Roc(T) and
goes to the next nodes of v in Roc(T"). Otherwise the
algorithm substitutes the variable last for pal,(v).

DUPLICATE-DETECTION enumerates all the nodes of
rml-occurence list without repetition, if the following
two conditions are satisfied: (i) all the elements of
Roc(T) are ordered in the preorder of D for any 1-
pattern T, and (ii) the algorithm picks up all the
nodes of Roc(T') in the order of Roc(T'). Details are
omitted here and will be given in the full paper.

5 Experimental Results

To evaluate the effectiveness of our algorithm and
the pruning techniques, we run several experiments
on real-life datasets.

We describe the datasets used in the experiments.
The datasets are collections of HTML pages from
several Web search site. We listed the URL of the
sites in Table 2. We collected HTML pages by giv-
ing a set of keywords such as “Honda” or “NP op-
timization problems” to a search engine and simply
collected the cgi-generated HTML pages returned by
the search engine.

The dataset allsites is a collection of cgi-generated
288 HTML pages of 3.6MB from 30 Web databases
and search engine sites. This dataset attempt to
model information extraction from heterogeneous
sources in internet. This dataset was used for the
performance comparison among versions of mining
algorithms.

11

were also collections of cgi-generated HTML pages,
but each dataset consists of HTML pages obtained
from the same search engines. Thus, these datasets
are homogeneous and may contains evident regular-
ities embedded in the HTML pages. These datasets
include altavista, google, WebCrawler, lycos, fast,
argos. These five datasets contains the list of the
search results with title, summary, URL, related
pages and so on. These datasets were used for the
performance evaluation varying the minimum sup-
port.

The last dataset, citeseers, is the largest collection of
5.6MB and contains the list of bibliographic data in
HTML pages for online research papers consisting
of title, authors, abstracts, sources, citations, and
other bibliographic informations. This dataset was
used for the scale-up experiments.

Table 3 shows the parameters of these datasets. The
first four entries show the size of the HTML pages,
the number of pages, the number of nodes in the
corresponding data tree D, the number of distinct
labels/HTML tags.
the average, the variance, and the maximum of the
branching factor of the data tree. The last three
entries show the average, the variance, and the max-
imum of the depth of the data tree.

The next three entries show

All experiments were performed on PC (PentiumIII
600MHz, 512 megabytes RAM, linux 2.2.14). The al-
gorithms were implemented in Java (SUN JDK1.3.1,
JIT compiler) with a DOM library (OpenXML).

We implemented the following three variations of the
basic algorithm FIND-FREQ-TREES of Fig. 6 com-
bined with the pruning methods described in Sec-
tion 4.

e basic FIND-FREQ-TREES + SCANNING-
SIBLINGS
e middle : basic + the pruning using l-patterns

and 2-patterns

e full : middle + DUPLICATE-DETECTION

The algorithm basic is the base algorithm equipped
with the optimization SCANNING-SIBLINGS of
Fig. 12 in Subsection 4.1. The algorithm middle
is basic equipped with pruning techniques with
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size tag branching depth
dataset D pagesize (byte) | #A | ||D|| | #L£ | ave. | var. | max. | ave. | var. | max.
allsites 3,633,255 288 | 72,317 | 53 | 2.10 | 11.18 | 571 | 9.10 | 6.37 | 96
altavista 2,336,474 100 | 69,726 | 32 | 2.31 | 4.47 | 100 | 8.67 | 1.29 | 12
google 1,264,134 100 | 51,742 | 25 | 233 | 3.24 | 100 | 899 | 2.34 | 18
WebCrawler 1,478,728 100 | 36,623 | 29 | 1.91 | 2.38 | 100 | 10.78 | 2.01 | 18
lycos 2,399,679 100 | 61,591 | 43 | 1.96 | 4.80 | 601 | 10.30 | 2.48 | 17
fast 1,269,455 100 | 25,750 | 29 | 1.99 | 3.84 | 200 | 11.32 | 2.94 | 16
argos 1,312,475 100 | 45,440 | 24 | 2.17 | 4.80 | 100 | 8.69 | 1.48 | 14
citeseers 5,614,548 180 | 144,356 | 22 - - - - - -
the computation is at most two and thus the op-
. timization does not make any effect. On the other
dlsites oo hand, at some data points with o larger than 5%, the
et fully optimized version full is over order of magni-
= full dgorithm 10000 tude faster than basic and middle. At these points,
B the maximum stages were from 5 to over 10, and
] duplicate detection works well. At the data points
100 § with sigma larger than 2%, we stopped to run basic
° and middle since the running time exceeds several
B hours.

10 9 8 7 6 5 4 3 2 1 0
minimum support (%)

Figure 13: the efficiency comparison of the three al-
gorithms (the case 0 = 2.0(%) of middle are not
recorded.)

1-patterns and 2-patterns in Subsection 4.2 and
Subsection 4.3. Finally, the third algorithm full
will be the fastest one equipped with all optimiza-
tion, namely, with DUPLICATE-DETECTION in Sec-
tion 4.4.

5.1 Basic Algorithm vs. Improved

Versions

Fig. 13 compare the performance of the basic algo-
rithm basic and its variants middle and full on the
heterogeneous dataset allsites. The y-axis is loga-
rithmically scaled. At the points of o < 5%, there is
no distinction on the performance is observed. This
is because up to this point, the maximum stage of

Consequently, the duplicate detection technique in
Subsection 4.4 is quite useful on this dataset, which
mimics heterogeneous sources. The speed-up of
middle by pruning with 1-pattern and 2-patterns
against basic is not observed.

5.2 Performance Comparison

Fig. 14 shows the execution times for the six real-
world datasets from Web by varying the values of
minimum support from 5% to 0.25% at minimum,
where each dataset contains a homogeneous collec-
tion of cgi-generated Web pages collected from the
same search engine site. We used the full optimized
version full as a mining algorithm.

We can see trends of our algorithm on a variety of
datasets. As in the case for itemset discovery [4],
the execution time increases as the minimum sup-
port decreases. Although these six datasets have
similar characteristics in sizes, the number of nodes,
the branching factor, and the depth seen in Table 3,
the detailed trends were quite different.

To indicates more detailed characteristics of the
datasets, in each plot, we also show the number of

12
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Figure 14: Main experiment: the execution time of each dataset
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the maximum stage, this equals the maximum size of
the frequent patterns, (dotted lines). Then, we ob-
served that the number of frequent patterns and the
cpu time were mainly dominated by the maximum
stage or the maximum size of the frequent patterns
in these datasets.

5.3 Performances for Each Stage

To give more detailed look on the execution of our
algorithm, we show in Fig. 15 the trends of the cpu
time, the number of frequent patterns, and the aver-
age number of the rightmost occurrences per pattern
as the stage proceeds. The datasets were allsites
with ¢ = 1.5% used in the experiment in Subsec-
tion 5.1, google with o = 1.5% and WebCrawler
with o = 0.75%. In allsites and WebCrawler, the
number of frequent patterns decreases as the stage
proceeds, while in google the number slightly in-
creases and falls before the algorithm terminates.
The cpu times are monotonically decreasing in all
datasets.

5.4 Scale-up Experiment

Fig. 16 shows the scale-up property of the FIND-
FREQ-TREES with all optimization technique (full).
The dataset was citeseers, which is the collections
of HTML pages containing bibliographic records of
online papers of 5.6MB. We increases the number
of HTML pages from 5 pages (316KB) to 180 pages
(5,615KB) with the fixed minimum support o = 2%.
We can observe that the execution time scales almost
linearly. Similar scale-up properties were observed
for other datasets.

For example, at the data point of 100 pages
(4,000KB), the data tree contains 102,392 nodes.
Then, the algorithm found 34 frequent patterns with
maximum size 6 (nodes) in about 30 minutes. Below,
we show three patterns among 34 patterns found by
the algorithm, where the label P, B, FONT and #TEXT
stand for the tags for paragraphs, bold fonts, font
specification (color in this case) and text nodes, re-
spectively.

e {P:{B, B:{FONT: {#TEXT}}}}

o {P: {#TEXT, B, #TEXT, #TEXT, #TEXT}}
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3500

3000 //’
7 2500 /
o 2000
E /
5 1500
5 P

1000 /

500

0 _4//
0 1000 2000 3000 4000 5000 6000
Size (KB)

Figure 16: the scale-up experiment

o {P: {#TEXT, #TEXT, B, #TEXT, #TEXT}}

6 Conclusion

In this paper, we studied a data mining problem for
semi-structured data by modeling semi-structured
data as labeled ordered trees. We presented an effi-
cient algorithm for finding all frequent ordered tree
patterns from a collection of semi-structured data,
which scales almost linearly in the total size of max-
imal patterns. We run experiments on real-life Web
data to evaluate the proposed algorithms.

Optimized pattern mining is to find those patterns
that optimize a given statistical measure and attract-
ing much attention in both data mining and machine
learning communities [13, 18]. We have devised fast
and robust mining algorithm for finding simple text
patterns [8, 12] and it was shown that the optimized
pattern discovery is effective in text mining in ill de-
fined environment. Thus, it is our future problem to
develop optimized pattern discovery algorithm for
tree-structured data by extending our framework.

In this paper, we consider the mining problem from
semi-structured data in a simplest model, and ig-
nore the complex components such as attributes and
texts. It will be interesting to extend the proposal
algorithm to deal with texts and attributes of Web
pages or XML documents.
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