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1 Introdu
tionBy rapid progress of network and storage te
hnolo-gies, a huge amount of ele
troni
 data su
h as Webpages and XML data has been available on intra andinternet. These ele
troni
 data are heterogeneous
olle
tion of ill-stru
tured data that have no rigidstru
tures, and often 
alled semi-stru
tured data [1℄.Hen
e, there have been in
reasing demands for au-tomati
 methods for extra
ting useful information,parti
ularly, for dis
overing rules or patterns fromlarge 
olle
tions of semi-stru
tured data, namely,semi-stru
tured data mining [7, 11, 16, 17, 19, 25℄.In this paper, we model su
h semi-stru
tured dataand patterns by labeled ordered trees, and study theproblem of dis
overing all frequent tree-like patternsthat have at least a minsup support in a given 
ol-le
tion of semi-stru
tured data.We present an eÆ
ient pattern mining algorithmFind-Freq-Trees for dis
overing all frequent treepatterns from a large 
olle
tion of labeled orderedtrees.Previous algorithms for �nding tree-like patterns ba-si
ally adopted a straightforward generate-and-teststrategy [17, 24℄. In 
ontrast, our algorithm Find-Freq-Trees is an in
remental algorithm that si-multaneously 
onstru
ts the set of frequent patternsand their o

urren
es level by level. For the purpose,we devise an eÆ
ient enumeration te
hnique for or-dered trees by generalizing the itemset enumerationtree by Bayardo [9℄.The key of our method is the notion of the rightmostexpansion, a te
hnique to grow a tree by atta
hingnew nodes only on the rightmost bran
h of the tree.Furthermore, we show that it is suÆ
ient to main-tain only the o

urren
es of the rightmost leaves toeÆ
iently implement in
remental 
omputation.Combining the above te
hniques, we show that ouralgorithm s
ales almost linearly in the total size ofmaximal tree patterns 
ontained in an input 
olle
-tion slightly depending on the size of the longest pat-tern. We also developed a pruning te
hnique thatsigni�
antly speeds-up the sear
h.Experiments on real-world datasets show that theour algorithm runs eÆ
iently on real-life datasets
ombined with a proposed pruning te
hnique in the

f person: f name:Alan,tel:7786,tel:2133 g,person: fname: ffirst:Sara, last:Green g,tel:6877 g,person: f name:Fred, tel:6312, age:33 gg Figure 1: semi-stru
tured data<person><name>Alan</name><tel>7786</tel><tel>2133</tel></person><person><name><first>Sara</first><last>Green</last></name><tel>6877</tel></person><person><name>Fred</name><tel>6312</tel><age>33</age></person>Figure 2: a XML do
umentwide range of parameters.1.1 Related WorksSemi-stru
tured data is su
h data represented as atree-like stru
ture as shown in Fig. 1. There area number of studies on a semi-stru
tured database.For example, a 
onsiderable amount of studies onquery languages and index stru
tures are exe
uted[2, 10, 22℄. On the other hand, the 
lasses of taggedtexts su
h as HTML and XML [21℄, as shown inFig. 2 
an also be regarded as semi-stru
tured data.There are standardization a
tivities of query lan-guages and data stru
tures of XML[21, 23℄.But, there are still not many resear
hes about datamining for semi-stru
tured data. Wang and Liu[25℄
onsidered a s
hema dis
overy problem for semi-stru
tured data, and presented the algorithm for dis-
overing asso
iation rules where an item is a path.Miyahara et al.[17℄ also 
onsidered the same prob-lem based on the spe
ial tree-like patterns, 
alled1
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12Figure 3: a databasetag tree patterns.Several mining methods for a tree or a graph stru
-ture are proposed although they are not dire
tlyappli
able to semi-stru
tured data mining. Wang,Shapiro, Shasha et al.[24℄ devised the algorithm fordis
overing approximately 
ommon subtree, and ap-plied it to a motif dis
overy in multiple RNA se
-ondary stru
tures in genomi
s. Dehaspe et al.[11℄presented the eÆ
ient algorithm solving the frequentsubstru
ture dis
overy problem for labeled graphs,and applied it to the problem of fun
tion predi
tionof 
hemi
al 
ompounds. Matsuda and Motoda etal.[16℄ presented the algorithm for extra
ting typi-
al patterns from a dire
ted graph. Their algorithmuses a method 
alled the graph-based indu
tion.In the asso
iation rule dis
overy problem, Agrawalet al.[4, 5℄ developed an algorithm, 
alled Apriori,whi
h is a popular data mining problem. Their al-gorithm dis
overs frequent itemsets eÆ
iently by us-ing a subset latti
e of an itemset. A
tually the algo-rithms [11, 25℄ des
ribed above are based on Apriori.But it is said that the eÆ
ien
y of Apriori slowdownsif a database 
ontains long itemsets.To 
ope with this problem, Bayardo[9℄ proposedthe algorithm dis
overing long itemsets eÆ
iently.The algorithm is based on the itemset enumera-tion te
hnique, 
alled set-enumeration tree, whi
henumerates all the frequent itemsets without repe-tition. Sese and Morishita[20℄ presented the algo-rithm dis
overing optimal itemsets, based on theset-enumeration tree and a method of merging o
-
urren
e lists of ea
h itemset. In addition to theseworks, there are many works that 
omplement Apri-ori algorithm [3, 4, 5, 9, 14, 20℄ Our results gener-alizes the te
hniques of [9℄ and [20℄ above, and thus
an be regarded as a tree-
ounter part of the se
ond

generation of the asso
iation mining te
hniques.1.2 OrganizationThe rest of this paper is organized as follows. InSe
tion 2, we prepare basi
 notions and de�nitions.In Se
tion 3, we des
ribe our sear
h strategy usedfor enumerating all labeled ordered tree without du-pli
ates. In Se
tion 3, we present our algorithm fordis
overing all frequent patterns from a 
olle
tionof labeled ordered trees using in
remental updatete
hnique of the o

urren
e information 
ombinedwith the enumeration te
hnique shown in the previ-ous se
tion. In Se
tion 4, we des
ribe how we 
anspeed-up the sear
h by using pruning te
hniques. InSe
tion 5, we run experiments on real datasets andshow the eÆ
ien
y and the s
ale-up properties of ourmining algorithm. In Se
tion 6, we 
on
lude and givefuture works.2 PreliminariesIn this se
tion, we introdu
e basi
 notions and de�-nitions on semi-stru
tured data and our data miningproblems.2.1 Labeled Ordered TreesFor a set A, #A denotes the 
ardinality of A. LetL = fl; l0; l1; : : :g be a �nite set of labels 
orrespond-ing to attributes in semi-stru
tured data or tags intagged texts. We model semi-stru
tured databasesand patterns over them with labeled ordered trees [6℄de�ned as follows.De�nition 1 A labeled ordered tree on L (anordered tree, for short) is a 6-tuple T =(V;E;L; L; v0;�), where� G = (V;E; v0) is a tree with a root v0, where Vis a �nite set of nodes and E � V 2 is the set ofedges. For a node v 2 V , we denote by paT (v)the parent node of v, and by 
hT (v) the set ofall the 
hild nodes of v.� L : V ! L is a labeling fun
tion that assigns alabel L(v) to ea
h node v 2 V .� � � V 2 is a binary relation, 
alled the siblingrelation for T , satisfying the followings: (i) If2
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12Figure 4: a databasenodes v1; v2 2 V have a same parent then v1 �v2 or v2 � v1, (ii) otherwise neither v1 � v2 norv2 � v1. For an internal node, its 
hildren areordered from left to right as u1 � � � � � un forsome n � 0, where u � v i� u � v but v 6� u.In Fig. 4 and Fig. 5, we show examples of labeledordered trees, where a 
ir
le indi
ates a node and asymbol appears in a 
ir
le indi
ates a label.Let T be a labeled ordered tree. The size of T isde�ned by the number of its nodes jT j = #V . For apath � = (x0; : : : ; xn�1) (n � 0) in T , we de�ne thelength of the path to be j�j = n. For a node v 2 V ,the depth of v, denoted by depth(v), is de�ned asthe length of the path from the root v0 to v. Thedepth of a labeled ordered tree T is the length of thelongest path from the root to some leaf in T . Foran ordered tree T = (V;E;L; L; v0;�), we refer toV;E;L; and � as VT ; ET ; LT ; and �T respe
tively, ifit is 
lear from 
ontext.2.2 Problem StatementA semi-stru
tured database (a dataset , for short) isa triple D = hD;�; Æi, where� D is an ordered tree on L, and is 
alled a datatree. We assume that the root v0 of D, has aspe
ial label that does not belong to L.� � = fd1; : : : ; dmg is a set of do
ument names.� Æ : VDnfv0g ! � is a do
ument name fun
tionde�ned as follows. Let Di be a subtree whoseroot is the i-th 
hild of v0. Then, Æ is de�nedas the fun
tion that satis�es Æ(v) = di for allv 2 VDi .

A

A

C C

B

B AA

C 742

963 85Figure 5: an ordered tree of normal formIn Fig. 4, we show an example of semi-stru
tureddatabases. Intuitively, D is a labeled tree obtainedby merging a 
olle
tion of labeled trees D1; : : : ;Dm,where ea
h subtree Di represents a Web page or anXML do
uments. Thus, we refer to the maximalsubtree of D whose nodes are labeled with the samedo
ument name as a do
ument . We de�ne the sizeof D by the total number jjDjj = #VD of its nodes.A labeled ordered tree T of size k � 1 is said to be ofnormal form if it satis�es the following 
onditions:� The set of the nodes of T is VT = f1; : : : ; kg.� All elements in VT are numbered by preordertraversal [6℄ of T .The following lemma immediately follows from thede�nition.Lemma 1 Let T be any labeled ordered tree with knodes. If T is of normal form then the root is v0 = 1and the rightmost leaf is vk�1 = k in T .Fig. 5 shows an ordered tree of normal form, wherea symbol in a 
ir
le represents a label, and a numberatta
hed to the right of a 
ir
le represents a node-name. The size of the tree is 9, and we see that theroot is 1 and the rightmost leaf is 9.For a nonnegative integer k � 1, a substru
ture pat-tern of size k (a k-pattern, for short) is an orderedtree T on L of normal form and jT j = k. For everyk � 1, we denote the set of all k-patterns by Tk andthe set of all patterns by T := Sk Tk. We also de�neT �n := Snk=1 Tk for every positive integer n � 1.To de�ne our data mining problem, we need the no-tions of the o

urren
es of a pattern in a dataset,whi
h is not straightforward in the 
ase for orderedtrees unlike the 
ase for itemsets. We �rst start withde�ning the notion of mat
hing fun
tions.3



De�nition 2 Let T and D be ordered trees. Then,a mat
hing fun
tion from T to D is any fun
tion' : VT ! VD that satis�es the following 
onditions(i){(iv) for any v; v1; v2 2 VT .(i) ' is a one-to-one mapping . That is, if v1 6= v2then '(v1) 6= '(v2).(ii) ' preserves the parent-
hild relation. That is,(v1; v2) 2 ET i� ('(v1); '(v2)) 2 ED.(iii) ' preserves the sibling relation. That is, v1 �Tv2 i� '(v1) �D '(v2).(iv) ' preserves the label of ea
h node. That is,LT (v) = LD('(v)).We say that T o

urs inD if there exists some mat
h-ing fun
tion from T to D.The above de�nition of mat
hing fun
tions is avariant of those widely used in the 
ommunity ofstring/tree pattern mat
hing [15℄. Note that '(v1)and '(v2) need not be adja
ent even if v1 and v2are adja
ent in the 
ondition (iii) of our de�nition.Equivalently, a tree T mat
hes another tree D i� Tis obtained from a subtree D0 of D by repeatedlyremoving leaves and in
ident edges from D0.Unlike the 
ase for itemsets or strings, the mat
hingproblem for labeled ordered tree patterns is not easyto solve [24℄. A straightforward algorithm de
ide themat
hing, if T mat
hes D, in O(mn) time and thisis improved to O(m0:75n) time in [15℄, while it isnot known if it is possible to solve this problem inO(m+ n), where m = jT j and n = jDj.Most straightforward notion of an o

urren
e of a k-pattern T in a dataset will be a mat
hing fun
tion ' :VT ! VD from T toD itself. However, this de�nitionof o

urren
es has a drawba
k that a pattern hasunne
essarily many o

urren
es. In reality, we 
ansee that a k-pattern may have exponentially manyo

urren
es in the size k of the pattern on a datasetof total size n.Instead, we will de�ne the o

urren
es of a patternbased on the set of nodes of the data tree D towhi
h a designated node in the pattern maps. LetD = hD;�; Æi be a dataset, and k be a positive inte-ger. Re
all that for any k-pattern T , it follows fromLemma 1 that the nodes 1 and k 2 VT are the root

and the rightmost leaf of T , respe
tively. Given ak-pattern T 2 Tk and a mat
hing fun
tion ' fromT to D, we de�ne the root o

urren
e (the o

ur-ren
e or O

, for short), the rightmost o

urren
e(the rml-o

urren
e or Ro
 for short), and the do
-ument o

urren
e (the do
-o

urren
e or Do
, forshort) of T w.r.t. ' to be '(1), '(k), and Æ('(1)),respe
tively.Based on the above notions of the o

urren
es, wede�ne the root-o

urren
e list (Oo
(T )), the rml-o

urren
e list (Ro
(T )), and the do
ument o

ur-ren
e list (Do
(T )) as follows.� O

(T ) =f'(1) j ' : VT ! VD is a mat
hing fun
tiong.� Ro
(T ) =f'(k) j ' : VT ! VD is a mat
hing fun
tiong.� Do
(T ) = fÆ(v) j v 2 O

(T )g.Though the de�nition of the rml-o

urren
e may ap-pear to be strange at �rst glan
e and it is not usedin the de�nitions below, the dis
ussion in Se
tion 3and Se
tion 4 will reveal that it possesses a numberof good properties and will play a key role in ouralgorithms.Given a dataset D = hD;�; Æi and a k-pattern T , wede�ne the o

urren
e-frequen
y (the o

-frequen
y,for short) and the do
ument-frequen
y (the do
-frequen
y, for short) of as follows.� freqD(T ) = #O

(T )jjDjj :� do
freqD(T ) = #Do
(T )#� :Let 0 < � � 1 be a positive number. A k-pattern Tis �-frequent w.r.t. the o

urren
e frequen
y in D iffreqD(T ) � � and is �-frequent w.r.t. the do
umentfrequen
y in D if do
freqD(T ) � �.An instan
e of our data mining problem is a triplethL;D; �i, a set of labels L, a dataset D = hD;�; Æi,and a positive number 0 < � � 1, 
alled the min-imum support (minsup, for short). We now stateour data mining problem, 
alled the frequent pat-tern dis
overy problem, as follows.Frequent Pattern Dis
overy Problem4



Problem: Find all patterns T 2 T that are �-frequent w.r.t. the o

urren
e frequen
y in D, i.e.,freqD(T ) � �.This problem is a generalization of the frequent item-set dis
overy problem in asso
iation rule mining [4℄.The following problem is a natural variation of theabove problem in Web mining appli
ations.Do
-Frequent Pattern Dis
overy ProblemProblem: Find all patterns T 2 T that are �-frequent w.r.t. the do
ument frequen
y in D, i.e.,do
freqD(T ) � �.2.3 Representation of Ordered TreesIn this paper, we assume that ordered trees are rep-resented by the �rst-
hild, right-sibling representa-tion [6℄. In this representation, ea
h node v 2 VTof a ordered tree T has two informations, the �rst
hild 
hild(v) and the right sibling next(v). The�rst 
hild of v is a leftmost 
hild of v, and the rightsibling is a next sibling of v. If v does not havethe �rst 
hild (resp., the right sibling) then we as-sume that 
hild(v) = NIL (resp., next(v) = NIL).This representation is also adopted in a standard ofdata format and appli
ation interfa
e of XML, 
alledDOM [1℄.3 A Basi
 Mining AlgorithmIn this se
tion, we present an eÆ
ient algorithm fordis
overing all frequent tree patterns that s
ales al-most linearly in the total size of the maximal pat-terns embedded in a dataset. In the rest of this se
-tion, we des
ribe the eÆ
ient enumeration of labeledordered tree patterns in Subse
tion 3.2 and the in-
remental 
omputation of the rml-o

urren
e lists inSubse
tion 3.3.3.1 Overview of the AlgorithmIn Fig. 6, we present our algorithm Find-Freq-Trees for dis
overing all frequent ordered tree pat-terns that have the frequen
y at least the given min-imum support threshold 0 � � < 1 in a dataset D.As the basi
 design of the algorithm, we adoptedthe levelwise sear
h as in the Apriori algorithm [4℄
ombined with eÆ
ient enumeration te
hnique [9℄.

Algorithm Find-Freq-TreesInput : A dataset D = hD;�; Æi, a set L of labels,and a minsup 0 < � � 1.Output : A set F of all �-frequent patterns in D.Method :1 F1 := the set of �-frequent 1-patterns, and2 
ompute the set Ro
1 of their rml-o

urren
es;3 k := 2;4 while Fk�1 6= ; do begin5 hCk; Ro
ki := Expand-Trees(Fk�1; Ro
k�1);6 forea
h pattern T 2 Ck do7 Compute freqD(T ) from Ro
k(T );8 if freqD(T ) � � then Fk = Fk [ fTg;9 k := k + 1;10 end /* while-loop */11 return F = F1 [ � � � [ Fk�1;Figure 6: The algorithm for dis
overing all frequentordered tree patterns in a dataset D, where for everyk � 1, Fk is the set of all �-frequent patterns in Dand Ro
k is the set of their rightmost o

urren
elists.In the �rst pass, the algorithm simply 
ounts thenumber and the positions of the o

urren
es of thedistin
t labels by traversing the data tree D. The re-sults are stored in the set F1 and Ro
1, respe
tively.In the subsequent pass k � 2, the algorithm 
om-putes the set Fk of all frequent k-patterns and theset Ro
k of their rightmost o

urren
e lists simulta-neously by using the sub-pro
edure Expand-Treesshown in Fig. 9. Repeating this pro
ess until nomore frequent patterns are generated, the algorithm
omputes all �-frequent patterns in D.3.2 EÆ
ient Enumeration of OrderedTreesOur enumeration algorithm uses a similar te
hniqueto the set enumeration tree sear
h of Bayardo [9℄.A basi
 idea of our enumeration algorithm will beillustrated in Fig. 7. In the sear
h, starting with a setof trees 
onsisting of single nodes, the enumerationalgorithm expands a given ordered tree of size k� 1by atta
hing a new node at a leaf position to yieldlarger tree of size k. We 
an easily see that thissear
h strategy yields all k-patterns in Tk by at mostk appli
ations of expansion.5



Figure 7: A sear
h graph for (unlabeled) orderedtreesHowever, when expansion at arbitrary positions may
ause that some ordered tree may have more thanone prede
essor. This 
auses the dupli
ated enu-meration and makes the Apriori-like algorithm [4℄behave poorly on the datasets 
ontaining long fre-quent patterns. To over
ome this problem, we givethe restri
ted form of expansion, 
alled a rightmostexpansion, as follows. We denote the rightmost leafof an ordered tree T by rml(T ).De�nition 3 For a labeled ordered tree T , therightmost bran
h of T is the unique path from theroot to the rightmost leaf in T .Equivalently, the rightmost bran
h is a path � inT starting from the root su
h that every x 2 �is maximal in �. Re
all that for any k-pattern T ,rml(T ) = k by Lemma 1.Let A be a set, f : A! A be a fun
tion, and n � 0be a nonnegative integer. Then, fn is a fun
tionde�ned as f0(x) = x and fk(x) = f(fk�1(x)) forany x 2 A and k = 1; : : : ; n.De�nition 4 Let T 2 T be patterns over L, 0 �p < depth(rml(T )) be any integer, and l 2 L be anylabel. Suppose that x = rml(T ) is the rightmostleaf of T , and y = paT p(x) is the p-th parent of x.Then, the (p; l)-expansion of T is the labeled orderedtree S obtained by atta
hing a new node k with thelabel l to the node y so that the atta
hed node is therightmost 
hild of y. (See Fig. 8).A rightmost expansion of an ordered tree T is the(p; l)-expansion S of T for some integer p � 0 and

y

l

k − 1

z

( paT) 
p

k

paTFigure 8: (p; l)-expansionsome label l 2 L. Then, we say that either S isthe prede
essor of T or T is a su

essor of S. For
onvention, we assume a spe
ial labeled ordered tree,
alled the empty tree, ? su
h that j?j = 0 and anysingle node tree is a su

essor of ?.De�nition 5 Let L be the set of labels and T bethe set of ordered trees on L. The enumeration dagfor T based on the rightmost expansion is a dire
tedgraph G de�ned as follows. There is the unique root?. Ea
h node of the tree G is an ordered tree onL. There exists an out-going edge from a node S toanother node T i� T is a rightmost expansion of S.In Fig. 7, we show an example of the enumerationdag for the unlabeled ordered trees. The dag ofFig. 7 is a
tually a tree in this 
ase. We will formallyshow this 
laim in the last part of this se
tion. Thelevel of a node S is the minimum length of the pathsfrom the root to S. For every k � 0, the k-th layerof G is the set of all nodes of level k. We see that Gis a
tually a
y
li
 be
ause an appli
ation of the ex-pansion in
reases the size of a tree by one. We havethe following properties on the rightmost expansion.Re
all that a k-pattern is a labeled ordered tree ofsize k in normal form.Lemma 2 For every k � 2, if T is a (k � 1)-pattern then any rightmost expansion of T is alsoa k-pattern.Proof. If T 0 is the rightmost expansion of T , thentrivially jT 0j = k. Sin
e the new node vk = k isatta
hed to a node on the rightmost bran
h of T , itshould be the last node in the preorder traversal ofT 0. This shows the lemma. 2Lemma 3 For every k � 2, if T is a k-pattern then6



there exists the unique (k � 1)-pattern T 0 su
h thatT is a rightmost expansion of T 0.Proof. Suppose that T is obtained from some (k �1)-pattern T 0 by atta
hing the node k as a rightmostleaf. Then, we see that removing the atta
hed leaf kfrom T is the only way to build any prede
essor ofT . Sin
e this 
hoi
e of k as the rml of T is unique,the prede
essor of T is also unique. 2From Lemma 2 and Lemma 3 above, we see thatthe enumeration graph has good properties for thesear
h of T as follows.Theorem 4 Let G be the enumeration dag for Tbased on the rightmost expansion. Then, for everyk � 0, the k-th layer exa
tly 
ontains the membersof Tk, and the whole G exa
tly 
ontains the membersof T . Furthermore, G forms a tree, i.e., all nodesbut the root have the unique prede
essor.By the above theorem, we 
all the dag G the enu-meration tree for T in what follows. Using the enu-meration dag for T , all labeled ordered tree in T 
anbe enumerated.In Fig. 9, we present the algorithm Expand-Treesthat 
omputes Fk and the 
orresponding set Ro
k ofthe rml-o

urren
e lists. Given a set Fold � T andthe set Ro
old of the 
orresponding rml-o

urren
elists, the algorithm Expand-Trees 
omputes theset F of the su

essors of those trees in Fold by us-ing the rightmost expansion te
hnique shown above.The 
omputation of the set Ro
 of rml-o

urren
elists in step 6 and the 
orre
tness of the whole algo-rithm will be dis
ussed in detail in the next subse
-tion.3.3 Updating O

uren
e ListsTo 
ompute the frequen
y of ea
h enumerated pat-tern T 2 T , it is suÆ
ient to 
ompute the rml-o

urren
e list Ro
(T ) of T sin
e either Do
(T ) orO

(T ) is easily 
omputable from Ro
(T ). Thus, we
on
entrate on the problem of 
omputing Ro
(T ) forall 
andidates T 2 Ck.In this subse
tion, we give the algorithm Update-Ro
 for in
rementally updates the rml-o

uren
elist Ro
(T ) of a k-pattern T obtained by the right-most expansion. (Fig. 10.)

Algorithm Expand-Trees(Fold; Ro
old)Input : A set Fold of patterns, and the indexed setRo
old of their rml-o

urren
es indexed by treesin Fold.Output : The set F of the rightmost expansions oftrees in Fold and the indexed set Ro
old oftheir rml-o

urren
es indexed by trees in F.Method :1 F := ;; Ro
 := ;;2 forea
h tree T 2 Fold do3 forea
h position 0 � p < depth(rml(T )) do4 forea
h label l 2 L do begin5 Compute the (p; l)-expansion S of T ;6 Ro
(S) := Update-Ro
(Ro
old(T ); p; l);7 F = F [ fSg;8 end9 return hF; Ro
i;Figure 9: The algorithm for 
omputing all right-most expansions of a set of trees. The sub-pro
edureUpdate-Ro
 will be later des
ribed in Subse
-tion 3.3.The key of the algorithm Update-Ro
 is how toeÆ
iently store the information of the mat
hing ' :VT ! VD from ea
h pattern T 2 Ck to the datatree D. Instead of re
ording the full informationh'(1); : : : ; '(k)i of the mat
hing fun
tions ' : VT !VD, the algorithm maintains only the information ofthe rml-o

urren
es '(k), where k = rml(T ) is therightmost leaf.The following lemma is useful to in
rementally 
om-pute Ro
(T ) from Ro
(S) of its prede
essor S.Lemma 5 Suppose a (k � 1)-pattern T o

urs in adata tree D, and ' : VT ! VD is a mat
hing fun
tionfrom T to D. Let T 0 be a (p; l)-expansion of T , thenthe fun
tion  : VT 0 ! VD satisfying the followingthree 
onditions is a mat
hing fun
tion from T 0 to D.(1)  is an extension of ' as a mapping. That is, (i) = '(i) holds for any i = 1; : : : ; k � 1.(2)  (k) is a 
hild of paD(i) for any p � 0, and (k) � i if p 6= 0, where i = paDp�1('(k � 1)).(3) LD( (k)) = l holds.The next lemma immediately follows from Lemma 5.7



Algorithm Update-Ro
(OldRo
; p; l)Input : A node list OldRo
, a nonnegativeinteger p � 0, and a label l 2 L.Output : A node list newlist.Method :NewRo
 := �;1 for ea
h last 2 OldRo
 do2 if p = 0 then3 v = 
hild(last); /* the �rst 
hild of last */4 else then5 
ur := paDp�1(last);6 v := next(
ur); /* the right sibling of 
ur */7 while v 6= NIL do begin8 if LD(v) = l then9 NewRo
 = NewRo
 [ fvg;10 v = next(v);11 end /* while-loop */12end /* for-loop */13return NewRo
;Figure 10: An in
remental algorithm for updatingthe rml-o

uren
e list of a given k-patternLemma 6 Let T 2 Tk, 0 � p < depth(rml(T )) � k,and l 2 L be any label. The algorithm Update-Ro

omputes, given an input hRo
(T ); p; li, the rml-o

urren
e list Ro
(S) of the (p; l)-expansion S of Tin time O(kbn), where b is the maximum bran
hingof D and n = #Ro
(T ).A straightforward algorithm 
omputes Ro
(T ) intime O(km) from s
rat
h, where k = jT j and m =jjDjj. Therefore, the proposed algorithm above runsfaster than the straightforward algorithm when theprodu
t bn is mu
h smaller than jjDjj, that is, thefrequen
y of T in D is low.Consider the algorithm Expand-Trees of Fig. 9.The algorithm maintains two data F and Ro
. Fis a set of su

essors enumerated by the rightmostexpansion te
hnique. Ro
 � T �(VD)� is an indexedset of o

urren
e lists su
h that for every T 2 T ,Ro
(T ) denotes the list of o

urren
es 
orrespondingto T . For F � T , we de�ne Ro
(F) = f(T;Ro
(T )) :T 2 F g. We de�ne the size of Ro
 by jjRo
jj =PT2F Ro
(T ).Now, we show the 
orre
tness of the algorithmExpand-Trees of Fig. 9 and the main algorithm

Find-Freq-Trees of Fig. 6 as follows. FromLemma 6, we have the next 
orollary.Corollary 7 Let Fold � T and Ro
old = Ro
(Fold).Given an input hFold; Ro
oldi, The algorithmExpand-Trees 
omputes the pair hF ; Ro
(F)i intime O(k2`bN), where k is the maximum size of pat-terns in Fold, ` = #L, b is the maximum bran
hingof D and N = jjRo
oldjj =PT2Fold #Ro
(T ).We prepare some notations. In the following, D is aninput dataset on L and 0 < � � 1 is a real number,` = #L, b is the maximum bran
hing of D. Let F�be the set of all �-frequent patterns in D. Then, kdenotes the maximum size of the frequent patterns inF�. A frequent pattern is maximal if any rightmostexpansion of the pattern is no longer frequent onD. From the next theorem, we 
an expe
t that thealgorithm runs with reasonable time 
omplexity inpra
ti
e sin
e both F� and jjRo
(F�)jj will not beextremely large.Theorem 8 Let D be a database, L be a label set,and 0 < � � 1 be a real number. Then, the al-gorithm Find-Freq-Trees of Fig. 6 �nds all �-frequent patterns in T in time O(jjDjj + k2b`N),where N = jjRo
(F�)jj is the total o

urren
es ofthe frequent patterns.Furthermore, the next theorem indi
ates that the al-gorithm s
ales almost linearly in the sum of the sizesof the maximal frequent patterns as in MaxMiner [9℄when the maximum size k and ` = #L grows slowly.Thus, the algorithm is eÆ
ient for datasets with longpatterns.Theorem 9 The algorithm Find-Freq-Trees ofFig. 6 enumerates at most O(k`M) patterns duringthe 
omputation, where M is the sum of the sizes ofthe maximal �-frequent patterns.3.4 An ExampleConsider the dataset D 
onsisting of j�j = 4 do
u-ments in Fig. 4 and assume that the minimum sup-port is � = 0:5 and L = fA;B;Cg. This valueof � implies that the minimum do
-o

uren
e is 2do
uments. We show the patterns generated by thesub-pro
edure Expand-Trees of Fig. 9 in Fig. 11and the 
orresponding rml-o

uren
e lists 
omputed8



Figure 11: an example of Find-Freq-Trees: awhite pattern represents a frequent pattern, and ashadowed pattern represents an infrequent pattern.The number atta
hed to ea
h pattern represents theID of the pattern.by the sub-pro
edure Update-Ro
 of Fig. 10 in Ta-ble 1. In Fig. 11, ea
h dotted line indi
ates the gen-eration of a pattern of size k � 1 from its prede
essorof size k � 1 by the rightmost expansion.First, the algorithm 
omputes the set F1 of the fre-quent 1-patterns in step 1 by traversing the data treeD and re
ords their o

urren
es in Ro
1. CallingExpand-Trees with F1 and Ro
1 gives the 
andi-date set C2 and the set of their rml-o

uren
e listsRo
2. In Table 1, we see that C2 
ontains patterns207, 208, 209. In the entry for 207, we see that thepattern 207 is obtained from its prede
essor 103 withlabel C by atta
hing a new leaf with label A. Therml-o

uren
e list of 207 is f4; 11; 20g, and the do
-o

uren
e list is f1; 2; 4g, 
orresponding to the �rst,se
ond and the fourth do
uments of D in Fig. 4.Then, the pattern 209 has frequen
y 0:25 < � = 0:5,and thus, it is dis
arded from F2.Calling Expand-Trees with F2 and Ro
2 gives C3and Ro
3. In the entry for C3 in Table 1, we seethat the su

essors of 208, say 319{324, have do
-frequen
y less than � = 0:5. Thus, they are removedfrom F3. Only one su

essor of 207, namely 315,has do
-frequen
y no less than 0.5 and are frequent.Finally, sin
e none of su

essor of 315 in C4 appearin the dataset, the algorithm terminates and returnsF = F1 [ F2 [ F3.

Algorithm S
anning-Siblings(OldRo
; p)Input : A node list OldRo
, and a nonnegativeinteger p � 0.Output : A set of rml-o

uren
e listsfNewRo
(l) j l 2 Lg.Method :for ea
h l 2 L doNewRo
(l) := ;;for ea
h last 2 OldRo
 doif p = 0 thenv = 
hild(last); /* the �rst 
hild of last */else then
ur := paDp�1(last);v := next(
ur); /* the right sibling of 
ur */while v 6= NIL do begin� = LD(v) ;NewRo
(�) = NewRo
(�) [ fvg;v = next(v);end /* while-loop */end /* for-loop */return fNewRo
(l) j l 2 Lg;Figure 12: An improved algorithm of Update-Ro
4 ImprovementIn this se
tion, we 
onsider some improvements ofthe proposal algorithms.4.1 The Algorithm S
anning-SiblingsThe algorithm S
anning-Siblings, shown inFig. 12, is an improvement of the algorithmUpdate-Ro
 of Fig. 10. Let T be a pattern,then S
anning-Siblings 
al
ulates all the rml-o

uren
e lists w.r.t. ea
h (p; l)-expansion of Tfor a given nonnegative integer p and a given rml-o

uren
e list OldRo
. The algorithm performsas follows. First the algorithm 
reates the emptylists NewRo
(l) for every l 2 L. Then, for ea
hv 2 OldRo
 it adds v to NewRo
(�) where � isa label of v. Note that S
anning-Siblings s
ansea
h node v 2 Ro
(T ) only at on
e, while Update-Ro
 s
ans them #L times for 
al
ulating all the rml-o

uren
e lists w.r.t. ea
h (p; l)-expansion of T for a�xed p � 0. Therefore S
anning-Siblings is moreeÆ
ient than Update-Ro
 by fa
tor of O(#L).9



Table 1: Ro
(T ), Do
(T ) and do
freqD(T ) of the patterns in Fig. 11stage k Ck prede
essor Fk Ro
(T ) Do
(T ) do
freqD(T ){ { 101 f4,11,13,16,18,20g f1,2,3,4g 1.01 { { 102 f3,6,7,9,15,17g f1,2,3g 0.75{ { 103 f2,5,8,10,12,14,19,21,22g f1,2,3,4g 1.0207 103 207 f4,11,20g f1,2,4g 0.752 208 103 208 f3,9,15g f1,2,3g 0.75209 103 { f21g f4g 0.25� � � � � � � � � � � � � � � � � �313 207 { ; ; 0314 207 { f6g f1g 0.25315 207 315 f5,12g f1,2g 0.5316 207 { ; ; 0317 207 { ; ; 03 318 207 { f21g f4g 0.25319 208 { ; ; 0320 208 { ; ; 0321 208 { ; ; 0322 208 { f4g f1g 0.25323 208 { ; ; 0324 208 { ; ; 0� � � � � � � � � � � � � � � � � �4.2 The Pruning Using Frequent1-patternsLet T be a �-in frequent 1-pattern and the labelof the unique node of T be l. Then, the followingobviously holds: The label l does not appear in any�-frequent pattern T 0 2 T +.Suppose the set of the labels evaluated to all the�-frequent 1-patterns is 
alled the frequent label setand is denoted L+. Then the rightmost expansionsof any pattern is generated for ea
h l 2 L+ insteadof L be
ause of the fa
t.4.3 The Pruning Using Frequent2-patternsLet T be a �-frequent 2-pattern with the labels ofthe root and the leaf of T be l1 and l2. Then, thefollowing assertion holds: For any �-frequent patternT 0 2 T + and nodes v1; v2 of T 0, if L0(v1) = l1 andL0(v2) = l2 holds then (v1; v2) 62 E0 also holds.The algorithm with the pruning method based onthis assertion are developed as follows. First the

algorithm re
ords the pairs of labels for every �-frequent 2-pattern. Then it 
he
ks the pair of labelsof a new node and the node atta
hed it to, on gen-erating a rightmost expansion. If the 
he
ked pairof labels is not �-frequent, then the algorithm prunethis rightmost expansion sin
e it is not �-frequent.4.4 The AlgorithmDupli
ate-Dete
tionThis optimization is shown to be most e�e
tive in theproposed te
hniques in this se
tion from experimentsof Se
tion 5. Let T be a �-frequent pattern and T 0be a rightmost expansion of T . When the algorithmUpdate-Ro
 or the algorithm S
anning-Siblings
omputes the rml-o

uren
e list Ro
(T 0), it s
ans allthe nodes of 
hD(v) if p = 0, and on all the nodesthat are to the right of pap�1D (v) if p � 1, for anyv 2 Ro
(T ). But this method often s
ans the samenodes more than on
e if p � 1.This problem is solved by improving the algorithmS
anning-Siblings and this yields an optimiza-tion te
hnique Dupli
ate-Dete
tion, as follows.First the algorithm initializes a variable last to NIL.10



Table 2: the URL of the 
orresponding sear
h engineof ea
h datasetdatasets URLallsites (mixture of 30 sites)altavista http://www.altavista.
om/google http://www.google.
om/WebCrawler http://www.web
rawler.
om/ly
os http://www.ly
os.
om/fast http://www.fastsear
h.
om/argos http://argos.evansville.edu/
iteseers http://
iteseer.nj.ne
.
om/Next, for ea
h v 2 Ro
(T ) it 
he
ks the value of lastbefore s
anning on the nodes of D. If last = papD(v)then it skips the manipulation for v 2 Ro
(T ) andgoes to the next nodes of v in Ro
(T ). Otherwise thealgorithm substitutes the variable last for papD(v).Dupli
ate-Dete
tion enumerates all the nodes ofrml-o

uren
e list without repetition, if the followingtwo 
onditions are satis�ed: (i) all the elements ofRo
(T ) are ordered in the preorder of D for any 1-pattern T , and (ii) the algorithm pi
ks up all thenodes of Ro
(T ) in the order of Ro
(T ). Details areomitted here and will be given in the full paper.5 Experimental ResultsTo evaluate the e�e
tiveness of our algorithm andthe pruning te
hniques, we run several experimentson real-life datasets.We des
ribe the datasets used in the experiments.The datasets are 
olle
tions of HTML pages fromseveral Web sear
h site. We listed the URL of thesites in Table 2. We 
olle
ted HTML pages by giv-ing a set of keywords su
h as \Honda" or \NP op-timization problems" to a sear
h engine and simply
olle
ted the 
gi-generated HTML pages returned bythe sear
h engine.The dataset allsites is a 
olle
tion of 
gi-generated288 HTML pages of 3.6MB from 30 Web databasesand sear
h engine sites. This dataset attempt tomodel information extra
tion from heterogeneoussour
es in internet. This dataset was used for theperforman
e 
omparison among versions of miningalgorithms.

The remaining datasets used in our experimentswere also 
olle
tions of 
gi-generated HTML pages,but ea
h dataset 
onsists of HTML pages obtainedfrom the same sear
h engines. Thus, these datasetsare homogeneous and may 
ontains evident regular-ities embedded in the HTML pages. These datasetsin
lude altavista, google, WebCrawler, ly
os, fast,argos. These �ve datasets 
ontains the list of thesear
h results with title, summary, URL, relatedpages and so on. These datasets were used for theperforman
e evaluation varying the minimum sup-port.The last dataset, 
iteseers, is the largest 
olle
tion of5.6MB and 
ontains the list of bibliographi
 data inHTML pages for online resear
h papers 
onsistingof title, authors, abstra
ts, sour
es, 
itations, andother bibliographi
 informations. This dataset wasused for the s
ale-up experiments.Table 3 shows the parameters of these datasets. The�rst four entries show the size of the HTML pages,the number of pages, the number of nodes in the
orresponding data tree D, the number of distin
tlabels/HTML tags. The next three entries showthe average, the varian
e, and the maximum of thebran
hing fa
tor of the data tree. The last threeentries show the average, the varian
e, and the max-imum of the depth of the data tree.All experiments were performed on PC (PentiumIII600MHz, 512 megabytes RAM, linux 2.2.14). The al-gorithms were implemented in Java (SUN JDK1.3.1,JIT 
ompiler) with a DOM library (OpenXML).We implemented the following three variations of thebasi
 algorithm Find-Freq-Trees of Fig. 6 
om-bined with the pruning methods des
ribed in Se
-tion 4.� basi
 : Find-Freq-Trees + S
anning-Siblings� middle : basi
 + the pruning using 1-patternsand 2-patterns� full : middle + Dupli
ate-Dete
tionThe algorithm basi
 is the base algorithm equippedwith the optimization S
anning-Siblings ofFig. 12 in Subse
tion 4.1. The algorithm middleis basi
 equipped with pruning te
hniques with11



Table 3: datasetsdataset D size tag bran
hing depthpagesize (byte) #� jjDjj #L ave. var. max. ave. var. max.allsites 3,633,255 288 72,317 53 2.10 11.18 571 9.10 6.37 96altavista 2,336,474 100 69,726 32 2.31 4.47 100 8.67 1.29 12google 1,264,134 100 51,742 25 2.33 3.24 100 8.99 2.34 18WebCrawler 1,478,728 100 36,623 29 1.91 2.38 100 10.78 2.01 18ly
os 2,399,679 100 61,591 43 1.96 4.80 601 10.30 2.48 17fast 1,269,455 100 25,750 29 1.99 3.84 200 11.32 2.94 16argos 1,312,475 100 45,440 24 2.17 4.80 100 8.69 1.48 14
iteseers 5,614,548 180 144,356 22 { { { { { {
allsites
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Figure 13: the eÆ
ien
y 
omparison of the three al-gorithms (the 
ase � = 2:0(%) of middle are notre
orded.)1-patterns and 2-patterns in Subse
tion 4.2 andSubse
tion 4.3. Finally, the third algorithm fullwill be the fastest one equipped with all optimiza-tion, namely, with Dupli
ate-Dete
tion in Se
-tion 4.4.5.1 Basi
 Algorithm vs. ImprovedVersionsFig. 13 
ompare the performan
e of the basi
 algo-rithm basi
 and its variants middle and full on theheterogeneous dataset allsites. The y-axis is loga-rithmi
ally s
aled. At the points of � � 5%, there isno distin
tion on the performan
e is observed. Thisis be
ause up to this point, the maximum stage of

the 
omputation is at most two and thus the op-timization does not make any e�e
t. On the otherhand, at some data points with � larger than 5%, thefully optimized version full is over order of magni-tude faster than basi
 and middle. At these points,the maximum stages were from 5 to over 10, anddupli
ate dete
tion works well. At the data pointswith sigma larger than 2%, we stopped to run basi
and middle sin
e the running time ex
eeds severalhours.Consequently, the dupli
ate dete
tion te
hnique inSubse
tion 4.4 is quite useful on this dataset, whi
hmimi
s heterogeneous sour
es. The speed-up ofmiddle by pruning with 1-pattern and 2-patternsagainst basi
 is not observed.5.2 Performan
e ComparisonFig. 14 shows the exe
ution times for the six real-world datasets from Web by varying the values ofminimum support from 5% to 0:25% at minimum,where ea
h dataset 
ontains a homogeneous 
olle
-tion of 
gi-generated Web pages 
olle
ted from thesame sear
h engine site. We used the full optimizedversion full as a mining algorithm.We 
an see trends of our algorithm on a variety ofdatasets. As in the 
ase for itemset dis
overy [4℄,the exe
ution time in
reases as the minimum sup-port de
reases. Although these six datasets havesimilar 
hara
teristi
s in sizes, the number of nodes,the bran
hing fa
tor, and the depth seen in Table 3,the detailed trends were quite di�erent.To indi
ates more detailed 
hara
teristi
s of thedatasets, in ea
h plot, we also show the number of12
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Figure 14: Main experiment: the exe
ution time of ea
h dataset
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frequent patterns in the dataset (dashed lines) andthe maximum stage, this equals the maximum size ofthe frequent patterns, (dotted lines). Then, we ob-served that the number of frequent patterns and the
pu time were mainly dominated by the maximumstage or the maximum size of the frequent patternsin these datasets.5.3 Performan
es for Ea
h StageTo give more detailed look on the exe
ution of ouralgorithm, we show in Fig. 15 the trends of the 
putime, the number of frequent patterns, and the aver-age number of the rightmost o

urren
es per patternas the stage pro
eeds. The datasets were allsiteswith � = 1:5% used in the experiment in Subse
-tion 5.1, google with � = 1:5% and WebCrawlerwith � = 0:75%. In allsites and WebCrawler, thenumber of frequent patterns de
reases as the stagepro
eeds, while in google the number slightly in-
reases and falls before the algorithm terminates.The 
pu times are monotoni
ally de
reasing in alldatasets.5.4 S
ale-up ExperimentFig. 16 shows the s
ale-up property of the Find-Freq-Trees with all optimization te
hnique (full).The dataset was 
iteseers, whi
h is the 
olle
tionsof HTML pages 
ontaining bibliographi
 re
ords ofonline papers of 5.6MB. We in
reases the numberof HTML pages from 5 pages (316KB) to 180 pages(5,615KB) with the �xed minimum support � = 2%.We 
an observe that the exe
ution time s
ales almostlinearly. Similar s
ale-up properties were observedfor other datasets.For example, at the data point of 100 pages(4,000KB), the data tree 
ontains 102,392 nodes.Then, the algorithm found 34 frequent patterns withmaximum size 6 (nodes) in about 30 minutes. Below,we show three patterns among 34 patterns found bythe algorithm, where the label P; B; FONT and #TEXTstand for the tags for paragraphs, bold fonts, fontspe
i�
ation (
olor in this 
ase) and text nodes, re-spe
tively.� fP : f B; B : fFONT : f#TEXTgggg� fP : f#TEXT; B; #TEXT; #TEXT; #TEXTgg
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Figure 16: the s
ale-up experiment� fP : f#TEXT; #TEXT; B; #TEXT; #TEXTgg6 Con
lusionIn this paper, we studied a data mining problem forsemi-stru
tured data by modeling semi-stru
tureddata as labeled ordered trees. We presented an eÆ-
ient algorithm for �nding all frequent ordered treepatterns from a 
olle
tion of semi-stru
tured data,whi
h s
ales almost linearly in the total size of max-imal patterns. We run experiments on real-life Webdata to evaluate the proposed algorithms.Optimized pattern mining is to �nd those patternsthat optimize a given statisti
al measure and attra
t-ing mu
h attention in both data mining and ma
hinelearning 
ommunities [13, 18℄. We have devised fastand robust mining algorithm for �nding simple textpatterns [8, 12℄ and it was shown that the optimizedpattern dis
overy is e�e
tive in text mining in ill de-�ned environment. Thus, it is our future problem todevelop optimized pattern dis
overy algorithm fortree-stru
tured data by extending our framework.In this paper, we 
onsider the mining problem fromsemi-stru
tured data in a simplest model, and ig-nore the 
omplex 
omponents su
h as attributes andtexts. It will be interesting to extend the proposalalgorithm to deal with texts and attributes of Webpages or XML do
uments.
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