
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

On the Minimization Problem of Text Compression
Scheme by a Reduced Grammar Transform

Sakamoto, Hiroshi
Department of Informatics, Kyushu University

Shimozono, Shinichi
Department of Informatics, Kyushu University

Shinohara, Ayumi
Department of Informatics, Kyushu University

Takeda, Masayuki
Department of Informatics, Kyushu University

https://hdl.handle.net/2324/3045

出版情報：DOI Technical Report. 195, 2001-08. Department of Informatics, Kyushu University
バージョン：
権利関係：

On the Minimization Problem of Text Compression S
heme bya Redu
ed Grammar Transform(submitting to 13th annual ACM-SIAM symposium on dis
rete algorithms, SODA2002)Hiroshi Sakamotoy Shini
hi Shimozonoz Ayumi Shinoharay Masayuki TakedayAbstra
tThe
omplexity of an optimization problem fortext
ompression by grammar transforms is studied.Given a string, the goal of this problem is to �nda
ontext-free grammar in Chomsky normal form,
alled a straight-line program, whi
h stri
tly derivesthe string. The measure of this minimization prob-lem is the size of a grammar, i.e., the number of theprodu
tion rules of the grammar. The �rst resultobtained in this paper is the NP-hardness of thisproblem. The se
ond result is an approximation al-gorithm that a
hieves the worst-
ase approximationratio 3n= log2 n for binary strings. The third resultis a 6-approximation algorithm for restri
ted binarystrings su
h that the strings
ontains no overlappingfa
tor,
alled overlap-free strings.1 Introdu
tionText
ompression is a task of redu
ing the amountof spa
e needed to store text �les on
omputers or ofredu
ing the amount of time taken to transmit in-formation over a
hannel of given bandwidth. Userswant to redu
e the size of their data as small aspossible, but want to minimize the time needed forthis task. The main
riteria for
hoosing
ompres-sion methods are therefore the
ompression ratio andthe
ompression time. Many studies have been un-dertaken to develop a new
ompression method forimproving the
ompression ratio and/or the
om-pression time. The Lempel-Ziv algorithms [16, 17℄,yDept. of Informati
s, Kyushu University, Fukuoka 812-8581, Japan. E-mail: fhiroshi, ayumi, takedag�i.kyushu-u.a
.jpzDept. of Arti�
ial Intelligen
e, Kyushu Institute of Te
h-nology, Iizuka 820-8502, Japan. E-mail: sin�ai.kyute
h.a
.jp

often referred to as LZ77 and LZ78, and their vari-ants (e.g., [15, 13℄) are most widely-used universallossless
ompression algorithms, together with thearithmeti

oding algorithms (see, e.g., [11℄).Finding the minimum representation of a giventext string is regarded as a
ombinatorial optimiza-tion problem. One interesting topi
 is to analyze thetime
omplexity of this optimization problem un-der some reasonable en
oding s
heme. Storer andSzymanski [14℄ presented several abstra
t
ompres-sion s
hemes, and dis
ussed the intra
tabilities ofthe minimization problems under the s
hemes. Es-pe
ially, one of the s
hemes is a generalization ofthe LZ77
ompression, and the
orresponding min-imization problem was shown to be NP-
omplete.Also, De Agostino and Storer [2℄ generalized theLZ78 s
heme and then proved that the
omputationof the optimal parsing is NP-
omplete.Re
ently, there have emerged new
ompression al-gorithms, su
h as Sequitur [9, 8℄ and Re-Pair [6℄,whi
h often outperform the Lempel-Ziv family in the
ompression ratio
omparison. Although they re-quire mu
h more
ompression time than the Lempel-Ziv family, it be
omes not so
ru
ial due to the re
entprogress in
omputer te
hnology. These
ompressionmethods
an be generalized into a new
ompressions
heme
alled grammar transform (see [5℄). In thiss
heme, a text string w is transformed into a
ontext-free grammar G that generates the language fwg,and then G is en
oded in some appropriate man-ner. A
ontext-free grammar that generates a singlestring is said to be admissible. Yang and Kie�er[3℄ presented a grammar transform algorithm, andshowed that the algorithm is asymptoti
ally optimal(i.e. universal) for a broad
lass of sour
es, in
ludingstationary, ergodi
 sour
es. However, the
omputa-tional
omplexity of the problem to �nd the smallest1

admissible grammar representing a given text hasnot been dis
ussed yet.In this paper, we prove the NP-hardness of thisminimization problem to �nd a smallest grammarwith restri
tion to the
lass of admissible grammarsin Chomsky normal form,
alled straight-line pro-grams. Despite the restri
tion, the
lass of straight-line programs is ri
h enough in the
ontext of text
ompression. For example, the Re-Pair
ompressionis a grammar transform in whi
h the grammars arerestri
ted to straight-line programs. Moreover, theLZ78
ompression
an be regarded as a kind of gram-mar transform in whi
h all the produ
tion rules butthe start rule are restri
ted to the form � ! Xa,where � is a nonterminal symbol, a is a terminalsymbol, and X is either a terminal symbol or a non-terminal symbol.Our proof employs a redu
tion from Monotone3-Sat to the de
ision version of the problem, andis
onsiderably
ompli
ated. This settles partially,but as the �rst hardness result, the open problem intext
ompression by a redu
ed grammar transform.The string redu
ed from a monotone 3-CNF formulais
onstru
ted over a �nite alphabet, whose size de-pends on the size of the given formula. However,it exhibits a potential intra
tability of the problem,and may suggest diÆ
ulties in developing eÆ
ientalgorithms for the problem over a large alphabet.We then restri
t ourselves to the
ase of binaryalphabet, and present two polynomial-time approx-imation algorithms. One is a general algorithmthat �nds an SLP for an arbitrary binary string,and a
hieves the worst-
ase approximation ratio3n= log2 n. Interestingly, this algorithm stands ona simple idea that makes pairs of symbols in stringsfrom left to right, and is
onsidered as an extension ofthe algorithms for obtaining the minimum ordered-binary de
ision diagram from a
omplete truth ta-ble [12℄.The other is an algorithm that produ
es an SLPwhose size is at most 6 times the optimum, for a
lassof binary strings that
ontain no overlapping sub-strings. This algorithm
omputes an SLP by involv-ing the former algorithm as subroutine, with �ndingthe longest substring of the input whose binary sym-bols are alternating.The rest of this paper is organized as follows. InSe
tion 2 we introdu
e some notation and de�ni-

tions, and then de�ne our minimization problem.In Se
tion 3 we prove the NP-hardness of the prob-lem by showing a redu
tion fromMonotone 3-Sat.Then, we present two approximation algorithms forthe
ase of binary strings in Se
tion 4. Se
tion 5
ontains �nal remarks and states open problems.2 PreliminariesA set � denotes a �nite alphabet through this paper.The set of all �nite strings over � is denoted by ��,and �+ denotes ��nf"g where " is the empty string.The length of a string w 2 ��, i.e. the number ofsymbols
onsisting of w, is denoted by jwj, and theith symbol of w with 1 � i � jwj is denoted by w[i℄.A string x 2 �� is a substring of w 2 �� if thereexist y; z 2 �� su
h that w = yxz. In this
ase, y isa pre�x of w, z is a suÆx of w, and if jxj < jwj thenx is a proper substring of w. The notion w[i; j℄ for1 � i � j � jwj refers to the substring w[i℄ � � �w[j℄.An o

urren
e of w[i; j℄ in w refers to a position 1 �k � jwj su
h that w[i; j℄ = w[k; k + (j � i)℄. By℄(x;w), we denote the number of o

urren
es of x inw.A
ontext-free grammar G = (�; N; P; S) is saidto be admissible if it generates a singleton set of anonempty string s, that is, L(G) = fsg. The produ
-tion rules of any admissible grammar
an be writtenas �1 ! �1;�2 ! �2;...�m ! �mwhere �1; �2; : : : ; �m are the ordered nonterminalsymbols inN , �m = S is the start symbol, and �i is anonempty string over the alphabet �[f�1; : : : ; �i�1gfor i = 1; 2; : : : ;m. We assume G
ontains no use-less symbols. The size of an admissible grammarG, denoted by kGk, is the total length of the righthand sides of produ
tion rules. That is, kGk =j�1j+ j�2j+ � � �+ j�mj.In this paper, we
onsider the minimization prob-lem for the admissible grammars in Chomsky normalform,
alled straight-line programs (SLPs). For sim-pli
ity of dis
ussion, we repla
e all o

urren
es of �within the right hand sides of the produ
tion ruleswith a for every produ
tion rule of the form � ! a,2

where � is a nonterminal symbol and a is a termi-nal symbol. The grammar size is then exa
tly twi
ethe
ardinality of N . We note that this repla
ementis possible unless the string to be expressed by agrammar is of length one. Thus, we deal with thefollowing minimization problem.De�nition 1. Min Straight-Line ProgramGiven a string s 2 �+, �nd the smallest straight-lineprogram over � for s, i.e., a straight-line programthat generates s and the
ardinality of its set N ofnonterminal symbols is minimum.The de
ision problem with respe
t to MinStraight-Line Program is formulated by a posi-tive integer threshold k in an instan
e and the ques-tion asking whether an SLP smaller than k exists.Here we de�ne some notions for minimizationproblems and their approximation algorithms (seee.g. [1, 10℄ for details.) An algorithm A for a mini-mization problem � approximates � within ratio �,or a
hieves a worst-
ase approximation ratio � if forany instan
e of � the algorithm A produ
es its solu-tion whose measure (
ost) is no more than � timesthe measure of an optimum solution. In this
ase,we also say that A is an �-approximation algorithmfor �.The straight-line program G is also represented bythe term yield of a tree, i.e. the
on
atenation of alllabels of the leaves of the tree; For a string w, G isa tree t over N [� that yields w and ea
h internalnode is labeled by a nonterminal. The set P of rulesrepresented by t is the set of all produ
tion rules�i ! XY su
h that t
ontains a node labeled by�i 2 N whose
hildren are labeled by X;Y 2 N [�.The tree of w with respe
t to an SLP P is said to bea derivation tree of P for w, and we say P derivesw.From a view point of binary derivation trees, thefollowing observation is rather immediate.Lemma 1. The upper bound and lower bound ofthe sizes of minimum straight-line programs are n�1and log n, respe
tively, where n is the length of theinput string.Proof. Let w be an input string and jwj = n. Anyderivation tree for w
ontains exa
tly n � 1 inter-nal nodes. Thus, the maximum number of rules

is bounded by the number of internal nodes of thederivation tree. Let P be a set of rules and jP j = k.If any rule is of the form � ! XX for some � 2 Nand X 2 N [�, then the derivation tree is
omplete,i.e., all paths from the root to leaves are length k. IfjP j = k and the derivation tree is not
omplete, thenthere exists a path p whi
h is longer than k. Sin
eany path does not
ontain a nonterminal twi
e, p
ontains at least k+1 nonterminals. Thus, the min-imum number of rules is bounded by k = log n. 2Thus, a trivial approximation ratio a
hievable by apolynomial-time algorithm forMin Straight-LineProgram is (n� 1)= log n.3 Min SLP is
omputationally in-tra
tableIn this se
tion we show the following theorem:Theorem 1. Min Straight-Line Program isNP-hard.We prove this by a redu
tion from Monotone3-Sat to a de
ision problem version of MinStraight-Line Program. We �rstly de�neMonotone 3-Sat, then des
ribe a translation al-gorithm from a monotone 3CNF to a pair of a stringand a nonnegative integer, that is, an instan
e ofde
ision version of Min SLP. Then we show a se-ries of lemmas and prove that the translation is aredu
tion.Let X = fx1; : : : ; xng be a set of n Boolean vari-ables. A monotone 3-CNF formula F = (X;C) is de-�ned by a set C = f
1; : : : ;
Mg of 3-literal monotone
onjun
tive
lauses over X su
h that ea
h
lause
iis either a positive
lause (x _ y _ z) or a negative
lause (:x _ :y _ :z). Without loss of generality,we assume that
lauses in C are (i) ordered
olle
-tions of 3-literals with respe
t to their variable in-di
es, and (ii) indexed so that all the �rst m � M
lauses
1; : : : ;
m are positive
lauses and the re-mained
m+1; : : : ;
M are negative
lauses.The translation algorithm
onstru
ts a string s =sCsXs�s�
onsisting of the four parts and formedfrom symbols in �. The alphabet � is �nite butwhose size depends on F ; we de�ne its symbols alongwith the des
ription of the algorithm. Let � = (ab)43

and � = ab. For any index i, let �i = (aib)4 and �i =aib. We de�ne for all positive
lauses and for all neg-ative
lauses the string �+ = �1�`�m(�4`�2 �4`�1 z)and �� = �m+1�`�M (�4`�3 �4`�2 z), where z is anew symbol for ea
h `. Then we de�ne the stringsC = �+ ��.The string sX is
onstru
ted as follows. Let� = (��)12M�1 = (��)12M�1. We employ this as the`template,' and with a variable index 1 � i � n de-�ne �(i; 1) = (��)4M�1, �(i; 2) = �(i; 3) = (��)4M ,and the gadget �i = �(i; 1)�(i; 2)�(i; 3). We
on-sider that �(i; 1) is formed from 4M � 1 segments of��, and �(i; 2); �(i; 3) are formed from M segmentsof � = (��)4. We denote by �(i; 2)` the `th � of�(i; 2) and by �(i; 3)` the `th � of �(i; 3). A

ord-ing to the o

urren
es of the literals xi and :xi in
lauses, we transform ea
h �i.For ea
h 1 � i � n, we transform �(i; 1) as follows:(i) If
`
ontains xi or :xi, repla
e (4`� 1)th �� by�4`�1�4`�1, (4` � 2)th �� by �4`�2�4`�2, and (4` �3)th �� by �4`�3�4`�3. (ii) for ea
h remained ��,introdu
e a new index i� and repla
e �� with �i��i� .We note that ea
h 4`th �� with 1 � ` � M � 1 isrepla
ed by �i��i� with the unique index i�.Next, for ea
h
lause
` with 1 � ` �M by assum-ing whi
h is either (xi_xj_xk) or (:xi_:xj_:xk),we transform �(i; 2),�(j; 2), and �(k; 2) by repla
ing(i) �(i; 2)` with �`0�`0�`2�`2�`1�`1�`3�`3 ,(ii) �(j; 2)` with �`0�`0�`3�`3�`2�`2�`1�`1 ,(iii) �(k; 2)` with �`0�`0�`1�`1�`3�`3�`2�`2 ,where `0; `1; `2; `3 are new indi
es introdu
ed for ea
h
lause. Remained �'s of ea
h �(i; 2) are repla
edwith (�i��i�)4 with introdu
ing four new indi
es forea
h segment. Similarly we transform �(i; 3),�(j; 3),and �(k; 3) by introdu
ing new indi
es `00; `01; `02; `03,and i�. Then,
onstru
t sX = �1 z � � � �n z for themodi�ed string �i = �(i; 1)�(i; 3)�(i; 3).Finally, we de�ne s� and s�. The string s� is the
on
atenation of all �i1 �i1 z ��i2 �i2 z, where �i1 �i1and �i2 �i2 are the �rst and the last (��) segmentsof �i (the pre�x and the suÆx of �i of length 10),respe
tively. The string s� is the
on
atenation of all�i �j z su
h that �i �j = aib ajb with i 6= j appearsin sX .The nonnegative integer threshold for transform-ing Min SLP to the de
ision problem is fC + 2M ,

where fC is a
onstant depending on M and n. Thefun
tion for
omputing this number will be spe
i�edlater.Now we show that the algorithm given above is aredu
tion by the lemmas in the following. At �rst,we introdu
e some notions and de�nitions.Let w be a string in �+, P an SLP for w over Nand �, and u a substring of w su
h that a nontermi-nal � 2 N that derives u exists. Then, a sequen
eof substrings u1; : : : ; uk of u is said to be a parti-tioning of u by P if u = u1 � � � � � uk and for ea
h uiwith 1 � i � k a nonterminal that derives ui existsin P . We denote a partitioning of u by the notionhu1 � � � ukiP , and by hu1 � � � uki if it is not ne
essaryto spe
ify P . Let w be �1�1 � � ��k�k for an oddnumber k. This
an be also represented asw = �1 � �1�2 � �2�3 � � � � � �k�1�k � �k= �1 � �1�2 � �2�3 � � � � � �k�1�k � �k:Ea
h �i�i in w is said to be an ��-segment of w,and ea
h �i�i0 and �i�i0 with i 6= i0 are said to bean �-segment and a �-segment, respe
tively. By as-suming an SLP that
ontains nonterminals derivingthose segments, we say the partitioning of w a

ord-ing to the former representation the left-aligned par-titioning, and the later the right-aligned partitioning.We say a partitioning of sX is regular if ea
h �i isleft-aligned or right-aligned.Lemma 2. Let wi = �is�s� and let Pi be a smallestSLP for wi, for ea
h 1 � i � n. Then, Pi is a regularpartitioning of �i.Proof. The string �i is the
on
atenation of 12M�1di�erent ��-segments. The string s�
ontains onlytwo of them, and s�
ontains at most one �-segmentfor ea
h pair of di�erent indi
es. Thus, if the 3-CNFmonotone formula is suÆ
iently large, then the sizeof an SLP for wi depends on how many nonterminalsderiving substrings of �i
an be shared with those fors�s�.Both the left- and the right-aligned partitioning
ontain 6M � 1 di�erent �-segments that
an beshared with s�. Both the �rst segment of the left-aligned partitioning and the last segment of theright-aligned partitioning
an be shared with s�.Thus, the left- and the right-aligned partitioning for�i requires the same number of rules.4

Assume that Pi implies other partitioning of wi.Then, it must
ontain at least one isolated � su
has h� � ��j�j�j0 � � �iPi or h� � ��j�j0�j0 � � �iPi for somej 6= j0. Sin
e neither �j�j nor �j0�j0 is
ontained ins� and s�, any SLP having su
h a partitioning is notsmallest. 2Lemma 3. Let
` be a
lause formed from literalsover xi; xj and xk. Let
i be either the left-aligned orthe right-aligned partitioning of the string �(i; 2)`de�ned for
`. Let
j and
k be the partitioningfor �(j; 2)` and �(k; 2)`, whose alignments are samewith that of
i, respe
tively. Then, if both a left- anda right-aligned partitioning exist, there is exa
tly one�-segment appears in exa
tly two of
i;
j ;
k; oth-erwise all �-segments are di�erent.Proof. The left-aligned partitioning of �(i; 2)`,�(j; 2)`, �(k; 2)` are, respe
tively,h�`0�`0�`2�`2�`1�`1�`3�`3i;h�`0�`0�`3�`3�`2�`2�`1�`1i;h�`0�`0�`1�`1�`3�`3�`2�`2i:There is no �-segment appearing twi
e above. Forthe right-aligned partitioning, it
an be
he
k in thesame way.We
an also
he
k the
onverse dire
tion byenumerating a set of partitioning. For instan
e,�`1�`3 appears twi
e in h�`0�`0�`2�`2�`1�`1�`3�`3iand h�`0�`0�`1�`1�`3�`3�`2�`2i. 2Lemma 4. Let w = sXs�s� and sX = �1 z � � � �n z.For any regular partitioning p of sX , there exists asmallest SLP P for w that in
ludes p.Proof. By Lemma 2, an admissible partitioning forea
h �i is either a left- or a right-aligned partitioning.Thus, there are 2n
andidates for a smallest SLP.We show that for any
ombination of n partitioning,there is a smallest SLP that in
ludes them.Let p1 be the partitioning of w su
h that ea
hpartitioning for �i is left-aligned. Let p be any par-titioning of w. We assume for sX both p1 and p isregular. We estimate the number of rules required bythese partitioning. Sin
e every �-segment appears ina
andidate partitioning of any �i and is shared withthat of s�, the number of rules for �i's by p1 is equal

to that by p. Thus, the di�eren
e between the num-bers of rules for p1 and for p depends only on thestrings of the form �-segments.Re
all that �i = �(i; 1)�(i; 2)�(i; 3). �(i; 1)
on-sists of 4M � 1 ��-segments, and �(i; 2) and �(i; 3)
onsist of 4M ��-segments, respe
tively. We �rstfo
us on �(i; 1). By the de�nition of �i, for ea
h1 � ` � M , (4` � 2)th segment of �i is �4`�2�4`�2if the
lause
` has xi or :xi, and �i��i� otherwise,where i� is the unique index for this segment. Sin
ethe formula is a 3-CNF, for ea
h 1 � ` � M , thereare �(i; 1); �(j; 1); �(k; 1) having �4`�1�4`�1. In the
ase of p1, all partitioning of them are of the formh� � � �4`�3�4`�2�4`�2�4`�1 � � �i. Sin
e �4`�3�4`�2 isshared with s�, we need only two rules � ! �1�2and �2 ! �3�4 to
ompress �4`�3�4`�2�4`�2�4`�1to a nonterminal su
h that �1 to �4`�3�4`�2, �3 to�4`�2, and �4 to �4`�1.Assume that p has at least one left-aligned par-titioning and at least one right-aligned partition-ing for �(i; 1); �(j; 1); �(k; 1). Then, there areboth partitioning of h� � � �4`�3�4`�2�4`�2�4`�1 � � �iand h� � ��4`�3�4`�2�4`�2�4`�1 � � �i. In this
ase, weneed four rules to
ompress these segments to non-terminals.We show that this di�eren
e of the num-bers of rules between p1 and p is
an
eled bythe partitioning of f�(i; 2); �(j; 2); �(k; 2)g andf�(i; 3); �(j; 3); �(k; 3)g. By Lemma 3, in the
aseof p1, the partitioning of �(i; 2); �(j; 2); �(k; 2)
on-tains no �-segments appearing twi
e. On the otherhand, in the
ase of p, it
ontains one of the threeleft-aligned partitioning and one of the three right-aligned partitioning. It follows that there is ex-a
tly one �-segments appearing twi
e. It is easyto see that this
ondition is satis�ed for the
om-bination of �(i; 3); �(j; 3); �(k; 3) by their de�ni-tion. As a
onsequen
e, the in
rease of rules is al-ways balan
ed between f�(i; 1); �(j; 1); �(k; 1)g andf�(i; 2); �(j; 2); �(k; 2)g [f�(i; 3); �(j; 3); �(k; 3)g.Thus, we obtain that the numbers of rules requiredby p1 and p is equal. Therefore, ea
h partitioning ofw among 2n distin
t ones is a partitioning of w by asmallest SLP for w. 2Proof of Theorem 1. We show that, for ea
hmonotone 3-CNF F = (X;C), we
an de�ne a poly-nomial f(M;n) su
h that F is satis�able if and onlyif an SLP P for s satisfying jP j � f(M;n) exists.5

Let us �rstly
onsider the substringw = sXs�s� ofs that simulates the assignment of 0/1-value for thevariables x1; : : : ; xn. By Lemma 2 and Lemma 4, anysmallest SLP for w must
ontain a regular partitionof sX , and for any regular partition p of sX , thereexists a smallest SLP for w that implies p. Thus, ev-ery regular partitioning of sX is asso
iated with theassignments of 0/1-value for n variables: the left-aligned partitioning of �i of sX is asso
iated withxi = 1 and the right-aligned partitioning of �i isasso
iated with xi = 0. By Lemma 4, for any reg-ular partitioning p, there is a smallest SLP Pp forw that implies p. Then we
an sele
t the left parti-tioning for all �i of sX to
ompute an smallest SLPfor sXs�s�. We
an �nd all distin
t �i�i0 's in sXin polynomial time. Using these pairs, we
an
om-pute a smallest rules whi
h derive the string insideof the left partitioning. By Lemma 4, the number ofrules in the outside of the partitioning is invariable.Thus, we
an deterministi
ally
ompute fC depend-ing on w su
h that jPpj = fC(M;n) for any regularpartitioning p.Next let us
onsider the part sC = �+��. Thestring �+ is the
on
atenation of all �4`�2�4`�1 with1 � ` � m for m positive
lauses. Let xi be a vari-able o

urring in
`. Then, �i
ontains the substring�4`�2�4`�1. Thus, the string �4`�2�4`�1 of sC
anbe shared with the �-segment of �i if a partition forsX
ontains the left partition of �i. There is the
orresponden
e between (1) xi = 1 and
`
ontainsxi, and (2) the left-aligned partitioning is
hosen for�i and sC
ontains �4`�2�4`�1. For ��, we
an also
onstru
t the
orresponden
e between (3) xi = 0and
`
ontains :xi, and (4) the right-aligned parti-tioning is
hosen for �i and sC
ontains �4`�3�4`�2.Thus, C is satis�able if and only if there is a smallestSLP Pp for w with a regular partitioning p that
om-presses s to the string �1 z � � � z�M z�w and derives�4`�2�4`�1 from �` if
` is positive, and �4`�3�4`�2if
` is negative. Hen
e, C is satis�able if and onlyif an SLP P for s su
h that jP j � fC(M;n) + 2Mexists. 24 Approximation algorithms forMin SLPIn this se
tion, we deal with strings over a binaryalphabet � = fa; bg, and we present two algorithms

for Min SLP over �. The �rst `general' algorithm�nds an SLP for an arbitrary string in ��. Thisa
hieves a worst-
ase approximation ratio whi
h isslightly and stri
tly smaller than the straightfor-ward upper bound (n � 1)= log n of approximationratios. This algorithm gives a basi
 idea of the se
-ond one, and is appli
able for alphabets whose sizesare greater than two. The se
ond one is designatedto a
hieve a mu
h better ratio for a restri
ted
lassof strings. It �nds an SLP whose size is at most 6times the optimum.4.1 A general algorithm by semi-
omplete binary diagram strategyThe algorithm `A1' forMin SLP is presented in Fig-ure 1. It simply repeats transforming the input andthe intermediately produ
ed strings to the sequen
eof new rules ea
h of whi
h
on
atenates two
ontigu-ous symbols of the original from the left to right. Sothe
ompression is a
hieved only by avoiding
reat-ing redundant rules.Algorithm A1 (Input: a string w 2 ��; Output: anSLP P whi
h derives w.)Step 1. Let i := 1 and P = ;.Step 2. Repeat while jwj > 1 the following:(a) Add a rule z ì ! w[2`; 2` � 1℄ toP for ea
h 1 � ` � bjwj=2
; non-terminals z ì and z ì0 with ` 6= `0are the same symbols if and only iftheir right-hand side are the same.Then let w be the string zi1 � � � zibjwj=2
if jwj is even, otherwise let w :=zi1 � � � zibjwj=2
 � w[jwj℄.(b) Let i := i+ 1.Step 3. Output P .Figure 1: Algorithm A1.Theorem 2. Algorithm A1 runs in O(n log2 n)time, and approximates Min SLP over a binary al-phabet within 3n= log2 n.Proof. Let w be the input string and let n = jwj,and let m = dlog ne. Then Step 2 loops at most m6

time. With appropriate data stru
tures and algo-rithms, A1
an be implemented as an O(n lognm)-time algorithm, i.e. runs in O(n log2 n) time.Let P be the SLP for w produ
ed by A1, andTP the derivation tree of P . Then TP is, say, a left-aligned
omplete binary tree whose height ism. Thesize of P is the number of di�erent labels of internalnodes of TP , thus jP j =P1�i�mNi, where Ni is thenumber of labels of internal nodes at the depth i ofTP .Now we show that jP j < 3n= log n. Sin
e theleaves of TP is either a or b, at most four di�erentrules whi
h possibly map to aa; ab; ba and bb
ouldbe made at the �rst iteration of Step 2. This impliesthat any internal node at depth m� 1 is labeled byone of four nonterminals, and thus Nm � 4.Similarly, by the indu
tion, any node at the depthm � i must be labeled by one of at most 22i non-terminals, thus Nm�i � 22i . On the other hand,the number of nodes in depth m � i
annot ex
eedn=2i, thus the above inequality holds for every i thatsatis�es 22i � n=2i. This is satis�ed by at mostk = log logn � 1. For ea
h ith iteration of Step 2with i � k+1, the number of labels is no more thanthe number of nodes at depth m � i. Thus in theworst
ase, Nm�i = 2m�i for 1 � i � k + 1. There-fore,jP j = X1�i�mNi � X1�i�k 22i + X1�i�k+1 2k+1�i� 2pn+ 2nlog n � 3nlog n:Sin
e obviously the size of SLP jP j is no lessthan log n for any string of length n, the worst-
ase approximation ratio of jP j to the optimum is3n= log2 n. 24.2 An algorithm for overlap-free stringsA string w 2 �� has an overlapping fa
tor if w
on-tains two overlapping o

urren
es s � t � u of a strings�t = t�u. A string w is overlap-free if w has no over-lapping fa
tors. The following lemma gives a morepre
ise des
ription of this
ase.Lemma 5 (Lothaire [7℄). A string w has an over-lapping fa
tor if and only if w
ontains a substringavava with some symbol a and a (possibly empty)string v.

Algorithm A2 (Input: A string w; Output: An SLPP for w.)Step 1. Let i := 1, let s1; s2 be the empty string ",and P = ;. Additionally l and r are usedto store the deta
hed pre�x and suÆx.Step 2. Repeat while jwj > 1 the following:(a) Determine the longest pre�x x andthe longest suÆx y of w that
ontainneither aa nor bb.(b) If jxj is odd then l := ", if x is empty(a pre�x of w is aabaa or bbabb) thenl := w[1; 2℄, otherwise l := w[1℄.(
) If jzj is odd then r := ", if z is emptythen r := w[jwj � 1; jwj℄, otherwiser := w[jwj℄.(d) Let s1 := s1 l , s2 := r s2, w :=pairwise(w[jl j + 1; jwj � jr j℄; i), andi := i+ 1.Step 3. Let w := s1 w s2, and repeat w :=pairwise(w; i) and i := i+1 while jwj > 1.Step 4. Output P .Figure 2: The approximation algorithm for MinSLP on overlap-free strings.There exist in�nitely many overlap-free stringseven over a binary alphabet. The following iswell known overlap-free in�nite string: the Thue-Morse [7℄ string t = �1(a) = abbabaabbaab � � � isobtained by applying a morphism � to a in�nitelymany time, where � : �� ! �� is de�ned by�(a) = ab and �(b) = ba. Sin
e t is overlap-free,any substring of t is also overlap-free.We present the algorithm A2 for Min SLP overthe overlap-free strings in Fig. 2. The pro
edurepairwise(w; i) invokes Step 2-(a) of the algorithmA1. The Step 2 repeats, similarly to the algorithmA1, approximately log n time with the size n of inputstring. On ea
h iteration of Step 2, the algorithmsear
hes for a square w[j; j + 1℄ = xx,
ontiguoustwo same symbols. If a square has been found, thepairs � � �w[j � 1; j℄; w[j + 1; j + 2℄ � � � are
hosen tomake new rules. Therefore the positions of the �rstand the last pairs depend on whether j and jwj are7

even or odd.For example, assume that abbab is given. ThenA2 adds the rules �11 ! ab and �12 ! ba to P atthe �rst iteration of Step 2, and at the se
ond iter-ation, A2 adds �21 ! �11�12 and �31 ! �21b. Then,there are totally four rules. It is not optimal be-
ause abbab
an be expressed by three rules. Thus,unfortunately, outputs of the algorithm A2 are notalways optimal. However, A2 is an approximationalgorithm that a
hieves a
onstant worst-
ase fa
-tor.First, we prove the following lemma.Lemma 6. Let w be a suÆ
iently large, overlap-free string on � = fa; bg. Then, there exists asubstring v of w that satis�es v 2 fab; bag� andjvj � jwj � 4.Proof. An overlap-free string w
ontains no three(or longer)
ontiguous same symbols su
h as aaa.Therefore, w
an be uniquely expressed as w =x1y1 � � � xnynxn+1 where every yj is a square eitheraa or bb, and ea
h xi
ontains no squares, i.e. is analternating string. If all the lengths of xi are even,then the substring w[2; jw � 1j℄ is in fab; bag� andthe statement holds. So we
onsider the
ases su
hthat for some 1 � i � n the length of xi is odd.Note that in the following dis
ussion obviously we
an swap the symbols a with b.Assume that yi = yi+1 = aa and jxi+1j is odd.In the
ase jxi+1j = 1, yi xi+1 yi+1 = aabaa. Ifyi xi+1 yi+1 is a proper substring of w, then the lastsymbol of xi and the �rst symbol of xi+2 are b. It im-plies that w
ontains an overlapping string baabaab,a
ontradi
tion. In the
ase jxi+1j = 2`+1 for some` > 0, yi xi+1 yi+1 = aa(ba)`b aa. This falls intothe fa
t that w
ontains an overlapping string aba.Thus, w is overlap-free only if xi+1 = b and either(i) i = 1 and x1 = ", or (ii) i = n� 1 and xn+1 = ".Note that, if yi = aa and yi+1 = bb, then sin
e w isoverlap-free, xi+1 must be (ba)` for some ` � 0 andthus jxi+1j is even.As a
onsequen
e, jxij
an be odd only if i is ei-ther 1; 2; n, or n+1. Moreover, either jx1j or jx2j
anbe odd, and either jxn+1j or jxnj
an be odd. Thelength of squares y1; : : : ; yn is always two. Summa-rizing these fa
ts, if jx1j and jxn+1j are odd, then we
an
hoose v = w 2 fab; bag+. If jx1j and jxnj areodd, w[1; jwj � 2℄ 2 fab; bag+. If jx2j and jxn+1j are

odd, w[3; jwj℄ 2 fab; bag+. If jx2j and jxnj are odd,w[3; jwj � 2℄ 2 fab; bag+. 2Theorem 3. The algorithm A2 for Min SLPa
hieves the worst-
ase performan
e ratio 6 foroverlap-free strings over a binary alphabet.Proof. Let wi be the string w produ
ed by the ithiteration of Step 2. By the de�nition of the pro
e-dure pairwise(w; i), jwi+1j � jwij=2. It follows thatStep 2 is repeated at most logn time with jwj = n.By Lemma 6, at the ith iteration, A2 �nd the longestsubstring wi of wi�1 su
h that wi�1 = l wi r andwi 2 fai�1bi�1; bi�1ai�1g+, where ai�1 and bi�1 arenonterminals added at the (i� 1)th iteration. Thus,the number of rules added to P in whole the itera-tions of Step 2 is at most 2 log n.At ea
h iteration of Step 2, two strings l and r areadded to s1 and s2. Again, by Lemma 6, jlj; jrj � 2.Thus, the length of the string s1w s2 at Step 3 isat most 4 log n + 1, and the number of rules addedin Step 3 is at most 4 log n. Therefore, the totalnumber of rules is at most 6 log n and by Lemma 1,the algorithm A2 is a 6-approximation algorithm. 25 Con
lusionText
ompression is as fertile an area for resear
hnow as it was 50 years ago when
omputing resour
eswere s
ar
e. Re
ently,
ompression s
heme basedon grammar transform attra
ts spe
ial
on
erns. Inthis s
heme, a given text string is
onverted into a
ontext-free grammar that derives stri
tly the stringand then en
oded. Su
h a grammar is
alled an ad-missible grammar. In this paper, we have provedthe NP-hardness of the minimization problem forthe
lass of admissible grammars in Chomsky nor-mal form. Unfortunately, the intra
tability of theproblem for general admissible grammars remains anopen problem. The two approximation algorithmspresented in this paper are limited to the
ase of abinary alphabet. The interesting task for further re-sear
h is to develop an approximation algorithm fora general alphabet.Kida et al. [4℄ introdu
ed a more general frame-work than admissible grammars,
alled
ollage sys-tems, in whi
h the repetition and the aÆx trun
a-tion operations for strings are introdu
ed in addition8

to the
on
atenation operation. They
onsidered theproblem of string mat
hing for text strings des
ribedin terms of
ollage system, but they did not dis
ussthe
omplexity of
omputing a
ollage system thatrepresents a given text string. To analyze the
om-plexity of the minimization problem for
ollage sys-tems will be future work.Referen
es[1℄ G. Ausiello, P. Cres
enzi, G. Gambosi,V. Kann, A. Mar
hetti-Spa

amela, andM. Protasi. Complexity and Approximation.Springer, 1999.[2℄ S. De Agostino and J. A. Storer. On-line versuso�-line
omputation in dynami
 text
ompres-sion. Inform. Pro
ess. Lett., 59:169{174, 1996.[3℄ E. hui Yang and J. C. Kie�er. EÆ
ient univer-sal lossless data
ompression algorithms basedon a greedy sequential grammar transform{partone: Without
ontext models. IEEE Trans. onInform. Theory, 46(3):755{777, 2000.[4℄ T. Kida, Y. Shibata, M. Takeda, A. Shinohara,and S. Arikawa. Collage system: A unifyingframework for
ompressed pattern mat
hing.Theoret. Comput. S
i., 2001. (to appear).[5℄ J. C. Kie�er and E. hui Yang. Grammar-based
odes: A new
lass of universal losslesssour
e
odes. IEEE Trans. on Inform. Theory,46(3):737{754, 2000.[6℄ N. J. Larsson and A. Mo�at. O�ine di
tionary-based
ompression. In Pro
. Data CompressionConferen
e (DCC'99), pages 296{305. IEEEComputer So
iety, 1999.[7℄ M. Lothaire. Combinatori
s on Words, vol-ume 17 of En
y
lopedia of Mathemati
s and ItsAppli
ations. Addison-Wesley, 1983.[8℄ C. Nevill-Manning and I. Witten. Compressionand explanation using hierar
hi
al grammars.Computer Journal, 40(2/3):103{116, 1997.[9℄ C. Nevill-Manning and I. Witten. Identifyinghierar
hi
al stru
ture in sequen
es: A linear-time algorithm. J. Arti�
ial Intelligen
e Re-sear
h, 7:67{82, 1997.

[10℄ C. H. Papadimitriou. Computational Complex-ity. Addison Wesley, 1993.[11℄ D. Salomon. Data Compression: the
ompletereferen
e. Springer, se
ond edition, 1998.[12℄ D. Sieling and I. Wegener. Redu
tion of obddsin linear time. Inf. Pro
ess. Lett., 48:139{144,1993.[13℄ J. Storer and T. Szymanski. Data
ompres-sion via textual substitution. J. Asso
. Comput.Ma
h., 29(4):928{951, 1982.[14℄ J. A. Storer and T. G. Szymanski. The ma
romodel for data
ompressoin. In Pro
. 10th Ann.Sympo. on Theory of Computing, pages 30{39,San Diego, California, 1978. ACM Press.[15℄ T. A. Wel
h. A te
hnique for high perfor-man
e data
ompression. IEEE Comput., 17:8{19, 1984.[16℄ J. Ziv and A. Lempel. A universal algorithmfor sequential data
ompression. IEEE Trans.on Inform. Theory, IT-23(3):337{349, 1977.[17℄ J. Ziv and A. Lempel. Compression of individ-ual sequen
es via variable-rate
oding. IEEETrans. on Inform. Theory, 24(5):530{536, 1978.

9

