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On the Minimization Problem of Text Compression Sheme bya Redued Grammar Transform(submitting to 13th annual ACM-SIAM symposium on disrete algorithms, SODA2002)Hiroshi Sakamotoy Shinihi Shimozonoz Ayumi Shinoharay Masayuki TakedayAbstratThe omplexity of an optimization problem fortext ompression by grammar transforms is studied.Given a string, the goal of this problem is to �nda ontext-free grammar in Chomsky normal form,alled a straight-line program, whih stritly derivesthe string. The measure of this minimization prob-lem is the size of a grammar, i.e., the number of theprodution rules of the grammar. The �rst resultobtained in this paper is the NP-hardness of thisproblem. The seond result is an approximation al-gorithm that ahieves the worst-ase approximationratio 3n= log2 n for binary strings. The third resultis a 6-approximation algorithm for restrited binarystrings suh that the strings ontains no overlappingfator, alled overlap-free strings.1 IntrodutionText ompression is a task of reduing the amountof spae needed to store text �les on omputers or ofreduing the amount of time taken to transmit in-formation over a hannel of given bandwidth. Userswant to redue the size of their data as small aspossible, but want to minimize the time needed forthis task. The main riteria for hoosing ompres-sion methods are therefore the ompression ratio andthe ompression time. Many studies have been un-dertaken to develop a new ompression method forimproving the ompression ratio and/or the om-pression time. The Lempel-Ziv algorithms [16, 17℄,yDept. of Informatis, Kyushu University, Fukuoka 812-8581, Japan. E-mail: fhiroshi, ayumi, takedag�i.kyushu-u.a.jpzDept. of Arti�ial Intelligene, Kyushu Institute of Teh-nology, Iizuka 820-8502, Japan. E-mail: sin�ai.kyuteh.a.jp

often referred to as LZ77 and LZ78, and their vari-ants (e.g., [15, 13℄) are most widely-used universallossless ompression algorithms, together with thearithmeti oding algorithms (see, e.g., [11℄).Finding the minimum representation of a giventext string is regarded as a ombinatorial optimiza-tion problem. One interesting topi is to analyze thetime omplexity of this optimization problem un-der some reasonable enoding sheme. Storer andSzymanski [14℄ presented several abstrat ompres-sion shemes, and disussed the intratabilities ofthe minimization problems under the shemes. Es-peially, one of the shemes is a generalization ofthe LZ77 ompression, and the orresponding min-imization problem was shown to be NP-omplete.Also, De Agostino and Storer [2℄ generalized theLZ78 sheme and then proved that the omputationof the optimal parsing is NP-omplete.Reently, there have emerged new ompression al-gorithms, suh as Sequitur [9, 8℄ and Re-Pair [6℄,whih often outperform the Lempel-Ziv family in theompression ratio omparison. Although they re-quire muh more ompression time than the Lempel-Ziv family, it beomes not so ruial due to the reentprogress in omputer tehnology. These ompressionmethods an be generalized into a new ompressionsheme alled grammar transform (see [5℄). In thissheme, a text string w is transformed into a ontext-free grammar G that generates the language fwg,and then G is enoded in some appropriate man-ner. A ontext-free grammar that generates a singlestring is said to be admissible. Yang and Kie�er[3℄ presented a grammar transform algorithm, andshowed that the algorithm is asymptotially optimal(i.e. universal) for a broad lass of soures, inludingstationary, ergodi soures. However, the omputa-tional omplexity of the problem to �nd the smallest1



admissible grammar representing a given text hasnot been disussed yet.In this paper, we prove the NP-hardness of thisminimization problem to �nd a smallest grammarwith restrition to the lass of admissible grammarsin Chomsky normal form, alled straight-line pro-grams. Despite the restrition, the lass of straight-line programs is rih enough in the ontext of textompression. For example, the Re-Pair ompressionis a grammar transform in whih the grammars arerestrited to straight-line programs. Moreover, theLZ78 ompression an be regarded as a kind of gram-mar transform in whih all the prodution rules butthe start rule are restrited to the form � ! Xa,where � is a nonterminal symbol, a is a terminalsymbol, and X is either a terminal symbol or a non-terminal symbol.Our proof employs a redution from Monotone3-Sat to the deision version of the problem, andis onsiderably ompliated. This settles partially,but as the �rst hardness result, the open problem intext ompression by a redued grammar transform.The string redued from a monotone 3-CNF formulais onstruted over a �nite alphabet, whose size de-pends on the size of the given formula. However,it exhibits a potential intratability of the problem,and may suggest diÆulties in developing eÆientalgorithms for the problem over a large alphabet.We then restrit ourselves to the ase of binaryalphabet, and present two polynomial-time approx-imation algorithms. One is a general algorithmthat �nds an SLP for an arbitrary binary string,and ahieves the worst-ase approximation ratio3n= log2 n. Interestingly, this algorithm stands ona simple idea that makes pairs of symbols in stringsfrom left to right, and is onsidered as an extension ofthe algorithms for obtaining the minimum ordered-binary deision diagram from a omplete truth ta-ble [12℄.The other is an algorithm that produes an SLPwhose size is at most 6 times the optimum, for a lassof binary strings that ontain no overlapping sub-strings. This algorithm omputes an SLP by involv-ing the former algorithm as subroutine, with �ndingthe longest substring of the input whose binary sym-bols are alternating.The rest of this paper is organized as follows. InSetion 2 we introdue some notation and de�ni-

tions, and then de�ne our minimization problem.In Setion 3 we prove the NP-hardness of the prob-lem by showing a redution fromMonotone 3-Sat.Then, we present two approximation algorithms forthe ase of binary strings in Setion 4. Setion 5ontains �nal remarks and states open problems.2 PreliminariesA set � denotes a �nite alphabet through this paper.The set of all �nite strings over � is denoted by ��,and �+ denotes ��nf"g where " is the empty string.The length of a string w 2 ��, i.e. the number ofsymbols onsisting of w, is denoted by jwj, and theith symbol of w with 1 � i � jwj is denoted by w[i℄.A string x 2 �� is a substring of w 2 �� if thereexist y; z 2 �� suh that w = yxz. In this ase, y isa pre�x of w, z is a suÆx of w, and if jxj < jwj thenx is a proper substring of w. The notion w[i; j℄ for1 � i � j � jwj refers to the substring w[i℄ � � �w[j℄.An ourrene of w[i; j℄ in w refers to a position 1 �k � jwj suh that w[i; j℄ = w[k; k + (j � i)℄. By℄(x;w), we denote the number of ourrenes of x inw.A ontext-free grammar G = (�; N; P; S) is saidto be admissible if it generates a singleton set of anonempty string s, that is, L(G) = fsg. The produ-tion rules of any admissible grammar an be writtenas �1 ! �1;�2 ! �2;...�m ! �mwhere �1; �2; : : : ; �m are the ordered nonterminalsymbols inN , �m = S is the start symbol, and �i is anonempty string over the alphabet �[f�1; : : : ; �i�1gfor i = 1; 2; : : : ;m. We assume G ontains no use-less symbols. The size of an admissible grammarG, denoted by kGk, is the total length of the righthand sides of prodution rules. That is, kGk =j�1j+ j�2j+ � � �+ j�mj.In this paper, we onsider the minimization prob-lem for the admissible grammars in Chomsky normalform, alled straight-line programs (SLPs). For sim-pliity of disussion, we replae all ourrenes of �within the right hand sides of the prodution ruleswith a for every prodution rule of the form � ! a,2



where � is a nonterminal symbol and a is a termi-nal symbol. The grammar size is then exatly twiethe ardinality of N . We note that this replaementis possible unless the string to be expressed by agrammar is of length one. Thus, we deal with thefollowing minimization problem.De�nition 1. Min Straight-Line ProgramGiven a string s 2 �+, �nd the smallest straight-lineprogram over � for s, i.e., a straight-line programthat generates s and the ardinality of its set N ofnonterminal symbols is minimum.The deision problem with respet to MinStraight-Line Program is formulated by a posi-tive integer threshold k in an instane and the ques-tion asking whether an SLP smaller than k exists.Here we de�ne some notions for minimizationproblems and their approximation algorithms (seee.g. [1, 10℄ for details.) An algorithm A for a mini-mization problem � approximates � within ratio �,or ahieves a worst-ase approximation ratio � if forany instane of � the algorithm A produes its solu-tion whose measure (ost) is no more than � timesthe measure of an optimum solution. In this ase,we also say that A is an �-approximation algorithmfor �.The straight-line program G is also represented bythe term yield of a tree, i.e. the onatenation of alllabels of the leaves of the tree; For a string w, G isa tree t over N [ � that yields w and eah internalnode is labeled by a nonterminal. The set P of rulesrepresented by t is the set of all prodution rules�i ! XY suh that t ontains a node labeled by�i 2 N whose hildren are labeled by X;Y 2 N [�.The tree of w with respet to an SLP P is said to bea derivation tree of P for w, and we say P derivesw.From a view point of binary derivation trees, thefollowing observation is rather immediate.Lemma 1. The upper bound and lower bound ofthe sizes of minimum straight-line programs are n�1and log n, respetively, where n is the length of theinput string.Proof. Let w be an input string and jwj = n. Anyderivation tree for w ontains exatly n � 1 inter-nal nodes. Thus, the maximum number of rules

is bounded by the number of internal nodes of thederivation tree. Let P be a set of rules and jP j = k.If any rule is of the form � ! XX for some � 2 Nand X 2 N [�, then the derivation tree is omplete,i.e., all paths from the root to leaves are length k. IfjP j = k and the derivation tree is not omplete, thenthere exists a path p whih is longer than k. Sineany path does not ontain a nonterminal twie, pontains at least k+1 nonterminals. Thus, the min-imum number of rules is bounded by k = log n. 2Thus, a trivial approximation ratio ahievable by apolynomial-time algorithm forMin Straight-LineProgram is (n� 1)= log n.3 Min SLP is omputationally in-tratableIn this setion we show the following theorem:Theorem 1. Min Straight-Line Program isNP-hard.We prove this by a redution from Monotone3-Sat to a deision problem version of MinStraight-Line Program. We �rstly de�neMonotone 3-Sat, then desribe a translation al-gorithm from a monotone 3CNF to a pair of a stringand a nonnegative integer, that is, an instane ofdeision version of Min SLP. Then we show a se-ries of lemmas and prove that the translation is aredution.Let X = fx1; : : : ; xng be a set of n Boolean vari-ables. A monotone 3-CNF formula F = (X;C) is de-�ned by a set C = f1; : : : ; Mg of 3-literal monotoneonjuntive lauses over X suh that eah lause iis either a positive lause (x _ y _ z) or a negativelause (:x _ :y _ :z). Without loss of generality,we assume that lauses in C are (i) ordered olle-tions of 3-literals with respet to their variable in-dies, and (ii) indexed so that all the �rst m � Mlauses 1; : : : ; m are positive lauses and the re-mained m+1; : : : ; M are negative lauses.The translation algorithm onstruts a string s =sCsXs�s� onsisting of the four parts and formedfrom symbols in �. The alphabet � is �nite butwhose size depends on F ; we de�ne its symbols alongwith the desription of the algorithm. Let � = (ab)43



and � = ab. For any index i, let �i = (aib)4 and �i =aib. We de�ne for all positive lauses and for all neg-ative lauses the string �+ = �1�`�m(�4`�2 �4`�1 z)and �� = �m+1�`�M (�4`�3 �4`�2 z), where z is anew symbol for eah `. Then we de�ne the stringsC = �+ ��.The string sX is onstruted as follows. Let� = (��)12M�1 = (��)12M�1. We employ this as the`template,' and with a variable index 1 � i � n de-�ne �(i; 1) = (��)4M�1, �(i; 2) = �(i; 3) = (��)4M ,and the gadget �i = �(i; 1)�(i; 2)�(i; 3). We on-sider that �(i; 1) is formed from 4M � 1 segments of��, and �(i; 2); �(i; 3) are formed from M segmentsof � = (��)4. We denote by �(i; 2)` the `th � of�(i; 2) and by �(i; 3)` the `th � of �(i; 3). Aord-ing to the ourrenes of the literals xi and :xi inlauses, we transform eah �i.For eah 1 � i � n, we transform �(i; 1) as follows:(i) If ` ontains xi or :xi, replae (4`� 1)th �� by�4`�1�4`�1, (4` � 2)th �� by �4`�2�4`�2, and (4` �3)th �� by �4`�3�4`�3. (ii) for eah remained ��,introdue a new index i� and replae �� with �i��i� .We note that eah 4`th �� with 1 � ` � M � 1 isreplaed by �i��i� with the unique index i�.Next, for eah lause ` with 1 � ` �M by assum-ing whih is either (xi_xj_xk) or (:xi_:xj_:xk),we transform �(i; 2),�(j; 2), and �(k; 2) by replaing(i) �(i; 2)` with �`0�`0�`2�`2�`1�`1�`3�`3 ,(ii) �(j; 2)` with �`0�`0�`3�`3�`2�`2�`1�`1 ,(iii) �(k; 2)` with �`0�`0�`1�`1�`3�`3�`2�`2 ,where `0; `1; `2; `3 are new indies introdued for eahlause. Remained �'s of eah �(i; 2) are replaedwith (�i��i�)4 with introduing four new indies foreah segment. Similarly we transform �(i; 3),�(j; 3),and �(k; 3) by introduing new indies `00; `01; `02; `03,and i�. Then, onstrut sX = �1 z � � � �n z for themodi�ed string �i = �(i; 1)�(i; 3)�(i; 3).Finally, we de�ne s� and s�. The string s� is theonatenation of all �i1 �i1 z ��i2 �i2 z, where �i1 �i1and �i2 �i2 are the �rst and the last (��) segmentsof �i (the pre�x and the suÆx of �i of length 10),respetively. The string s� is the onatenation of all�i �j z suh that �i �j = aib ajb with i 6= j appearsin sX .The nonnegative integer threshold for transform-ing Min SLP to the deision problem is fC + 2M ,

where fC is a onstant depending on M and n. Thefuntion for omputing this number will be spei�edlater.Now we show that the algorithm given above is aredution by the lemmas in the following. At �rst,we introdue some notions and de�nitions.Let w be a string in �+, P an SLP for w over Nand �, and u a substring of w suh that a nontermi-nal � 2 N that derives u exists. Then, a sequeneof substrings u1; : : : ; uk of u is said to be a parti-tioning of u by P if u = u1 � � � � � uk and for eah uiwith 1 � i � k a nonterminal that derives ui existsin P . We denote a partitioning of u by the notionhu1 � � � ukiP , and by hu1 � � � uki if it is not neessaryto speify P . Let w be �1�1 � � ��k�k for an oddnumber k. This an be also represented asw = �1 � �1�2 � �2�3 � � � � � �k�1�k � �k= �1 � �1�2 � �2�3 � � � � � �k�1�k � �k:Eah �i�i in w is said to be an ��-segment of w,and eah �i�i0 and �i�i0 with i 6= i0 are said to bean �-segment and a �-segment, respetively. By as-suming an SLP that ontains nonterminals derivingthose segments, we say the partitioning of w aord-ing to the former representation the left-aligned par-titioning, and the later the right-aligned partitioning.We say a partitioning of sX is regular if eah �i isleft-aligned or right-aligned.Lemma 2. Let wi = �is�s� and let Pi be a smallestSLP for wi, for eah 1 � i � n. Then, Pi is a regularpartitioning of �i.Proof. The string �i is the onatenation of 12M�1di�erent ��-segments. The string s� ontains onlytwo of them, and s� ontains at most one �-segmentfor eah pair of di�erent indies. Thus, if the 3-CNFmonotone formula is suÆiently large, then the sizeof an SLP for wi depends on how many nonterminalsderiving substrings of �i an be shared with those fors�s�.Both the left- and the right-aligned partitioningontain 6M � 1 di�erent �-segments that an beshared with s�. Both the �rst segment of the left-aligned partitioning and the last segment of theright-aligned partitioning an be shared with s�.Thus, the left- and the right-aligned partitioning for�i requires the same number of rules.4



Assume that Pi implies other partitioning of wi.Then, it must ontain at least one isolated � suhas h� � ��j�j�j0 � � �iPi or h� � ��j�j0�j0 � � �iPi for somej 6= j0. Sine neither �j�j nor �j0�j0 is ontained ins� and s�, any SLP having suh a partitioning is notsmallest. 2Lemma 3. Let ` be a lause formed from literalsover xi; xj and xk. Let i be either the left-aligned orthe right-aligned partitioning of the string �(i; 2)`de�ned for `. Let j and k be the partitioningfor �(j; 2)` and �(k; 2)`, whose alignments are samewith that of i, respetively. Then, if both a left- anda right-aligned partitioning exist, there is exatly one�-segment appears in exatly two of i; j ; k; oth-erwise all �-segments are di�erent.Proof. The left-aligned partitioning of �(i; 2)`,�(j; 2)`, �(k; 2)` are, respetively,h�`0�`0�`2�`2�`1�`1�`3�`3i;h�`0�`0�`3�`3�`2�`2�`1�`1i;h�`0�`0�`1�`1�`3�`3�`2�`2i:There is no �-segment appearing twie above. Forthe right-aligned partitioning, it an be hek in thesame way.We an also hek the onverse diretion byenumerating a set of partitioning. For instane,�`1�`3 appears twie in h�`0�`0�`2�`2�`1�`1�`3�`3iand h�`0�`0�`1�`1�`3�`3�`2�`2i. 2Lemma 4. Let w = sXs�s� and sX = �1 z � � � �n z.For any regular partitioning p of sX , there exists asmallest SLP P for w that inludes p.Proof. By Lemma 2, an admissible partitioning foreah �i is either a left- or a right-aligned partitioning.Thus, there are 2n andidates for a smallest SLP.We show that for any ombination of n partitioning,there is a smallest SLP that inludes them.Let p1 be the partitioning of w suh that eahpartitioning for �i is left-aligned. Let p be any par-titioning of w. We assume for sX both p1 and p isregular. We estimate the number of rules required bythese partitioning. Sine every �-segment appears ina andidate partitioning of any �i and is shared withthat of s�, the number of rules for �i's by p1 is equal

to that by p. Thus, the di�erene between the num-bers of rules for p1 and for p depends only on thestrings of the form �-segments.Reall that �i = �(i; 1)�(i; 2)�(i; 3). �(i; 1) on-sists of 4M � 1 ��-segments, and �(i; 2) and �(i; 3)onsist of 4M ��-segments, respetively. We �rstfous on �(i; 1). By the de�nition of �i, for eah1 � ` � M , (4` � 2)th segment of �i is �4`�2�4`�2if the lause ` has xi or :xi, and �i��i� otherwise,where i� is the unique index for this segment. Sinethe formula is a 3-CNF, for eah 1 � ` � M , thereare �(i; 1); �(j; 1); �(k; 1) having �4`�1�4`�1. In thease of p1, all partitioning of them are of the formh� � � �4`�3�4`�2�4`�2�4`�1 � � �i. Sine �4`�3�4`�2 isshared with s�, we need only two rules � ! �1�2and �2 ! �3�4 to ompress �4`�3�4`�2�4`�2�4`�1to a nonterminal suh that �1 to �4`�3�4`�2, �3 to�4`�2, and �4 to �4`�1.Assume that p has at least one left-aligned par-titioning and at least one right-aligned partition-ing for �(i; 1); �(j; 1); �(k; 1). Then, there areboth partitioning of h� � � �4`�3�4`�2�4`�2�4`�1 � � �iand h� � ��4`�3�4`�2�4`�2�4`�1 � � �i. In this ase, weneed four rules to ompress these segments to non-terminals.We show that this di�erene of the num-bers of rules between p1 and p is aneled bythe partitioning of f�(i; 2); �(j; 2); �(k; 2)g andf�(i; 3); �(j; 3); �(k; 3)g. By Lemma 3, in the aseof p1, the partitioning of �(i; 2); �(j; 2); �(k; 2) on-tains no �-segments appearing twie. On the otherhand, in the ase of p, it ontains one of the threeleft-aligned partitioning and one of the three right-aligned partitioning. It follows that there is ex-atly one �-segments appearing twie. It is easyto see that this ondition is satis�ed for the om-bination of �(i; 3); �(j; 3); �(k; 3) by their de�ni-tion. As a onsequene, the inrease of rules is al-ways balaned between f�(i; 1); �(j; 1); �(k; 1)g andf�(i; 2); �(j; 2); �(k; 2)g [ f�(i; 3); �(j; 3); �(k; 3)g.Thus, we obtain that the numbers of rules requiredby p1 and p is equal. Therefore, eah partitioning ofw among 2n distint ones is a partitioning of w by asmallest SLP for w. 2Proof of Theorem 1. We show that, for eahmonotone 3-CNF F = (X;C), we an de�ne a poly-nomial f(M;n) suh that F is satis�able if and onlyif an SLP P for s satisfying jP j � f(M;n) exists.5



Let us �rstly onsider the substringw = sXs�s� ofs that simulates the assignment of 0/1-value for thevariables x1; : : : ; xn. By Lemma 2 and Lemma 4, anysmallest SLP for w must ontain a regular partitionof sX , and for any regular partition p of sX , thereexists a smallest SLP for w that implies p. Thus, ev-ery regular partitioning of sX is assoiated with theassignments of 0/1-value for n variables: the left-aligned partitioning of �i of sX is assoiated withxi = 1 and the right-aligned partitioning of �i isassoiated with xi = 0. By Lemma 4, for any reg-ular partitioning p, there is a smallest SLP Pp forw that implies p. Then we an selet the left parti-tioning for all �i of sX to ompute an smallest SLPfor sXs�s�. We an �nd all distint �i�i0 's in sXin polynomial time. Using these pairs, we an om-pute a smallest rules whih derive the string insideof the left partitioning. By Lemma 4, the number ofrules in the outside of the partitioning is invariable.Thus, we an deterministially ompute fC depend-ing on w suh that jPpj = fC(M;n) for any regularpartitioning p.Next let us onsider the part sC = �+��. Thestring �+ is the onatenation of all �4`�2�4`�1 with1 � ` � m for m positive lauses. Let xi be a vari-able ourring in `. Then, �i ontains the substring�4`�2�4`�1. Thus, the string �4`�2�4`�1 of sC anbe shared with the �-segment of �i if a partition forsX ontains the left partition of �i. There is theorrespondene between (1) xi = 1 and ` ontainsxi, and (2) the left-aligned partitioning is hosen for�i and sC ontains �4`�2�4`�1. For ��, we an alsoonstrut the orrespondene between (3) xi = 0and ` ontains :xi, and (4) the right-aligned parti-tioning is hosen for �i and sC ontains �4`�3�4`�2.Thus, C is satis�able if and only if there is a smallestSLP Pp for w with a regular partitioning p that om-presses s to the string �1 z � � � z�M z�w and derives�4`�2�4`�1 from �` if ` is positive, and �4`�3�4`�2if ` is negative. Hene, C is satis�able if and onlyif an SLP P for s suh that jP j � fC(M;n) + 2Mexists. 24 Approximation algorithms forMin SLPIn this setion, we deal with strings over a binaryalphabet � = fa; bg, and we present two algorithms

for Min SLP over �. The �rst `general' algorithm�nds an SLP for an arbitrary string in ��. Thisahieves a worst-ase approximation ratio whih isslightly and stritly smaller than the straightfor-ward upper bound (n � 1)= log n of approximationratios. This algorithm gives a basi idea of the se-ond one, and is appliable for alphabets whose sizesare greater than two. The seond one is designatedto ahieve a muh better ratio for a restrited lassof strings. It �nds an SLP whose size is at most 6times the optimum.4.1 A general algorithm by semi-omplete binary diagram strategyThe algorithm `A1' forMin SLP is presented in Fig-ure 1. It simply repeats transforming the input andthe intermediately produed strings to the sequeneof new rules eah of whih onatenates two ontigu-ous symbols of the original from the left to right. Sothe ompression is ahieved only by avoiding reat-ing redundant rules.Algorithm A1 (Input: a string w 2 ��; Output: anSLP P whih derives w. )Step 1. Let i := 1 and P = ;.Step 2. Repeat while jwj > 1 the following:(a) Add a rule z ì ! w[2`; 2` � 1℄ toP for eah 1 � ` � bjwj=2; non-terminals z ì and z ì0 with ` 6= `0are the same symbols if and only iftheir right-hand side are the same.Then let w be the string zi1 � � � zibjwj=2if jwj is even, otherwise let w :=zi1 � � � zibjwj=2 � w[jwj℄.(b) Let i := i+ 1.Step 3. Output P .Figure 1: Algorithm A1.Theorem 2. Algorithm A1 runs in O(n log2 n)time, and approximates Min SLP over a binary al-phabet within 3n= log2 n.Proof. Let w be the input string and let n = jwj,and let m = dlog ne. Then Step 2 loops at most m6



time. With appropriate data strutures and algo-rithms, A1 an be implemented as an O(n lognm)-time algorithm, i.e. runs in O(n log2 n) time.Let P be the SLP for w produed by A1, andTP the derivation tree of P . Then TP is, say, a left-aligned omplete binary tree whose height ism. Thesize of P is the number of di�erent labels of internalnodes of TP , thus jP j =P1�i�mNi, where Ni is thenumber of labels of internal nodes at the depth i ofTP .Now we show that jP j < 3n= log n. Sine theleaves of TP is either a or b, at most four di�erentrules whih possibly map to aa; ab; ba and bb ouldbe made at the �rst iteration of Step 2. This impliesthat any internal node at depth m� 1 is labeled byone of four nonterminals, and thus Nm � 4.Similarly, by the indution, any node at the depthm � i must be labeled by one of at most 22i non-terminals, thus Nm�i � 22i . On the other hand,the number of nodes in depth m � i annot exeedn=2i, thus the above inequality holds for every i thatsatis�es 22i � n=2i. This is satis�ed by at mostk = log logn � 1. For eah ith iteration of Step 2with i � k+1, the number of labels is no more thanthe number of nodes at depth m � i. Thus in theworst ase, Nm�i = 2m�i for 1 � i � k + 1. There-fore,jP j = X1�i�mNi � X1�i�k 22i + X1�i�k+1 2k+1�i� 2pn+ 2nlog n � 3nlog n:Sine obviously the size of SLP jP j is no lessthan log n for any string of length n, the worst-ase approximation ratio of jP j to the optimum is3n= log2 n. 24.2 An algorithm for overlap-free stringsA string w 2 �� has an overlapping fator if w on-tains two overlapping ourrenes s � t � u of a strings�t = t�u. A string w is overlap-free if w has no over-lapping fators. The following lemma gives a morepreise desription of this ase.Lemma 5 (Lothaire [7℄). A string w has an over-lapping fator if and only if w ontains a substringavava with some symbol a and a (possibly empty)string v.

Algorithm A2 (Input: A string w; Output: An SLPP for w. )Step 1. Let i := 1, let s1; s2 be the empty string ",and P = ;. Additionally l and r are usedto store the detahed pre�x and suÆx.Step 2. Repeat while jwj > 1 the following:(a) Determine the longest pre�x x andthe longest suÆx y of w that ontainneither aa nor bb.(b) If jxj is odd then l := ", if x is empty(a pre�x of w is aabaa or bbabb) thenl := w[1; 2℄, otherwise l := w[1℄.() If jzj is odd then r := ", if z is emptythen r := w[jwj � 1; jwj℄, otherwiser := w[jwj℄.(d) Let s1 := s1 l , s2 := r s2, w :=pairwise(w[jl j + 1; jwj � jr j℄; i), andi := i+ 1.Step 3. Let w := s1 w s2, and repeat w :=pairwise(w; i) and i := i+1 while jwj > 1.Step 4. Output P .Figure 2: The approximation algorithm for MinSLP on overlap-free strings.There exist in�nitely many overlap-free stringseven over a binary alphabet. The following iswell known overlap-free in�nite string: the Thue-Morse [7℄ string t = �1(a) = abbabaabbaab � � � isobtained by applying a morphism � to a in�nitelymany time, where � : �� ! �� is de�ned by�(a) = ab and �(b) = ba. Sine t is overlap-free,any substring of t is also overlap-free.We present the algorithm A2 for Min SLP overthe overlap-free strings in Fig. 2. The proedurepairwise(w; i) invokes Step 2-(a) of the algorithmA1. The Step 2 repeats, similarly to the algorithmA1, approximately log n time with the size n of inputstring. On eah iteration of Step 2, the algorithmsearhes for a square w[j; j + 1℄ = xx, ontiguoustwo same symbols. If a square has been found, thepairs � � �w[j � 1; j℄; w[j + 1; j + 2℄ � � � are hosen tomake new rules. Therefore the positions of the �rstand the last pairs depend on whether j and jwj are7



even or odd.For example, assume that abbab is given. ThenA2 adds the rules �11 ! ab and �12 ! ba to P atthe �rst iteration of Step 2, and at the seond iter-ation, A2 adds �21 ! �11�12 and �31 ! �21b. Then,there are totally four rules. It is not optimal be-ause abbab an be expressed by three rules. Thus,unfortunately, outputs of the algorithm A2 are notalways optimal. However, A2 is an approximationalgorithm that ahieves a onstant worst-ase fa-tor.First, we prove the following lemma.Lemma 6. Let w be a suÆiently large, overlap-free string on � = fa; bg. Then, there exists asubstring v of w that satis�es v 2 fab; bag� andjvj � jwj � 4.Proof. An overlap-free string w ontains no three(or longer) ontiguous same symbols suh as aaa.Therefore, w an be uniquely expressed as w =x1y1 � � � xnynxn+1 where every yj is a square eitheraa or bb, and eah xi ontains no squares, i.e. is analternating string. If all the lengths of xi are even,then the substring w[2; jw � 1j℄ is in fab; bag� andthe statement holds. So we onsider the ases suhthat for some 1 � i � n the length of xi is odd.Note that in the following disussion obviously wean swap the symbols a with b.Assume that yi = yi+1 = aa and jxi+1j is odd.In the ase jxi+1j = 1, yi xi+1 yi+1 = aabaa. Ifyi xi+1 yi+1 is a proper substring of w, then the lastsymbol of xi and the �rst symbol of xi+2 are b. It im-plies that w ontains an overlapping string baabaab,a ontradition. In the ase jxi+1j = 2`+1 for some` > 0, yi xi+1 yi+1 = aa(ba)`b aa. This falls intothe fat that w ontains an overlapping string aba.Thus, w is overlap-free only if xi+1 = b and either(i) i = 1 and x1 = ", or (ii) i = n� 1 and xn+1 = ".Note that, if yi = aa and yi+1 = bb, then sine w isoverlap-free, xi+1 must be (ba)` for some ` � 0 andthus jxi+1j is even.As a onsequene, jxij an be odd only if i is ei-ther 1; 2; n, or n+1. Moreover, either jx1j or jx2j anbe odd, and either jxn+1j or jxnj an be odd. Thelength of squares y1; : : : ; yn is always two. Summa-rizing these fats, if jx1j and jxn+1j are odd, then wean hoose v = w 2 fab; bag+. If jx1j and jxnj areodd, w[1; jwj � 2℄ 2 fab; bag+. If jx2j and jxn+1j are

odd, w[3; jwj℄ 2 fab; bag+. If jx2j and jxnj are odd,w[3; jwj � 2℄ 2 fab; bag+. 2Theorem 3. The algorithm A2 for Min SLPahieves the worst-ase performane ratio 6 foroverlap-free strings over a binary alphabet.Proof. Let wi be the string w produed by the ithiteration of Step 2. By the de�nition of the proe-dure pairwise(w; i), jwi+1j � jwij=2. It follows thatStep 2 is repeated at most logn time with jwj = n.By Lemma 6, at the ith iteration, A2 �nd the longestsubstring wi of wi�1 suh that wi�1 = l wi r andwi 2 fai�1bi�1; bi�1ai�1g+, where ai�1 and bi�1 arenonterminals added at the (i� 1)th iteration. Thus,the number of rules added to P in whole the itera-tions of Step 2 is at most 2 log n.At eah iteration of Step 2, two strings l and r areadded to s1 and s2. Again, by Lemma 6, jlj; jrj � 2.Thus, the length of the string s1w s2 at Step 3 isat most 4 log n + 1, and the number of rules addedin Step 3 is at most 4 log n. Therefore, the totalnumber of rules is at most 6 log n and by Lemma 1,the algorithm A2 is a 6-approximation algorithm. 25 ConlusionText ompression is as fertile an area for researhnow as it was 50 years ago when omputing resoureswere sare. Reently, ompression sheme basedon grammar transform attrats speial onerns. Inthis sheme, a given text string is onverted into aontext-free grammar that derives stritly the stringand then enoded. Suh a grammar is alled an ad-missible grammar. In this paper, we have provedthe NP-hardness of the minimization problem forthe lass of admissible grammars in Chomsky nor-mal form. Unfortunately, the intratability of theproblem for general admissible grammars remains anopen problem. The two approximation algorithmspresented in this paper are limited to the ase of abinary alphabet. The interesting task for further re-searh is to develop an approximation algorithm fora general alphabet.Kida et al. [4℄ introdued a more general frame-work than admissible grammars, alled ollage sys-tems, in whih the repetition and the aÆx truna-tion operations for strings are introdued in addition8
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