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Hiroshi Sakamotof Shinichi Shimozonot

Abstract

The complexity of an optimization problem for
text compression by grammar transforms is studied.
Given a string, the goal of this problem is to find
a context-free grammar in Chomsky normal form,
called a straight-line program, which strictly derives
the string. The measure of this minimization prob-
lem is the size of a grammar, i.e., the number of the
production rules of the grammar. The first result
obtained in this paper is the NP-hardness of this
problem. The second result is an approximation al-
gorithm that achieves the worst-case approximation
ratio 3n/log? n for binary strings. The third result
is a 6-approximation algorithm for restricted binary
strings such that the strings contains no overlapping
factor, called overlap-free strings.

1 Introduction

Text compression is a task of reducing the amount
of space needed to store text files on computers or of
reducing the amount of time taken to transmit in-
formation over a channel of given bandwidth. Users
want to reduce the size of their data as small as
possible, but want to minimize the time needed for
this task. The main criteria for choosing compres-
sion methods are therefore the compression ratio and
the compression time. Many studies have been un-
dertaken to develop a new compression method for
improving the compression ratio and/or the com-
pression time. The Lempel-Ziv algorithms [16, 17],
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often referred to as LZ77 and LZ78, and their vari-
ants (e.g., [15, 13]) are most widely-used universal
lossless compression algorithms, together with the
arithmetic coding algorithms (see, e.g., [11]).

Finding the minimum representation of a given
text string is regarded as a combinatorial optimiza-
tion problem. One interesting topic is to analyze the
time complexity of this optimization problem un-
Storer and
Szymanski [14] presented several abstract compres-

der some reasonable encoding scheme.

sion schemes, and discussed the intractabilities of
the minimization problems under the schemes. Es-
pecially, one of the schemes is a generalization of
the LZ77 compression, and the corresponding min-
imization problem was shown to be NP-complete.
Also, De Agostino and Storer [2] generalized the
LZ78 scheme and then proved that the computation
of the optimal parsing is NP-complete.

Recently, there have emerged new compression al-
gorithms, such as Sequitur [9, 8] and Re-Pair [6],
which often outperform the Lempel-Ziv family in the
compression ratio comparison. Although they re-
quire much more compression time than the Lempel-
Ziv family, it becomes not so crucial due to the recent
progress in computer technology. These compression
methods can be generalized into a new compression
scheme called grammar transform (see [5]). In this
scheme, a text string w is transformed into a context-
free grammar G that generates the language {w},
and then G is encoded in some appropriate man-
ner. A context-free grammar that generates a single
string is said to be admissible. Yang and Kieffer
[3] presented a grammar transform algorithm, and
showed that the algorithm is asymptotically optimal
(i.e. universal) for a broad class of sources, including
stationary, ergodic sources. However, the computa-
tional complexity of the problem to find the smallest



not been discussed yet.

In this paper, we prove the NP-hardness of this
minimization problem to find a smallest grammar
with restriction to the class of admissible grammars
in Chomsky normal form, called straight-line pro-
grams. Despite the restriction, the class of straight-
line programs is rich enough in the context of text
compression. For example, the Re-Pair compression
is a grammar transform in which the grammars are
restricted to straight-line programs. Moreover, the
LZ78 compression can be regarded as a kind of gram-
mar transform in which all the production rules but
the start rule are restricted to the form ¢ — Xa,
where o is a nonterminal symbol, a is a terminal
symbol, and X is either a terminal symbol or a non-
terminal symbol.

Our proof employs a reduction from MONOTONE
3-SAT to the decision version of the problem, and
is considerably complicated. This settles partially,
but as the first hardness result, the open problem in
text compression by a reduced grammar transform.
The string reduced from a monotone 3-CNF formula
is constructed over a finite alphabet, whose size de-
pends on the size of the given formula. However,
it exhibits a potential intractability of the problem,
and may suggest difficulties in developing efficient
algorithms for the problem over a large alphabet.

We then restrict ourselves to the case of binary
alphabet, and present two polynomial-time approx-
imation algorithms. One is a general algorithm
that finds an SLP for an arbitrary binary string,
and achieves the worst-case approximation ratio
3n/ logZn. Interestingly, this algorithm stands on
a simple idea that makes pairs of symbols in strings
from left to right, and is considered as an extension of
the algorithms for obtaining the minimum ordered-
binary decision diagram from a complete truth ta-
ble [12].

The other is an algorithm that produces an SLP
whose size is at most 6 times the optimum, for a class
of binary strings that contain no overlapping sub-
strings. This algorithm computes an SLP by involv-
ing the former algorithm as subroutine, with finding
the longest substring of the input whose binary sym-
bols are alternating.

The rest of this paper is organized as follows. In
Section 2 we introduce some notation and defini-

In Section 3 we prove the NP-hardness of the prob-
lem by showing a reduction from MONOTONE 3-SAT.
Then, we present two approximation algorithms for
the case of binary strings in Section 4. Section 5
contains final remarks and states open problems.

2 Preliminaries

A set X denotes a finite alphabet through this paper.
The set of all finite strings over X is denoted by >*,
and X1 denotes ¥*\ {} where ¢ is the empty string.
The length of a string w € ¥*, i.e. the number of
symbols consisting of w, is denoted by |w/|, and the
ith symbol of w with 1 < ¢ < |w| is denoted by w]i].

A string x € ¥ is a substring of w € 3* if there
exist y, z € 3¥* such that w = yzz. In this case, y is
a prefiz of w, z is a suffiz of w, and if |z| < |w| then
x is a proper substring of w. The notion wli, j] for
1 <i < j < |w| refers to the substring w[i] - - - w[j].
An occurrence of wli, j| in w refers to a position 1 <
k < |w| such that w[i,j] = wlk,k + (j — i)]. By
f(x,w), we denote the number of occurrences of x in
w.

A context-free grammar G = (X, N, P, S) is said
to be admissible if it generates a singleton set of a
nonempty string s, that is, L(G) = {s}. The produc-
tion rules of any admissible grammar can be written
as

o1 — O,

o2  — Q]

Om — Oy

where o01,09,...,0,, are the ordered nonterminal
symbols in N, g, = S is the start symbol, and ¢; is a
nonempty string over the alphabet YU{o1,...,0,1}
for : = 1,2,...,m. We assume G contains no use-
less symbols. The size of an admissible grammar
G, denoted by ||G]], is the total length of the right
hand sides of production rules. That is, |G| =
|t | + || + - + [

In this paper, we consider the minimization prob-
lem for the admissible grammars in Chomsky normal
form, called straight-line programs (SLPs). For sim-
plicity of discussion, we replace all occurrences of o
within the right hand sides of the production rules
with a for every production rule of the form ¢ — a,



nal symbol. The grammar size is then exactly twice
the cardinality of N. We note that this replacement
is possible unless the string to be expressed by a
grammar is of length one. Thus, we deal with the
following minimization problem.

Definition 1. MIN STRAIGHT-LINE PROGRAM
Given a string s € ¥, find the smallest straight-line
program over Y for s, i.e., a straight-line program
that generates s and the cardinality of its set N of
nonterminal symbols is minimum.

The decision problem with respect to MIN
STRAIGHT-LINE PROGRAM is formulated by a posi-
tive integer threshold k£ in an instance and the ques-
tion asking whether an SLP smaller than £ exists.

Here we define some notions for minimization
problems and their approximation algorithms (see
e.g. [1, 10] for details.) An algorithm A for a mini-
mization problem I approzimates 11 within ratio «,
or achieves a worst-case approrimation ratio o if for
any instance of I the algorithm A produces its solu-
tion whose measure (cost) is no more than « times
the measure of an optimum solution. In this case,
we also say that A is an «-approzimation algorithm

for 11.

The straight-line program G is also represented by
the term yield of a tree, i.e. the concatenation of all
labels of the leaves of the tree; For a string w, G is
a tree t over NV U X that yields w and each internal
node is labeled by a nonterminal. The set P of rules
represented by t is the set of all production rules
o; — XY such that ¢ contains a node labeled by
0; € N whose children are labeled by X,Y € NU?X.
The tree of w with respect to an SLP P is said to be
a derivation tree of P for w, and we say P derives
w.

From a view point of binary derivation trees, the
following observation is rather immediate.

Lemma 1. The upper bound and lower bound of
the sizes of minimum straight-line programs are n—1
and logn, respectively, where n is the length of the
input string.

Proof. Let w be an input string and |w| = n. Any
derivation tree for w contains exactly n — 1 inter-

nal nodes. Thus, the maximum number of rules

derivation tree. Let P be a set of rules and |P| = k.
If any rule is of the form ¢ — XX for some 0 € N
and X € NUZY, then the derivation tree is complete,
i.e., all paths from the root to leaves are length k. If
|P| = k and the derivation tree is not complete, then
there exists a path p which is longer than k. Since
any path does not contain a nonterminal twice, p
contains at least k£ 4+ 1 nonterminals. Thus, the min-
imum number of rules is bounded by k£ =logn. O

Thus, a trivial approximation ratio achievable by a
polynomial-time algorithm for MIN STRAIGHT-LINE
PrOGRAM is (n — 1)/ logn.

3 Min SLP is computationally in-
tractable

In this section we show the following theorem:

Theorem 1. MIN STRAIGHT-LINE PROGRAM is
NP-hard.

We prove this by a reduction from MONOTONE
3-SAT to a decision problem version of MIN
STRAIGHT-LINE PROGRAM. We firstly define
MONOTONE 3-SAT, then describe a translation al-
gorithm from a monotone 3CNF to a pair of a string
and a nonnegative integer, that is, an instance of
decision version of MIN SLP. Then we show a se-
ries of lemmas and prove that the translation is a
reduction.

Let X = {x1,...,2,} be a set of n Boolean vari-
ables. A monotone 3-CNF formula F' = (X, C) is de-
fined by a set C' = {¢y,...,cp} of 3-literal monotone
conjunctive clauses over X such that each clause ¢;
is either a positive clause (z V y V z) or a negative
clause (—z V =y V —z). Without loss of generality,
we assume that clauses in C' are (i) ordered collec-
tions of 3-literals with respect to their variable in-
dices, and (ii) indexed so that all the first m < M
.,cm are positive clauses and the re-
mained ¢p41,. .., ¢y are negative clauses.

clauses cq, ..

The translation algorithm constructs a string s =
508x 8454 consisting of the four parts and formed
from symbols in 3. The alphabet ¥ is finite but
whose size depends on F'; we define its symbols along
with the description of the algorithm. Let o = (ab)*



a;b. We define for all positive clauses and for all neg-
ative clauses the string 7 =TTy <<y, (Qap—2 a1 2)

and 7~ = Hm+1§g§M(a4g,3 Qqp—9 Z), where z is a
new symbol for each ¢. Then we define the string
sc=ntnm.

The string sx is constructed as follows. Let
= (af)?M=1 = (Ba)'?M~1, We employ this as the
‘template,” and with a variable index 1 < ¢ < n de-
fine 7(i,1) = (aB)*M~1 7(i,2) = 7(i,3) = (ap)*M,
and the gadget m; = m(i,1)7(i,2) w(7,3). We con-
sider that m(i,1) is formed from 4M — 1 segments of
af, and 7(i,2), 7 (i,3) are formed from M segments
of A = (aB)*. We denote by A(i,2), the fth A of
7(i,2) and by A(i,3), the fth A of 7(i,3). Accord-
ing to the occurrences of the literals z; and —x; in
clauses, we transform each ;.

For each 1 < i < n, we transform 7 (7, 1) as follows:
(i) If ¢; contains z; or —x;, replace (4¢ — 1)th af by
a4p-1Bu—1, (4€ — 2)th a8 by g 2840 2, and (4€ —
3)th af by aup 3840_3. (ii) for each remained o/,
introduce a new index ¢* and replace a3 with a;~ 3;~.
We note that each 4/th a8 with 1 </ < M — 1 is
replaced by «a;=3;+ with the unique index 7*.

Next, for each clause ¢y with 1 < ¢ < M by assum-
ing which is either (z; Va; V) or (mx; V-, V-xy),
we transform (i, 2),7(4,2), and 7(k,2) by replacing

(i) A(4,2)y with ag,Be, e, Be, cu, Bey s By »
(i) A(J,2)e with By cu, By ey Bey e, Be,
(iil) A(k,2)e with ag,Be, 0, Be, ey By e, By »

where £y, 1, {9, £3 are new indices introduced for each
clause. Remained A’s of each 7(i,2) are replaced
with (a;Bi)* with introducing four new indices for
each segment. Similarly we transform (i, 3),7(7, 3),
and 7(k,3) by introducing new indices £, £}, ¢4, 05,
and ¢*. Then, construct sx = m z-- 1,z for the
modified string m; = 7 (i, 1)7 (i, 3)7 (4, 3).

Finally, we define s, and sg. The string s, is the
concatenation of all a;, 3;, z - o, Bi, 2, where oy, 3,
and oy, (;, are the first and the last (o) segments
of m; (the prefix and the suffix of m; of length 10),
respectively. The string sg is the concatenation of all
Bi B z such that 3; ; = a;ba;jb with ¢ # j appears
in sy.

The nonnegative integer threshold for transform-
ing MIN SLP to the decision problem is fo + 2M,

function for computing this number will be specified
later.

Now we show that the algorithm given above is a
reduction by the lemmas in the following. At first,
we introduce some notions and definitions.

Let w be a string in ¥, P an SLP for w over N
and 3, and u a substring of w such that a nontermi-
nal 0 € N that derives u exists. Then, a sequence
of substrings wuy,...,u; of u is said to be a parti-
tioning of u by P if u = uy - -
with 1 <4 < k a nonterminal that derives u; exists
in P. We denote a partitioning of u by the notion
(uy - --ug)p, and by (uj---ug) if it is not necessary
to specify P. Let w be a181---apf; for an odd
number k. This can be also represented as

-- - uy and for each wu;

w = 01516202030/1437]0166]43

= Bi-arag-Poff3 e BBk - o

Each «;08; in w is said to be an af-segment of w,
and each oo and 3;3; with 1 # ¢ are said to be
an a-segment and a (3-segment, respectively. By as-
suming an SLP that contains nonterminals deriving
those segments, we say the partitioning of w accord-
ing to the former representation the left-aligned par-
titioning, and the later the right-aligned partitioning.
We say a partitioning of sx is reqular if each m; is
left-aligned or right-aligned.

Lemma 2. Let w; = m;s,55 and let P; be a smallest
SLP for w;, for each 1 < i < n. Then, P; is a regular
partitioning of ;.

Proof. The string 7; is the concatenation of 120 —1
different af3-segments. The string s, contains only
two of them, and sg contains at most one 3-segment
for each pair of different indices. Thus, if the 3-CNF
monotone formula is sufficiently large, then the size
of an SLP for w; depends on how many nonterminals
deriving substrings of m; can be shared with those for
SasSp-

Both the left- and the right-aligned partitioning
contain 6M — 1 different (-segments that can be
shared with sg. Both the first segment of the left-
aligned partitioning and the last segment of the
right-aligned partitioning can be shared with s,.
Thus, the left- and the right-aligned partitioning for
m; requires the same number of rules.



Then, it must contain at least one isolatedwﬁ such
as (---ajfja ---)p or (- a;jfjaj---)p, for some
j # j'. Since neither a;3; nor Bj c is contained in
5q and sg, any SLP having such a partitioning is not
smallest. O

Lemma 3. Let ¢; be a clause formed from literals
over z;, xj and xj. Let 7; be either the left-aligned or
the right-aligned partitioning of the string A(i,2),
defined for c¢y.
for A(4,2), and A(k,2),, whose alignments are same
with that of ~;, respectively. Then, if both a left- and
a right-aligned partitioning exist, there is exactly one
a-segment appears in exactly two of 7;, v;, v oth-
erwise all a-segments are different.

Let v; and v be the partitioning

Proof. The left-aligned partitioning of A(i,2)y,
A(7,2)e, A(k,2), are, respectively,

(0o By By 0ty 0ty Bry Bes 0uay) s
(0o By Bey 0ty v, Bry Bey ua, ) s
<aln ﬁfo ﬁll all 0%3 ﬁf% 612 0%2 > ‘

There is no a-segment appearing twice above. For
the right-aligned partitioning, it can be check in the
same way.

We can also check the converse direction by
enumerating a set of partitioning. For instance,
ay, ay, appears twice in (G, o, v, Be, Bey oy ey Bes )
and (o, Be, B, e, ey Bey B, 0ua) - O

Lemma 4. Let w = sysqsg and sy =mz--- 7, 2.
For any regular partitioning p of sx, there exists a
smallest SLP P for w that includes p.

Proof. By Lemma 2, an admissible partitioning for
each ; is either a left- or a right-aligned partitioning.
Thus, there are 2" candidates for a smallest SLP.
We show that for any combination of n partitioning,
there is a smallest SLP that includes them.

Let p; be the partitioning of w such that each
partitioning for m; is left-aligned. Let p be any par-
titioning of w. We assume for sx both p; and p is
regular. We estimate the number of rules required by
these partitioning. Since every (-segment appears in
a candidate partitioning of any m; and is shared with
that of sg, the number of rules for m;’s by p; is equal

bers of rules for p; and for p depends only on the
strings of the form a-segments.

Recall that m; = (i, 1) w(7,2) 7(i,3). w(i,1) con-
sists of 4M — 1 af-segments, and 7 (7,2) and 7 (7, 3)
consist of 4M «af-segments, respectively. We first
focus on 7(i,1). By the definition of m;, for each
1 <0< M, (40 — 2)th segment of m; is ayp 2849
if the clause ¢, has x; or —x;, and «a;-3; otherwise,
where ¢* is the unique index for this segment. Since
the formula is a 3-CNF, for each 1 < ¢ < M, there
are m(i,1),m(j,1), 7(k,1) having ays_184¢_1. In the
case of pq, all partitioning of them are of the form
(- Bae—3Bar—o0uug—n04g_1---). Since Byg_3840—2 is
shared with sg, we need only two rules o — o109
and o9 — 0304 to compress Bag_3840_o0ag_o90iap_1
to a nonterminal such that oy to B4y _384¢_9, 03 to
499, and o4 to ayp_q.

Assume that p has at least one left-aligned par-
titioning and at least one right-aligned partition-
ing for m(i,1),7(j,1),7(k,1).  Then,
both partitioning of (--- Bu—3Ba—20ur-—20r-1--)
and (- - oup 304g 90840 20401 -+). In this case, we
need four rules to compress these segments to non-

there are

terminals.

We show that this
bers of rules between p; and p is canceled by
the partitioning of {n(i,2),7(4,2),7(k,2)} and
{m(i,3),7(4,3), 7(k,3)}. By Lemma 3, in the case
of p1, the partitioning of = (i,2), 7(4,2), w(k,2) con-
tains no a-segments appearing twice. On the other
hand, in the case of p, it contains one of the three
left-aligned partitioning and one of the three right-
It follows that there is ex-
actly one a-segments appearing twice. It is easy
to see that this condition is satisfied for the com-
bination of 7 (i,3),7(j,3),7(k,3) by their defini-
tion. As a consequence, the increase of rules is al-
ways balanced between {m(i,1),7(j,1),7(k,1)} and
{n(i,2),7(4,2), w(k,2)} U {n(i,3),7(5,3),n(k,3)}.
Thus, we obtain that the numbers of rules required
by p1 and p is equal. Therefore, each partitioning of

difference of the num-

aligned partitioning.

w among 2" distinct ones is a partitioning of w by a
smallest SLP for w. O

Proof of Theorem 1. We show that, for each
monotone 3-CNF F = (X, C), we can define a poly-
nomial f(M,n) such that F is satisfiable if and only
if an SLP P for s satisfying |P| < f(M,n) exists.



s that simulates the assignment of 0/1-value for the
variables z1,...,2,. By Lemma 2 and Lemma 4, any
smallest SLP for w must contain a regular partition
of sx, and for any regular partition p of sx, there
exists a smallest SLP for w that implies p. Thus, ev-
ery regular partitioning of sx is associated with the
assignments of 0/1-value for n variables: the left-
aligned partitioning of m; of sx is associated with
z; = 1 and the right-aligned partitioning of m; is
associated with z; = 0. By Lemma 4, for any reg-
ular partitioning p, there is a smallest SLP P, for
w that implies p. Then we can select the left parti-
tioning for all m; of sx to compute an smallest SLP
for sxsqsg. We can find all distinct 3;8;’s in sx
in polynomial time. Using these pairs, we can com-
pute a smallest rules which derive the string inside
of the left partitioning. By Lemma 4, the number of
rules in the outside of the partitioning is invariable.
Thus, we can deterministically compute fo depend-
ing on w such that |P,| = fc(M,n) for any regular
partitioning p.

Next let us consider the part s¢ = 7t7—. The
string 7T is the concatenation of all ayy_gauy—1 with
1 < ¢ < m for m positive clauses. Let x; be a vari-
able occurring in ¢y. Then, 7; contains the substring
a4¢_o04¢_1. Thus, the string a4y _sa4e 1 of s¢ can
be shared with the a-segment of 7; if a partition for
sx contains the left partition of m;. There is the
correspondence between (1) z; = 1 and ¢; contains
x;, and (2) the left-aligned partitioning is chosen for
m; and s¢ contains gy _oay4p 1. For m—, we can also
construct the correspondence between (3) xz; = 0
and ¢y contains —z;, and (4) the right-aligned parti-
tioning is chosen for m; and s¢ contains a4y gy o.
Thus, C is satisfiable if and only if there is a smallest
SLP P, for w with a regular partitioning p that com-
presses s to the string 01z -z oy 20y, and derives
Qup_o0yp_1 from oy if ¢y is positive, and ayp 304p 9
if ¢4 is negative. Hence, C' is satisfiable if and only
if an SLP P for s such that |P| < fo(M,n) +2M
exists. O

4 Approximation algorithms for
MiN SLP

In this section, we deal with strings over a binary
alphabet ¥ = {a, b}, and we present two algorithms

finds an SLP for an arbitrary string in ¥*. This
achieves a worst-case approximation ratio which is
slightly and strictly smaller than the straightfor-
ward upper bound (n — 1)/logn of approximation
ratios. This algorithm gives a basic idea of the sec-
ond one, and is applicable for alphabets whose sizes
are greater than two. The second one is designated
to achieve a much better ratio for a restricted class
of strings. It finds an SLP whose size is at most 6
times the optimum.

4.1 A general algorithm by semi-

complete binary diagram strategy

The algorithm ‘A1’ for MIN SLP is presented in Fig-
ure 1. It simply repeats transforming the input and
the intermediately produced strings to the sequence
of new rules each of which concatenates two contigu-
ous symbols of the original from the left to right. So
the compression is achieved only by avoiding creat-
ing redundant rules.

Algorithm Al (Input: a string w € ¥*; Qutput: an
SLP P which derives w. )

Step 1. Let 4 :=1 and P = 0.
Step 2. Repeat while |w| > 1 the following:

(a) Add a rule 2} — w[2(,2¢ — 1] to
P for each 1 < ¢ < ||w|/2]; non-
terminals z, and 2}, with ¢ # ¢
are the same symbols if and only if
their right-hand side are the same.
Then let w be the string 2 - - - Z’UW‘/QJ
if |w| is even, otherwise let w :=
2 22 wl|w]].

(b) Let i:=1d+ 1.

Step 3. Output P.

Figure 1: Algorithm Al.

Theorem 2. Algorithm Al runs in O(nlog®n)
time, and approximates MIN SLP over a binary al-
phabet within 3n/log? n.

Proof. Let w be the input string and let n = |w|,
and let m = [logn]. Then Step 2 loops at most m



rithms, A1 can be implemented as an O(nlog nm)—
time algorithm, i.e. runs in O(nlog?n) time.

Let P be the SLP for w produced by Al, and
Tp the derivation tree of P. Then Tp is, say, a left-
aligned complete binary tree whose height is m. The
size of P is the number of different labels of internal
nodes of Tp, thus |P| = Y, .;<,, Ni, where Nj is the
number of labels of internal nodes at the depth i of
Tp.

Now we show that |P| < 3n/logn. Since the
leaves of T'p is either a or b, at most four different
rules which possibly map to aa, ab,ba and bb could
be made at the first iteration of Step 2. This implies
that any internal node at depth m — 1 is labeled by
one of four nonterminals, and thus N, < 4.

Similarly, by the induction, any node at the depth
m — 4 must be labeled by one of at most 22" non-
terminals, thus N, ; < 22" On the other hand,
the number of nodes in depth m — i cannot exceed
n /2, thus the above inequality holds for every i that
satisfies 22° < n/2'. This is satisfied by at most
k = loglogn — 1. For each ith iteration of Step 2
with ¢ > k+ 1, the number of labels is no more than
the number of nodes at depth m — ¢. Thus in the
worst case, Ny,_; = 27" for 1 < i < k + 1. There-
fore,

Pl= S N < Y 2%y Y okl

1<i<m 1<i<k 1<i<k+1
2 3

< ovn+ o<

logn ~ logn

Since obviously the size of SLP |P| is no less
than logn for any string of length n, the worst-
case approximation ratio of |P| to the optimum is
3n/log? n. 0

4.2 An algorithm for overlap-free strings

A string w € ¥* has an overlapping factor if w con-
tains two overlapping occurrences s -t - u of a string
s-t = t-u. A string w is overlap-free if w has no over-
lapping factors. The following lemma gives a more
precise description of this case.

Lemma 5 (Lothaire [7]). A string w has an over-
lapping factor if and only if w contains a substring
avava with some symbol a and a (possibly empty)
string v.

I = o I S - O £r© o o
P for w. )
Step 1. Let i := 1, let s1, s9 be the empty string ¢,

and P = (). Additionally [ and r are used
to store the detached prefix and suffix.

. Repeat while |w| > 1 the following:

(a) Determine the longest prefix x and
the longest suffix y of w that contain
neither aa nor bb.

(b) If || is odd then [ := ¢, if  is empty

(a prefix of w is aabaa or bbabb) then

[ := w[1,2], otherwise | := w[1].

If |z] is odd then r := ¢, if z is empty

(c)

then r := w[jw| — 1,|w|], otherwise
r= wl|w|].

(d) Let s1 := s1l, s9 1= 7189, w =
pairwise(w[|l| + 1, |w| — |r[],4), and
1:=1+ 1.

Step 3. Let w = and repeat w :=
pairwise(w, i) and i := i+ 1 while |w| > 1.

Step 4. Output P.

S1 W S92,

Figure 2: The approximation algorithm for MIN
SLP on overlap-free strings.

There exist infinitely many overlap-free strings
even over a binary alphabet. The following is
well known overlap-free infinite string: the Thue-
Morse [7] string t = u°°(a) = abbabaabbaab- - is
obtained by applying a morphism p to a infinitely
many time, where p : X* — X* is defined by
u(a) = ab and pu(b) = ba. Since t is overlap-free,
any substring of t is also overlap-free.

We present the algorithm A2 for MIN SLP over
the overlap-free strings in Fig. 2. The procedure
pairwise(w,i) invokes Step 2-(a) of the algorithm
Al. The Step 2 repeats, similarly to the algorithm
Al, approximately log n time with the size n of input
string. On each iteration of Step 2, the algorithm
searches for a square w[j,j + 1] = zz, contiguous
two same symbols. If a square has been found, the
pairs ---w([j — 1,j],w[j + 1,5 + 2] --- are chosen to
make new rules. Therefore the positions of the first
and the last pairs depend on whether j and |w| are



For example, assume that abbab is given. Then
A2 adds the rules of — ab and o) — ba to P at
the first iteration of Step 2, and at the second iter-
ation, A2 adds 0? — o]0l and 0} — o?b. Then,
there are totally four rules. It is not optimal be-
cause abbab can be expressed by three rules. Thus,
unfortunately, outputs of the algorithm A2 are not
always optimal. However, A2 is an approximation
algorithm that achieves a constant worst-case fac-
tor.

First, we prove the following lemma.

Lemma 6. Let w be a sufficiently large, overlap-
free string on ¥ = {a,b}. Then, there exists a
substring v of w that satisfies v € {ab,ba}* and
ol > ] — 4.

Proof. An overlap-free string w contains no three
(or longer) contiguous same symbols such as aaa.
Therefore, w can be uniquely expressed as w =
T1Y1 - TpYnTny1 Where every y; is a square either
aa or bb, and each x; contains no squares, i.e. is an
alternating string. If all the lengths of z; are even,
then the substring w[2,|w — 1]] is in {ab,ba}* and
the statement holds. So we consider the cases such
that for some 1 < i < n the length of z; is odd.
Note that in the following discussion obviously we
can swap the symbols a with b.

Assume that y; = y;41 = aa and |z;41| is odd.
In the case |zjy1| = 1, y;i®iy1yip1 = aabaa. If
Yi Tir1 Yit1 1S a proper substring of w, then the last
symbol of z; and the first symbol of ;9 are b. It im-
plies that w contains an overlapping string baabaab,
a contradiction. In the case |z;41| = 2+ 1 for some
¢ >0, y;xip1yis1 = aa(ba)’baa. This falls into
the fact that w contains an overlapping string aba.
Thus, w is overlap-free only if z;11 = b and either
(i)i=1land z; =¢,or (ii)i=n—1and 2,41 = ¢.
Note that, if y; = aa and y;41 = bb, then since w is
overlap-free, x; 1 must be (ba)e for some ¢ > 0 and
thus |z;4+1] is even.

As a consequence, |z;| can be odd only if i is ei-
ther 1,2, n, or n4+1. Moreover, either |z| or |z2| can
be odd, and either |z,11| or |z,| can be odd. The
length of squares y1,...,y, is always two. Summa-
rizing these facts, if |z1| and |z, 41| are odd, then we
can choose v = w € {ab,ba}™. If |z1| and |z,| are
odd, w[1,|w| — 2] € {ab,ba}™. If |z5| and |z,,41]| are

w[3,|w| — 2] € {ab,ba}". m

Theorem 3. The algorithm A2 for MiN SLP
achieves the worst-case performance ratio 6 for
overlap-free strings over a binary alphabet.

Proof. Let w; be the string w produced by the ith
iteration of Step 2. By the definition of the proce-
dure pairwise(w, 1), |wiy1| < |w;|/2. Tt follows that
Step 2 is repeated at most logn time with |w| = n.
By Lemma 6, at the ith iteration, A2 find the longest
substring w; of w;_; such that w; 1 = lw;r and
w; € {a;_1b;_1,b;_1a; 1}T, where a; | and b; ; are
nonterminals added at the (i — 1)th iteration. Thus,
the number of rules added to P in whole the itera-
tions of Step 2 is at most 2logn.

At each iteration of Step 2, two strings [ and r are
added to sy and sp. Again, by Lemma 6, |I|, |r| < 2.
Thus, the length of the string s; wse at Step 3 is
at most 4logn + 1, and the number of rules added
in Step 3 is at most 4logn. Therefore, the total
number of rules is at most 6 logn and by Lemma 1,
the algorithm A2 is a 6-approximation algorithm. O

5 Conclusion

Text compression is as fertile an area for research
now as it was 50 years ago when computing resources
were scarce.
on grammar transform attracts special concerns. In
this scheme, a given text string is converted into a
context-free grammar that derives strictly the string
and then encoded. Such a grammar is called an ad-
missible grammar. In this paper, we have proved
the NP-hardness of the minimization problem for
the class of admissible grammars in Chomsky nor-
mal form. Unfortunately, the intractability of the
problem for general admissible grammars remains an
open problem. The two approximation algorithms
presented in this paper are limited to the case of a
binary alphabet. The interesting task for further re-
search is to develop an approximation algorithm for
a general alphabet.

Recently, compression scheme based

Kida et al. [4] introduced a more general frame-
work than admissible grammars, called collage sys-
tems, in which the repetition and the affix trunca-
tion operations for strings are introduced in addition



problem of string matching for text strings described
in terms of collage system, but they did not discuss
the complexity of computing a collage system that
represents a given text string. To analyze the com-
plexity of the minimization problem for collage sys-
tems will be future work.
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