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Abstract

This paper studies the learning complexity of classes of structured patterns for

HTML/ XML-trees in the query learning framework of Angluin. We present poly-

nomial time learning algorithms for ordered gapped tree patterns, OGT, and ordered

gapped forests, OGF, under the into-matching semantics using equivalence queries

and subset queries. As a corollary, the learnability with equivalence and mem-

bership queries is also presented. This work extends the recent results on the

query learning for ordered forests under onto-matching semantics by Arimura et

al. (1997), for unordered forests under into-matching semantics by Amoth, Cull,

Tadepalli (1999), and for regular string patterns by Matsumoto and Shinohara

(1997).
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Figure 1: An ordered tree and an ordered gapped tree pattern

1 Introduction

Huge amount of electronic data have been available on the Web. They are generated au-

tomatically from databases, exchanged through networks, inspected by human users, or

processed by application programs for further use. These heterogeneous and huge collec-

tions of electronic data and called semi-structured data and attract remarkable attention in

network and database communities. XML [19] is a simple data format for semi-structured

data modeled as ordered node-labeled trees associated with a set of user-de�ned tags.

In this paper, we introduced the class OGT of ordered gapped tree patterns with the

into-match semantics (Fig. 1) by generalizing the class of ordered tree patterns with the

into-match semantics of Amoth, Cull, and Tadepalli [3] and the class of regular pattern

languages [5, 9, 14]. OGT are simpli�cations of tree pattern languages used in recent

query languages for semi-structured data and XML data, such as Lorel [1], UnQL [10],

and XML-QL [20]. We also introduced unordered forests with the into-match semantics

as unions (sets) of patterns in OGT.

Learning of tree patterns dates back to Plotkin [17], where OT with the onto-semantics

considered and shown to be polynomial time learnable from examples or equivalence query

(EQ), alone. Arimura et al. [7] extended Plotkin's algorithm for bounded number of

ordered forests. Page and Frisch [16] showed that a class of OT with background theory

is polynomial time learnable by a similar algorithm. Arimura et al. [8] and Amoth et al. [4]

showed that ordered forests OF with the onto semantics is learnable using EQ and subset

queries (SQs). Frazier and Pitt [11] introduced the notion of learning from entailment,

and presented that a class of description logic called CLASSIC, a class of labeled DAG,

is learnable with EQ and membership queries (MQ), (or entailment membership queries,

EntMQ). Amoth, Cull, and Tadepalli [3] introduced the into-matching semantics and

unordered trees (UT) and unordered forests (UF) are polynomial time learnable with EQ

and SQ in this semantics.

In this paper, we study polynomial time learning of ordered gapped tree patterns

(OGT) and ordered gapped forests (OGF) in the framework of exact learning with equiv-

alence and subset/membership queries. Based on the learning techniques developed by

Amoth et al. [3] and Matsumoto and Shinohara [14], we presented a polynomial time

learning that exactly learns the class OGT with the into-matching semantics using equiv-

alence queries EQ and subset queries SQ when the alphabet size is in�nite. We also show

that the subset queries are replaced with standard membership queries since the alphabet

is in�nite in the above results.

As summary, our results generalize the polynomial time learnability of Amoth et al. [3]

and Matsumoto and Shinohara [14]. It seems that even the polynomial time learnability

of OT, a subclass of OGT, has not been shown so far though our techniques are mostly

from [3, 14]. Our results also provide a theoretical model of information extraction from
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Web and XML [18], and indicates possibility and limitations of such task.

This paper is organized as follows. In Section 3, we briey review basic de�nitions

and results on ordered tree patterns and related concept classes. In Section 3, we present

the polynomial time learning algorithm for ordered gapped trees OGT with EQ and SQ.

In Section 4, we extends our algorithm for ordered gapped forests OGF with EQ and SQ.

In Section 5, we conclude.

2 Preliminaries

Let �, �, and X be mutually disjoint alphabets. We assume that X;� are countable

and � is possibly countable. We refer to elements of � as constant labels, which will be

denoted by a; b; f; g; a

1

; a

2

; : : :, to elements of � as gaps (gap-variables or path-variables),

denoted by �; ; 

1

; 

2

; : : :, and to elements of X as variables (or tree-variables), denoted

by x; y; x

1

; x

2

; : : :. Intuitively, gaps are wildcards on a path or sequence of tags that

matches a sequence of nodes or labels, and variables matches subtrees.

For a set A, we denote by A

�

and A

+

the sets of all possibly empty strings and all

nonempty strings over A. #A denotes the cardinality of A.

2.1 Ordered Tree Patterns In this subsection, we introduce ordered gapped tree

patterns, OGT for short. Throughout this paper, we consider ordered trees (trees, for

short) [2] with nodes labeled by elements of some alphabet. We assume that trees are

nonempty. An ordered trees t is not ranked, i.e., each internal node of tmay have arbitrary

many children independent of its label.

For an ordered tree t, we denote by V

t

the set of all nodes of t, and by jtj the size of

t, the number of all nodes in t. For a tree pattern t and a node v 2 V

t

, `

t

(v) 2 � [ � [X

denotes the label of v in t, and t=v denotes the subtree of t rooted at v. A node is a chain

node if it has exactly one child.

An ordered gapped tree pattern (tree pattern or OGT, for short) is an ordered tree t

with internal node labeled by elements of � [� and with leaves labeled by labels in � or

tree-variables in X. We assume that all gap-variables appearing in t are mutually distinct,

and thus OGT is repetition-free in gap-variables. A variable x in t is repeated if x occurs

in t more than once, and a solitary otherwise. An OGT is a ordered tree pattern (OT or

a tree pattern, for short) [3] if it contains no gap-variables and a constant tree (a tree, for

short) if it contains no tree-variables and no gap-variables. In Fig. 1, we show examples

of a constant tree and an ordered gapped tree pattern, where the dotted lines indicate a

matching from the tree pattern to the constant tree.

We denote by T , OT , OGT the classes of all ordered constant trees over �, all ordered

tree patterns over � [X, and all ordered gapped tree patterns over � [ � [X.

For a tree pattern t, var(t) and gap(t) denote the sets of all tree-variables and all

gap-variables, respectively, appearing in t. For a node v in t, v is a constant node if its

label `

t

(v) is constant in t, a variable node if its label is a tree-variable in t, and a gap

node if its label is a gap-variable.

We next introduce basic operations on trees. Let t be an ordered tree and v be a

node. The delete operation removes v from its parent and the resulting tree is denoted

by delete(t; v). The change operation changes the label `

t

(v) of v to a new label ` and is

denoted by change(t; v; `). The change operation also changes the whole subtree rooted

at v to a new tree s and is denoted by change(t; v; s). The contract operation contracts

the tree t by eliminating a chain node v and directly connects the parent of t and the

unique child of v and is denoted by contr(t; v).
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2.2 Matching semantics We introduce two matching semantics for ordered trees ac-

cording to Amoth et al. [3].

De�nition 1 An ordered tree s matches another ordered tree t in the into-matching

semantics , denoted by s w

i

t, if there exists a one-to-one mapping � : V

s

! V

t

from

the nodes of s into the nodes of t such that (1) The root of s maps to the root of t,

(2) If u maps to v and u is an internal node with k children, then there exists some

1 � j

1

< � � � < j

k

� k such that the i-th child of u maps to the j

i

-th child of v for every

1 � i � k. (3) If u maps to v and u have a constant label `

s

(u) 2 �, then u and v have

the same labels. (4) If u

1

and u

2

are labeled with the same variable `

t

(u

1

) = `

t

(u

2

) 2 X

and u

1

and u

2

map v

1

and v

2

, respectively, then v

1

and v

2

have the identical subtrees. (5)

If u has a gap-variable `

s

(u) 2 � and its parent p(u) maps to v, then u maps to a proper

descendant of v.

The one-to-one mapping � above is called a matching from s to t. If s w

i

t then t is

called an instance of s, or s is a generalization of t. If s w

i

t and t w

i

s then we de�ne

s � t and say s is equivalent to t. If s w

i

t but t 6w

i

s then we de�ne s =

i

t and say t is a

proper instance of s, or s is a proper generalization of t.

Lemma 1 For any s; t 2 OGT , s � t if and only if s and t are identical modulo renaming

of variables on � [X.

Note that when restricted to OT, the matching semantics de�ned above with condi-

tions (1){(4) coincides to the the into-match semantics of [3]. When restricted to OT,

if the range of the mapping � is the set of all nodes of t then we refer to the resulting

semantics as the onto-matching semantics and write s w

o

t, which is a standard matching

semantics in �rst-order logic and term rewriting systems.

1

Intuitively speaking, condition

(5) says that a nonempty path can be substituted for a gap-variable, and this de�nition

relates to the non-erasing substitution semantics for pattern languages [5, 14]. As an

alternative de�nition, we may allow an empty path to be substituted for a gap-variable,

and then this de�nition yeilds the erasing substitution semantics [15]. However, we do

not consider the latter case. If the order among matching positions j

1

; : : : ; j

k

for children

is arbitrary in condition (3) of the above de�nition, then we refer to the resulting tree

patterns as the unordered tree patterns (UT, for short) with the into-matching semantics.

See Amoth et al. [3] for UT.

For an ordered tree pattern t, we de�ne the language of t as the set L

i

(t) consisting of

all ordered constant trees w 2 T that is an instance of t with the into-match semantics:

L

i

(t) = f w 2 T j t into-matches w g:

Note that even if t is a constant tree, the set L

i

(t) may be in�nite with the into-

semantics. We denote by OT and UT the classes of ordered tree patterns and unordered

tree patterns over � [X, respectively. Since we consider only the ordered tree patterns

with the into-semantics, we may omit the subscript i in w

i

and L

i

(t) if it is clear from

the context.

Lemma 2 For any ordered tree patterns s; t 2 OGT and constant trees u;w 2 T , the

following properties hold.

1. The into-match relation w is reexive and transitive.

1

We can extend the onto-match semantics for OGT by changing the de�nition as that the range of

the mapping � is the set of all but the mapped-gap nodes, where a node is a mapped-gap node if for a

gap-node u and its parent p, it appears on the path between the children of �(p) to �(u).
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2. If s w t, then jsj � jtj

3. If w 2 L(s), then jsj � jwj

4. If s w t, then L(s) � L(t).

5. If � is in�nite, then s w t if and only if L(s) � L(t).

6. If j�j � 2 then, s � t if and only if L(s) = L(t).

The into-matching problem for OGT is the problem to decide if a pattern P into-

matches a tree T . The onto-matching problem for OT is polynomial time solvable [13, 17].

The into or onto-matching problems for the class UT of unordered tree patterns are NP-

complete [3].

Proposition 3 The into-matching problems for OT and thus OGT are NP-complete.

Proof: It is easy to see that the problem belongs to NP. Conversely, we give a log-space

reduction from the one-in-three SAT problem into the into-matching problem for OGT as

follows. Let V = fx

1

; : : : ; x

n

g be the set of Boolean variables and F = fC

1

; : : : ; C

m

g

be an instance CNF. We use alphabets � = fF; V;C

1

; : : : ; C

m

; A; B; 0; 1g and X =

fX

1

; : : : ; X

n

g. For every 1 � i � n, de�ne a pair of an ordered tree and an ordered pattern

by T

v

= V (B

1

(0; 1); : : : ; B

n

(0; 1)) and P

v

= V (B

1

(X

1

); : : : ; B

n

(X

n

)). Then, we know that

if P

v

into-matches T

v

then the value of (X

1

; : : : ;X

n

) corresponds with an assignment in

f0; 1g

n

. For every 1 � j � m, let C

j

= (L

i

1

^L

i

2

^L

i

3

) be the j-th clause and, for every k =

1; 2; 3 de�ne 1

i

k

and 0

i

k

2 f0; 1g be the assignments of 0 or 1 to variableX

i

k

satisfying and

falsifying L

i

k

, resp. Then, we de�ne T

cj

= C

j

(A(1

i

1

; 0

i

2

; 0

i

3

); A(0

i

1

; 1

i

2

; 0

i

3

); A(0

i

1

; 0

i

2

; 1

i

3

))

and P

cj

= C

j

(A(X

i

1

; X

i

2

;X

i

3

)). Let (T; P ) be the instance of the into-matching problem

as the pair of the tree T = F (T

v

; T

c1

; : : : ; T

cm

) and the pattern P = F (P

v

; P

c1

; : : : ; P

cm

).

It is not hard to see that (b

1

; : : : ; b

n

) 2 f0; 1g

n

is an yes-instance of F in one-in-three SAT

if and only if P into-matches T by a tree-substitution � = f (X

i

:= b

i

) j i = 1; : : : ; n g.

This completes the proof.

2.3 Learning model As a learning model, we use the exact learning model of An-

gluin [6], where a learning algorithm accesses the information on the target concept t

�

by using the following queries. Let t

�

be a target hypothesis. An equivalence query for

t

�

(EQ) is to propose any tree pattern t 2 OGT and denoted by EQ(t). The answer is

yes if L(t) = L(t

�

). Otherwise, a counterexample w 2 (L(t

�

) � L(t)) [ (L(t) � L(t

�

)) is

returned. A counterexample w is positive if w 2 L(t

�

) and negative otherwise. A subset

query (SQ), denoted by SQ(t), is to propose any tree pattern t 2 OFT , and receives as

the answer yes if L(t) � L(t

�

) and no otherwise. A membership query (MQ), denoted

by MQ(w), is to propose any constant tree w 2 T , and receives as the answer yes if

w 2 L(t

�

) and no otherwise. An entailment membership query (EntMQ), denoted by

EntMQ(t), is to propose any tree pattern t 2 OGT , and receives as the answer yes if

t v t

�

and no otherwise.

The goal of an exact learning algorithm A is exact identi�cation of the target hy-

pothesis t

�

using making equivalence and membership queries for t

�

. A must halt and

output a hypothesis t 2 H that is equivalent to t

�

, i.e., L(t) = L(t

�

), and, at any stage in

learning, the running time of A must be bounded by a polynomial in the size of t

�

and

of the longest counterexample returned by equivalence queries so far. Unfortunately, MQ

is NP-complete for our class OGT with the into-match semantics as seen in the previous

section, while EQ is easily decidable.
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Algorithm LEARN-INTO-OGT

Given: Oracles for equivalence queries EQ and subset queries SQ with target t

�

.

Output: An ordered gapped tree pattern t equivalent to t

�

.

if (EQ(?) = yes) then return ?;

else let t be a counterexample returned by EQ;

repeat

t := Prune(t);

t := Shrink(t);

t := Partition(t);

until t does not change in the loop;

return t;

Figure 2: A learning algorithm for OGT with the into-match semantics using EQ and SQ

3 Learning Ordered Gapped Tree Patterns

In this section, we present an e�cient algorithm for learning ordered gapped tree patterns

and using equivalence and subset queries. Then in the next section, we extend it to ordered

gapped forests.

3.1 Outline of the algorithm In Fig. 2, we show a learning algorithm LEARN-

INTO-OGT for the class OGT with the into-semantics using EQ and SQ. Let � be an

in�nite alphabet and t

�

2 OGT be a target ordered tree pattern. We assume a special

tree ?, the bottom, such that t = ? for every t 2 OGT . For every n � 0, we denote by

t

n

the hypothesis produced in the n-th stage (the n-the execution of the repeat loop).

The algorithm LEARN-INTO-OGT �rst receives a positive instance t by making the

equivalence query EQ(?). Then, the algorithm successively generalizes this example

t

0

= t, called instance tree, of the target by applying a set of generalization operations:

pruning a constant node, changing a constant node to a variable node or a gap node,

contracting an edge, simultaneously changing the subtrees, and splitting a set of identical

variables into distinct variables, which are originally developed by Amoth et al. [3] for

unordered patterns and by Matsumoto and Shinohara [14] for repetition-free pattern

languages.

These operations are designed to produce a pattern properly general than the original.

Thus, we use subset queries to test if the resulting pattern is still an instance of t

�

. Hence,

the algorithm produces strictly increasing sequence t

0

= t < t

1

< � � � t

n�1

< t

n

< � � � (n �

0) of the hypotheses limiting to the target tree pattern t

�

.

3.2 Generalization of ordered tree patterns In the algorithm LEARN-INTO-

OGT, all subprocedures Prune, Shrink, and Partition apply a generalization operation

to the current hypothesis t

n

and update the current hypothesis with the modi�ed tree

only if it is still an instance of the target t

�

. Thus, it is ensured that t

n

v t

�

for ever

n � 0.

Suppose that t v t

�

holds with a matching � from t

�

to t. (1) A node v in t is

constrained by constant w.r.t � if a constant node u maps to v. (2) A node v in t is

constrained by variable w.r.t � if a variable-node u maps to an ancestor of v. (3) A

node v in t is constrained by gap w.r.t � if a gap-node u maps to a (possibly non-proper)

descendant of v and the parent p of v, if exists, maps to a proper ancestor of v. That is, v

is on the path in t from the children of �(p) to �(v). (4) A node v is constrained w.r.t. �

if it is constrained by either a constant, a variable, or a gap. A node v is free if it is not
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constrained.

The next lemma say that if the matching is strict, i.e., t

n

< t

�

, then there is an

evidence or an excess in t that can be eliminated or changed by a learning algorithm to

generalize t. We say that a node v in t can be generalized by some operation on t if the

resulting tree t

0

satis�es t < t

0

v t

�

.

Lemma 4 If t

�

= t then for a matching � from t

�

to t, one of (1) { (5) below holds:

(1) There is a free node in t w.r.t. �. In this case, any free node v in t w.r.t. � can be

eliminated to generalize t.

(2) There is a constant node v in t such that there is a solitary variable node in t

�

that

maps v w.r.t. �. In this case, all but root nodes in the subtree t=v can be eliminated

to generalize t. The root node can be changed to a new variable x 62 t.

(3) There are constant nodes with the identical subtrees in t such that there are the occur-

rences of a repeated variable in t that map into these constants w.r.t. �. That is, the

set of these constants includes �(O

t�

(x)) for some repeated variable x 2 var(t

�

). A

subset (possibly containing all) of these subtrees can be simultaneously changed to the

identical copies of a new variable to generalize t.

(4) There are variable nodes labeled with the identical variables in t such that there are the

occurrences of more than one repeated variables x

1

; : : : ; x

k

(k � 2) in t that map into

these variables w.r.t. �. That is, the set of these variables includes �([

i

O

t�

(x

i

)). A

proper subset of these variables can be simultaneously changed to the identical copies

of a new variable to generalize t.

(5) There is a node v in t constrained by a gap node u in t

�

. If the gap node maps to

the node v then the node v must be a constant node. In this case, any gap-constrained

node v other than the image �(u) of the gap node itself can be eliminated to generalize

t, and the node �(u) can be generalized by changing to a new gap-variable.

Proof: Let � be any matching from t

�

to t. Suppose to contradict that none of (1) { (4)

above does not hold for �. From the condition (1) { (3), we know that � is a matching

onto V

t

, and thus V

t

and V

t�

have the same number of nodes and are isomorphic. Thus,

the inverse �

�1

is also total mapping on V

t�

. Again by condition (2), any solitary node

in t

�

maps to a variable node in t. By condition (3), there is no repeated variable in t

�

that maps to non-variable nodes in t. From condition (4), distinct variables in t

�

map to

distinct variables in t. Combining these observations, the inverse �

�1

is a matching from

t to t

�

, and thus, we have t � t

�

. Since this contradicts the assumption, we have one of

(1) { (4) above holds for �. The proofs on the correctness of the generalization operations

are straightforward.

3.3 The pruning algorithm The procedure Prune in Fig. 3 handles case (1) and case

(2) of Lemma 4 by locally modifying a leaf of t. This pruning algorithm is a descendant

of the procedure Prune in Frazier and Pitt [11] to learn description logic and extensively

used by Amoth et al. [3]. By property (4) of Lemma 2, we can replace the test for the

matching relation t v t

�

with the test for the containment L(t) � L(t

�

) using SQ due to

the assumption of an in�nite alphabet �.

Lemma 5 If an instance t of target t

�

satis�es either case (1) or case (2) of Lemma 4,

then the algorithm Prune(t) computes a tree pattern s such that t < s v t

�

in O(n) time

using O(n) SQ, where n is the size of the initial counterexample given by EQ.
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Procedure Prune(t)

repeat

for each leaf v of t with any label do

if (SQ(delete(t; v)) = yes) then

t := delete(t; v);

continue the loop;

for each leaf v of t with constant label

do

let x 62 var(t) be a new variable;

if (SQ(change(t; v; x)) = yes) then

t := change(t; v; x);

continue the loop;

until t does not change in the loop;

return t;

Figure 3: The pruning algorithm

Procedure Shrink(t)

repeat

for each chain node v of t with any label do

if (SQ(contr(t; v)) = yes) then

t := contr(t; v);

continue the loop;

for each chain node v of t with constant label

do

let � 62 gap(t) be a new gap variable;

if (SQ(change(t; v; �)) = yes) then

t := change(t; v; �);

continue the loop;

until t does not change in the loop;

return t;

Figure 4: The shrinking algorithm
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a  z  a  z  a  z  a  z  a  z  

x      y      x      y      y  

x      y      x      y      y  

a  b

f

a      a     a     a     a 

a  b
f

pattern tree

instance tree (3) delete one z

(1) initial state (2) delete one a

(4) delete excess nodes

Figure 5: An example computation of the partition algorithm

3.4 The shrinking algorithm The shrinking algorithm in Fig. 4 handles case (5) of

Lemma 4 by locally modifying a label of an internal node of t. This shrinking algorithm is

introduced by Matsumoto and Shinohara [14] to learn the class of regular (or repetition-

free) pattern languages.

Suppose that there is a sequence of nodes in t that are all constrained by a gap node in

t

�

w.r.t. some matching �. Then, these nodes form a path in t where the gap node maps

to the bottom of the path. Unfortunately, some nodes on this path may have side branch

and thus cannot be eliminated by the shrinking algorithm. However, we can remove these

side branches by applying the pruning algorithm �rst since any gap node is a chain node.

Hence, applying case (5) of Lemma 4, we know that we can eliminate all but bottom

nodes of this path. For bottom node, if it is instantiated to a constant then we generalize

this node by changing to a new gap variable.

Lemma 6 If an instance t of target t

�

satis�es case (5) of Lemma 4, then the algorithm

Shrink(t) computes a tree pattern s such that t < s v t

�

in O(n) time using O(n) SQ,

where n is the size of the initial counterexample given by EQ.

3.5 The partitioning algorithm Handling case (3) and case (4) is more di�cult

than handling case (1) and case (2) because we have to simultaneously generalize a set of

subtrees or variables generated by repeated variables. It is not su�cient to locally modify

one by one.

To overcome this problem, Amoth, Cull, and Tadepalli [3] developed an elegant par-
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Procedure Partition(t)

/* Simultaneously changing a copies of the same subtrees same new variables. */

for each distinct subtree s of t do begin

S

s

:= O

t

(s) and k := jS

s

j; let x 62 var(t) be a new variable;

for each v 2 S

s

do

create a new node u labeled with a copy of x;

attach u to the parent of v as the adjacent right sibling of v;

S

x

:= O

t

(x) and S := S

s

[ S

x

;

while (jSj > k) do begin

if there is some v 2 S \ S

s

such that SQ(delete(t; v) = yes) then

t := delete(t; v); S := Snfvg;

else if there is some v 2 S \ S

x

such that SQ(delete(t; v) = yes) then

t := delete(t; v); S := Snfvg;

if (; � (S \ S

x

) � S) then break the for-loop; (*1)

if (S = S

x

and s is not a variable) then break the for-loop; (*2)

end for;

return t;

Figure 6: The partitioning algorithm

tition technique to generalize repeated variables in unordered trees and forests. In Fig. 6,

we show the subprocedure Partition based on the partition algorithm of Amoth et al.. A

small di�erence between our procedure and theirs is that we cannot do the greedy search

in the elimination steps due to the order restriction of OGT.

Let us explain the algorithm Partition with an example in Fig. 5. In the left of the

�gure, we have a pattern tree t

�

= f(a(x; y); b(x; y; y)) with variables x and y and an

instance tree t = f(a(a; a); b(a; a; a)). Suppose that the pruning procedure is already

applied to the instance tree so that jtj = jt

�

j. Let �

0

be the original matching that maps

all �ve variables in t

�

to �ve constants a.

First, the partition algorithm inserts the copies of new variable, say z, at the right to

the occurrences of a constant a. At this point, the original matching �

0

correctly maps

(1). Next, the algorithm �rst tries to delete one of the old leaves labeled with a (2), and

then tries to delete one of the new leaves labeled with z (3). If the set of the variables

contains at least two distinct variables, both of the above deletion steps succeed. At this

point of (3), we have four a's and four z's, while we have �ve variables (two x's and

three y's). Therefore, the maching in (3) splits the variables into two groups. Finally,

the algorithm eliminates all the excess leaves to which no variable nodes map by deleting

them one by one. This can be executed until exactly �ve nodes survive (4).

In this way, Partition either changes constants to variables (case (*1)) or splits the

copies of the same variables into two groups (case (*2)). These conditions are checked

at line (*1) and (*2) of Fig. 6. If none of (*1) and (*2) is succeeded then the algorithm

continues the search. Hence, Partition strictly generalizes the hypothesis tree t if it meets

conditions (3) or (4).

Lemma 7 If an instance t of target t

�

satis�es either case (3) or case (4) of Lemma 4,

then the algorithm Partition(t) computes a tree pattern s such that t < s v t

�

in O(n

2

)

time using O(n) SQ, where n is the size of the initial counterexample given by EQ.

3.6 Analysis In Fig. 2, let t

0

2 T be the initial positive instance returned by EQ, and

for every n � 0, let t

n

be the hypotheses generated in the n-th execution of the repeat

8



loop.

Lemma 8 For every n � 0, both of t

n�1

< t

n

and t

n

v t

�

hold.

Proof: The lemma immediately follows from Lemma 5, Lemma 6 and Lemma 7.

We introduce a measure size of the complexity of a tree pattern. For a tree pattern

t, we de�ne the size complexity by size(t) = 2� jtj � (#var(t) + #gap(t)).

2

Obviously,

0 � size(t) � jtj holds.

Lemma 9 For any OGT s; t, if s < t then size(s) > size(t) holds.

Theorem 10 Let � be an in�nite alphabet. The algorithm LEARN-INTO-OGT exactly

learns any ordered gapped tree pattern in OGT with the into-match semantics in time

O(n

3

) using O(1) EQ and O(n

3

) SQ, where n is the size of the initial counterexample

given by EQ.

Proof: By construction, the algorithm LEARN-INTO-OGT correctly identi�es the tar-

get tree pattern t

�

when it terminates. Thus, it su�ces to show the termination of the

algorithm. Combining Lemma 8 and Lemma 9, we know that , size(t

n�1

) > size(t

n

)

holds for every n � 0. This implies that the repeat loop of the algorithm can be executed

at most O(n) times. Thus, the running time and the number of queries made can be

derived from Lemma 5, Lemma 6 and Lemma 7.

Corollary 11 The class OGT is polynomial time learnable in the following models.

{ Exact learning using EQ and MQ when � with in�nite alphabet.

{ Exact learning using EQ and EntMQ with �nite alphabet.

{ Exact learning using one positive example and MQ with in�nite alphabet.

The proof is by substitution of new constants and dovetailing. It is almost same as

the corresponding proofs in Amoth, Cull, and Tadepalli [3] and omitted here.

4 Extension for ordered gapped forests

An ordered gapped forest (OGF, for short) is a �nite set H = ft

1

; : : : ; t

k

g (k � 0) of

ordered gapped tree patterns in OGT . Forests of ordered tree patterns with the onto-

semantics are called unions of tree patterns in [8]. For an ordered gapped forest H, we

de�ne the language of H with the into-semantics as the union L(H) = [

t2H

L(t) of the

languages de�ned by its members.

Lemma 12 Let � be an in�nite alphabet. For any ordered gapped forests P;Q 2 OGF ,

L(P ) � L(Q) if and only if for every q 2 Q there exists some p 2 P such that p w q.

Proof: We give a sketch of the proof. Suppose we are given P and let �(P ) be the set of

all labels appearing in P . We construct an instance s of some tree gapped pattern q 2 Q

by substituting mutually distinct constants from �n�(P ) for the tree variables and gap

variables in q. Clearly s 2 L(P ). Since every substituted symbols do not appear in P , if

there is any matching � from some pattern p 2 P to s then every constant node maps to

the nodes with original labels in q. Hence, the result follows.

2

For OT with the into-match semantics, the factor 2 of the tree size in this de�nition is necessary to

handle the case where a node with a solitary variable is deleted; For OT with the onto-match semantics,

this case cannot occur, and thus the factor can be 1 as in Plotkin [17].
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Algorithm LEARN-INTO-OGF

Given: Oracles for EQ and SQ for the target forest T

�

.

Output: An ordered gapped forest t equivalent to t

�

.

H := ;;

while (EQ(H) = no) do

let t be a counterexample returned by EQ;

run the algorithm LEARN-INTO-OGT of Fig. 2

with t as the initial positive counterexample and with SQ for T

�

.

let s be the tree pattern returned by LEARN-INTO-OGT.

H := H [ fsg;

end while;

return H;

Figure 7: A learning algorithm for OGF with the into-match semantics using EQ and SQ

Theorem 13 Let � be an in�nite alphabet. The algorithm LEARN-INTO-OGF of Fig. 7

exactly learns any ordered gapped forests T

�

in OGF with the into-match semantics in time

O(mn

3

) using O(m) EQ and O(mn

3

) SQ, where m is the cardinality of T

�

and n is the

size of the initial counterexample given by EQ.

Proof: In the initial stage, the algorithm received a positive instance of t

�

since L(;) =

;. By induction on the number of stages, we can show that the example given to the

subroutine LEARN-INTO-OGT is always positive. Let t

0

and t be the initial example to

and hypothesis maintained by the subroutine. We will show that h 6w t for any h 2 H

and thus the subroutine can correctly simulate the subset query for L(T

�

)nL(H) using

SQ for L(T

�

), where H is the current forest in the main algorithm. Suppose contrary that

h w t for some h 2 H. Since t w t

0

by Lemma 8, this means h w t

0

and thus t

0

2 L(H).

This contradicts the assumption, and we showed the claim. For any counterexample t

0

to SQ(H), t

0

2 L(T

�

)nL(H), and thus there is some t

�

2 T

�

such that t

�

w t

0

with some

matching �. Based on the existence of �, the subroutine eventually identi�es one of the

t

�

such that t

�

w t

0

. Since the main algorithm identify at least one member of the target

forest T

�

in each execution of its while loop, the while loop of the main algorithm can be

executed at most m times. This completes the proof.

5 Conclusion

In this paper, we have presented e�cient learning algorithms for the class OGT of ordered

gapped tree patterns and the class OGF of ordered forests, sets of trees, with the same

semantics using EQ and SQ. The results of this paper depend on the assumption of

in�nite alphabet. Hence, it is a future problem to investigate the learnability of the class

of bounded forests, sets of at most k OGTs, with a �nite alphabet. Connection to the

learnability of pattern languages [5, 15] or �rst-order logic [12] is another future problem.
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