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Abstract

A new data model for filtering semi-structured texts is presented.
Given positive and negative examples of HTML pages labeled by a la-
belling function, the HTML pages are divided into a set of paths using
the XML parser. A path is a sequence of element nodes and text nodes
such that a text node appears in only the tail of the path. The labels of
an element node and a text node are called a tag and a text, respectively.
The goal of a mining algorithm is to find an interesting pattern, called
association path, which is a pair of a tag-sequence ¢ and a word-sequence
w represented by the word-association pattern [1]. An association path
(t,w) agrees with a labelling function on a path p if ¢ is a subsequence of
the tag-sequence of p and w matches with the text of p iff p is in a pos-
itive example. The importance of such an associate path a is measured
by the agreement of a labelling function on given data, i.e., the number
of paths on which a agrees with the labelling function. We present a
mining algorithm for this problem and show the efficiency of this model
by experiments.
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1 Introduction

In the information extraction, it is one of the central problems in Web mining
to detect the occurrences or the regions of useful texts. In case of the Web data,
this problem is particularly difficult because we can not represent a rich logical
structure by the limited tags of the HTML. The framework of wrapper induction
introduced by Kushmerick [13] is a new approach to handle this difficulty. The
most interesting result of his study is to show the effectiveness and efficiency
of simple wrappers with string delimiters in the information extraction tasks.
Together with his work, we can find other extracting models, for example, in [8
9, 10, 11, 15, 17].

The target class, called HTML pages, of the wrapper induction model is
restricted such that a page is defined by a finite repetition of a sequence of
attributes. The attributes are the data which an algorithm has to extract. In
a learning model, a learning algorithm takes an input of labeled examples such
that the labels indicate whether they are positive data or megative data. The
strategy is useful to learn a concept for the wrapper class.

However, in case that a concept class is hard to learn by a small number of
examples, the model may not be effective. This difficulty is critical in the point
of implementation since the labelling examples are actually made by human
inspection. Thus, we would like to present a mining model to decide which
potion of a given data is important and an automatic process to construct a
large labelling sample.

The aim of this paper is to find rules for filtering semi-structured texts
according to users interests. An HTML/XML file can be considered as an
ordered labeled tree. We assume that each node is either an element node and
a text node. Each node has two types of labels called the name and value. An
element node corresponds to a tag. The name of the node is the tag name
like <HTML>, <br>, and <a>, and the value of the node is empty. A text node
corresponds to a potion of a plain text in an HTML and the name is the reserved
string §Text, respectively. The value of a text node is the text.

A filtering rule is a sequence s = {(ay, ..., ax, 3), where «; is a tag name, (3
is a word-association pattern [1] which is a string consisting of several words and
the wild card *. A word-association pattern matches with a string if there is a
possible substitution for all x. Given the s and a semi-structured text, using an
XML parser, we can easily construct the tree structure and decompose the tree
into the set P of paths. Each path contains at most one text node in the tail.
The semantics of the filtering rule s for P is defined as follows. For each p € P,
s matches with p if ay,...,ay is a subsequence of the sequence of tag names
of p and the tail of p is a text node such that 8 matches with the value of the
node.

Such a filtering rule is considered as a simple decision tree to extract texts
from paths in HTML trees. Each «; represents a test on a node. Unless the
test is failed, we continue the test to the next test ;4. Finally, the value of
the text node is extracted according to the pattern 8. In other words, this rule
is a pair of tag patterns and association patterns {(«a, 3), where a tag pattern is a
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sequence a = (@, ...,ax) of tag names such that these tags frequently appear
in positive examples together with the association pattern. Such a filtering rule
is called an association path in this paper. We can use this notion for a measure
to decide the importance of keyword in a text. We show the efficiency of the
association paths by experiments.

This paper is organized as follows. In Section 2, we define the data model
for HTML pages, HTML trees, and path expressions. In Section 3, we review
the definition of the word-association pattern in [1] and formulate the mining
problem, called ASSOCIATION PATH problem, of this paper. Next we describe
a mining algorithm which finds an association path for given a large collection
of HTML texts. In Section 4, we show several experimental results. In the first
experiment, the set of positive examples is a collection of HTML texts contain-
ing a keyword “TSP” and the set of negatives is that containing “NP”. These
keywords mean the travelling sealsman problem and NP-optimization problem
on the computational complexity theory, respectively. The aim is to find an
association path to characterize the notion TSP comparing to NP. In this ex-
periment, the algorithm found some interesting association paths. For the next
experiment, we choose the keyword “DNA” for positive examples. Compared
to the first result, the algorithm found few interesting paths. In Section 5, we
conclude this study.

2 The Data Model

In this section, we introduce the data model considered in this paper. First, we
begin with the notations used in this paper. IN denotes the set of all nonnegative
integers. An alphabet ¥ is a set of finite symbols. A finite sequence (ay, ..., a,)
of elements in ¥ is called string and it is denoted by w = a; - - a, for short.
The empty string of length zero is €. The set of all strings is denoted by ¥* and
let ¥+ = ¥*\ {¢}. For string w, if w = a3y, then the strings o and 3 are called
a prefix and a (suffiz) of w, respectively. For a string s, we denote by s[i] with
1 < i < |s| the i-th symbol of s, where |s| is the length of s.

For an HTML file, the HTML trees are the ordered node-labeled trees defined
as follows. For each tree T, the set of all nodes of T is a finite subset of IN, where
the 0 is the root. A node is called a leaf if it has no child and otherwise called
an internal node. If nodes n,m € IN have the same parent, then n and m are
siblings. A sequence (nq,...,ny) of nodes of T is called a path if n is the root
and n; is the parent of n;;q foralli =1,...,k— 1. For a path p = (n1,...,ng),
the number k is called the length of p and the node ny is called the tail of p.

With each node n, the pair NL(n) = (N(n),V(n)), called the node label of
n, is attached, where N(n) and V' (n) are strings called the node name and node
value, respectively. If N(n) € ¥ and V(n) = ¢, then the node n is called the
element node and the string N(n) is called the tag. If N(n) = §Text for the
reserved string §Text and V(n) € X7, then n is called the text node and the
V(n) called the text value. We assume that every node n € IN is categorized to
the element node or text node.



If a page P contains a beginning tag of the form <tag> and P contains no
ending tag corresponding to it. Then, the tag <tag> is called an empty tag in
P. If a page P contains a string of the form #; - w - ¢ such that 1,1, are either
beginning or ending tags and w is a string not containing any tag, then the
string w is called a text in P.

An HTML file is called a page. A page P corresponds to an ordered labeled
tree. For the simplicity, we assume that the P contains no comments, which is
any string beginning the string <!- and ending the string ->.

Definition 1 For a page P, we define the HTML tree P, recursively as follows.

1. If P contains an empty tag of the form <tag>, then P, has the element
node n such that it is a leaf of P, N(n) = tag, and V(n) = ¢.

2. If P contains a text w, then P; has the text node n such that it is a leaf
P, N(n) = fText, V(n) = w.

3. If P contains a string of the form <tag>s</tag> for a string s € X*,
then P, has the subtree n(nq,...,nt), where N(n) = tag, V(n) = € and
ni,...,n; are the roots of the trees ¢, ..., #; which are obtained from the
w by recursively applying the above 1, 2 and 3.

Next we define the functions to get the node names, node values, and HTML
attributes from given nodes and HTML trees defined above. These functions
are useful to explain the algorithms in the next section. These functions return
the values indicated below and return null if such values do not exist.

e Parent(n): The parent of the node n € IN.
e ChildNodes(n): The sequence of all children of n.
e Name(n): The node name N (n) of n.

e Value(n): The concatenation V(ny)---V(nyg) of all values of the leaves
ni,...,n; of the subtree rooted at n in the left-to-right order.

Recall that V' (n) is not empty only if n is text node. Thus, Value(n) is equal
to the concatenation of values of all text nodes below n. Let P, be an HTML
tree for a page P and let N = {0,...,n} be the set of nodes in P;. For nodes
i,j € N, if there is a sequence p; ; = (i1, ..., ) of nodes in N such that i; =,
ir = j, and iy = Parent(i¢y1) for all 1 < ¢ < k — 1, then the p; ; is called the
path from ¢ to j. If ¢ is the root, then p; ; is denoted by p; for short. For each
path p = (i1,...,ix) of P;, we also define the following useful notations.

e Name(p): The sequence (Name(iy), ..., Name(iy)).

3

e Value(p): V(ny).



Definition 2 Let P, be an HTML tree over the set N of nodes. Let p =
(i1,..-,in) be a path of P, and let Name; = {Name(n) | n € N}. A sequence
a = (namey, ..., namey), (name; € Name;) is called a path expression over
Name;. It is called that the a matches with the p if there exists a subsequence
J1s- -, Jm of p such that Name(j;) = name, for all 1 < £ < m.
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In the next section, we define a measure of the matching of the path expres-
sions with the paths of HTML trees. We also define the finding problem of a
path expression to maximize the measure.

3 Mining HTML texts

In this section we first define the problem to find an expression, called an as-
sociation pattern, for filtering semistructured texts. The pattern is a pair of a
word-association pattern and a path expression. The semantics of the patterns
is defined by the matching semantics of the word-association patterns and the
path expressions.

3.1 The problem

A word-association pattern [1] m over ¥ is a pair m# = (p1,...,pa; k) of a finite
sequence of strings in ¥* and a parameter k called prozimity which is either a
nonnegative integer or infinity. A word-association pattern m matches a string
s € ¥* if there exists a sequence i1,...,iq of integers such that every p; in =
occurs in s at the position i; and 0 < ij4q —i; < kforall 1 <j<d—1. The
notion (d, k)-pattern refers to a d-word k-proximity word-association pattern
(p1,- -, pas k).

Let S = {s1,...,5m} be a finite set of strings ¥* and let ¢ be a labeling
function ¢ : S — {0,1}. Then, for a string s € S, we say that a word-association
pattern 7 agrees with ¢ on s if 7 matches s iff ¥(s) = 1.

Given (X,S5,1,d, k) of an alphabet X, a finite set S C X* of strings, a
labeling function ¢ : S — {0,1}, and positive integers d and k, the problem
MaX AGREEMENT BY (d, k)-PATTERN [1] is to find a (d, k)-pattern = such that
it maximizes the agreement of 1, i.e., the number of strings in S on which =
agrees with ).

Definition 3 An association path is an expression of the form pe#x, where the
a is a path expression such that its tail is §7ext, the 7 is a word-association
pattern, and the # is the special symbol not belonging to any a and 7. Let
p = a#m be an association pattern and p’ be a path in a tree. It is said that
the p matches the p' if a matches p' and 7 matches Value(p').

For a finite set T of HTML trees, let

Textr = {(Name(p), Value(p)) | p is a path of t € T', Value(p) # €}



The intuitive meaning of p appearing in Texty is a path p of an HTML tree
such that the tail of p is a text node. Let Namey be the set of Name(p) and
let Valuer be the set of Value(p) in Textr.

Definition 4 ASSOCIATION PATH

An instance is (X, Textr,v,d, k) of an alphabet ¥, a set Textr of pairs for

a finite set T' of HTML trees, a labeling function ¢ : Valuer — {0,1}, and
positive integers d,k. A solution is an association path a#w. The string

7 is a (d, k)-pattern for a solution of the max agreement problem for input

(2, Valuer,,d, k). The string « is a (d, k)-pattern for a solution of the max
agreement problem for input (X, Namer, ', d, k), where ¢ is defined by ' (Name(p)) =
1 iff ¢»(Value(p)) = 1. The goal of the problem is to maximize the sum of the
agreements of ¢ and ¢’ over all association paths a#m.

3.2 The algorithm

To find association paths, the data of HTML texts are transformed to path
expressions as follows. Given a large set S of HTML texts, it is divided into
two disjoint sets S; and Ss by a labeling function. The labeling function is
considered as a keyword or phrase by a user, i.e., any text in S is labeled by 1
if it contains the keyword and labeled by 0 otherwise. Next all texts in S; and
Sy are parsed to HTML trees and let Pos be the set all paths from S; and Neg
be the set of all paths from Sy. Figure 1 shows the process of our algorithm
briefly.

Figure 1: The process of mining algorithm.
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Then, the mining algorithm is described as follows.

Algorithm Path-Find(X, Text, vy, d, k)

/* Input: a set of HTML pages P over ¥, a labeling function v, non negative
integers d, k */

/* Output: a solution of ASSOCIATION PATH for the input*/



1. Let P; be the set of all pages in P labeled by 1 and let P, = P\ P;. For
the set T7 of HTML trees of Py, compute the set Pos of all paths of trees
in P; and the set Neg of all paths of all trees in Ps.

2. Let Pos ={p; |1 <i<m}and Neg={g; |1 <j<n} (m,n>0).
Compute the sets Namep,, = {Name(p) | p € Pos},
Valuep,s = {Value(p) | p € Pos}, Namen., = {Name(q) | ¢ € Neg},
and Valuen.g = {Value(q) | ¢ € Neg}.

3. Find a (d, k)-pattern 7 of the max agreement problem for
(Valuepos, Valueney), and find a (d, k)-pattern o of the max agreement
problem for (Namepos, Nameneg).

4. Output the pattern a#m which maximizes the sum of the agreement of
«a and 7.

We estimate the running time of the Path-Find. This algorithm finds an
association path for only the paths whose tails are the text nodes, i.e., the paths
of the form p = (ny,...,nk), the n; (1 <i <k —1) is an element node and the
ny is a text node. Thus, for such paths p, we regard the mining problem as the
problem to find two phrases « from the strings Name(p) and 8 from the strings
Value(p) for constant parameters d of the number of phrases of texts and k of
the distance of phrases.

If the maximum number of phrases in a pattern is bounded by a constant d
then the max agreement problem for (d, k)-patterns is solvable by Enumerate-
Scan algorithm [19], a modification of a naive generate-and-test algorithm, in
O(n®*!) time and O(n?) scans although it is still too slow to apply real world
problems.

Adopting the framework of optimized pattern discovery, we have developed
an efficient algorithm, called Split- Merge [1], that finds all the optimal patterns
for the class of (d,k)-patterns for various statistical measures including the
classification error and information entropy.

The algorithm quickly searches the hypothesis space using dynamic recon-
struction of the content index, called a suffiz array with combining several
techniques from computational geometry and string algorithms.

We showed that the Split-Merge algorithm runs in almost linear time in
average, more precisely in O(k? 1N (log N)?*!) time using O(k? 1 N) space for
nearly random texts of size N [1]. We also show that the problem to find one
of the best phrase patterns with arbitrarily many strings is MAX SNP-hard [1].
Thus, we see that there is no efficient approximation algorithm with arbitrary
small error for the problem when the number d of phrases is unbounded.



4 Experimental results

In this section, we show the experimental results. The text data is a collection
from the ResearchIndex ! which is a scientific literature digital library. A pos-
itive data is the set Pos of HTML pages containing the keyword “TSP” and
a negative data is the set Neg of HTML pages containing the keyword “NP”.
The set Neg consists of many topics of computational complexity problems and
Pos is concerned with one of the most popular NP-hard problems Travelling
Salesman Problem not properly contained in Neg. The aim of this experiment
is to find an association path which characterizes TSP with NP.

By this experiment on the collection of 8.4MB, the algorithm Path-Find
finds the best 600 patterns at the entropy measure in seconds for d = 2 and three
minutes for d = 3 with £ = 10 words using 200 mega-bytes of main memory on
IBM PC (PentiumlIII 600 MHz, gcc++ on Windows98). The following figure is
the result.

Figure 2: The association paths found in the experiments, which characterize
the Web pages on the TSP problem from these on NP-optimization problm.
The parameters are (2,10) for (d, k), where « is a path and 7 is a phrase.

Rank Association path a#n

5 < i font p body html> # <tsp >
38 < i font p body html> # <for the >
90 < i font p body html> # <the tsp >
171 < i font p body html> # <local search >
213 < i font p body html> # <traveling >
276 < i font p body html> # <tsp and other >
394 < i font p body html> # <euclidean tsp >
455 < i font p body html> # <other geometric problems >

5562 < i > # <approximation schemes for euclidean >

Our system found several interesting association paths which may be difficult
for human user to find by inspection. The phrase “local search” in Rank 171
indicates the local search heuristics for TSP such as [14]. In this path, the
tag <i> and <font> (font style and size) in the left hand side indicates the

Thttp://citeseer.nj.nec.com/



importance of the phrase <local search> in the right hand side. The phrase
“tsp and other” in Rank 276 is a substring of the title of the outstanding paper
written by Arora [2] in 1996 on the approximation algorithm for Euclidean
TSP. The euclidean graph is an important geometric structure to construct an
approzimation algorithm for TSP. These keywords appear in Rank 394, 455,
and 552, respectively.

Finally, we show other experimental results. The positive sample is a set
of HTML pages containing the keyword “DNA” and the negative sample is the
same to above experiment. By this experiment on the collection of 9.3MB,
the algorithm finds the best 600 patterns at the entropy measure in seconds
for d = 2 with £ = 10. The result is shown in Figure 3. Our system found
few of association paths containing interesting keywords like “sequence” “com-
puter” and “molecular”. In this result, several paths containing the ancer tag.
Unfortunately, interesting keywords are not found in such paths.

Figure 3: Other result of the experiments for the DNA from NP-optimization
problem. The parameters are also (2,10) for (d, k), where «a is a path and = is
a phrase.

Rank Association path a#n

23 <a > # <dna >

136 <i font p body html > # <dna sequences >
199 <i font p body html > # <molecular >

360 <i font p body html >
395 <a > # <computation
444 <a body html > # <computing >

# <computer >

\

5 Conclusion

We introduced a new method for mining from HTML texts and present an al-
gorithm to find an association rule which is a pair of association patterns over
tag sequences and text sequences. By experiments on HTML data of scien-
tific literature, the algorithm found interesting association paths from positive
and negative examples on the traveling salesman problem and the other NP
optimization problems.
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