SN KREZZ2MTIER Y R b

Kyushu University Institutional Repository

Extracting partial structures from HTML
documents

Sakamoto, Hiroshi
Department of Informatics, Kyushu University

Arimura, Hiroki
Department of Informatics, Kyushu University

Arikawa, Setsuo
Department of Informatics, Kyushu University

https://hdl. handle. net/2324/3040

HRI1EZR : DOI Technical Report. 181, 2000-11. Department of Informatics, Kyushu University
N—=2 3

HEFIBAMR

Extracting partial structures from HTML documents

Hiroshi Sakamoto, Hiroki Arimura, and Setsuo Arikawa

Department of Informatics, Kyushu University
Hakozaki 6-10-1, Hizashi-ku, Fukuoka-shi 812-8581, Japan
{hiroshi, arim, arikawa}@i.kyushu-u.ac.jp
phone: +82-92-642-2693, fax: +82-92-642-2698

Abstract

The new wrapper model for extractiong text data from
HTML documents is introduced. The Kushmerick’s
wrapper class (Kusshmerick 2000) may be unsuccess-
ful in the case that sufficiently long delimiters are not
found. The wrapper class introduced in this paper par-
tially overcomes this difficulty by using the tree struc-
tures of HTML documents. The learning problem to
learn such a wrapper program from given text is con-
sidered. Moreover, we try to expand our wrapper to
extract a portion of HTML not only text attributes.
keywords: data extraction, wrapper induction, semi-
structured data, learning from examples

Introduction

The HTML documents currently distributed on the
world-wide-web can be regarded as a very large semi-
structured database. These texts are structured by
many tags that have their own special meanings before-
hand. A markup text is expressed by a rooted ordered
tree. The root is the unique node which denotes the
whole document, the other internal nodes are labeled
by tags, and the leaves are labeled by the contents of
the document or the attributes of the tags.

Although computers can not understand the meaning
of languages, they can perform a complicated render-
ing using the structures. Recently, a new markup lan-
guage called XML (Bray, Paoli, and Sperberg-McQueen
1998) are recommended by the World Wide Web Con-
sortium, which are expected to realize more intelligent
information exchange, like update or delete, by remote
operation.

The XML documents are used for data translation or
extraction. For example, an XML document is trans-
lated to an HTML for the browsing or it may be trans-
lated to another XML document in different format for
data exchange. These translations are realized by the
stylesheet language XSLT, which is recommended by
W3C in 1999 (Clark 1999). This language is very pow-
erful because regular expression and recursion are al-
lowed to use, and thus, it is hard to construct an algo-
rithm for generating such languages.

Copyright (© 2000, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

For this purpose, we introduced more restricted
classes for simple translation of semi-structured data
and studied the learnability of these classes (Sakamoto,
Arimura, Arikawa 2000). We considered the problem of
finding a translation rules for given input and output
tree with respect to the classes, and we presented an
effective learning algorithm for the problem. However,
our algorithm depends on the expressiveness of XML
tags. For example, if we want to extract only fam-
ily names from the data containing the texts ”Hiroshi
Sakamoto”, ”Hiroki Arimura”, ”Setsuo Arikawa”, etc.,
then we can do so by using an agreement that family
names must be inserted between a pair of specific tags
like ”Hiroshi <family>Sakamoto</family>”. It is im-
possible to describe such a logical structure in HTML.

On the other hand, Kushmerick introduced a frame-
work for extracting attributes from HTML documents
called wrapper induction (Kusshmerick 2000). Any
plain text rather than tags in an HTML document is
said to be an attribute. The wrapper is a program
to extract such attributes from given documents and
wrapper induction is a framework to learn such pro-
gram from given example. His algorithm additionally
takes the points of strings to be extract. Thus, the
main work of the algorithm is to compute the demimiter
strings common to all i-th attributes. For example, let

us consider the following text.
attribute

—~

sakamoto
arimura</0L>

attribute

There are two attributes to be extracted and the al-
gorithm knows the position of each attribute. Then,
it searches the left and right hand of such attributes
and find the longest common suffix and longest com-
mon preffix of them. In this case, they are the ">
and the <, respectively. By using these delim-
iters, we can extract the same attribute of the form
.. .">attribute<. . ., automatically.

However, as is shown in this example, in case that
some tags contain different tag attributes values (e.g.,
two tags of <a> contain defferent values wwwl and
www2), we can not find sufficiently long suffix or prefix
for delimiters. It follows that undesirable text attribute

may be extracted. Thus, we need a new method for
wrapper induction.

The idea is to construct trees from HTML documents
and extract the common structure to these trees. Any
HTML document is corresponding to an ordered la-
beled tree such that a pair of begin tag <t> and end tag
</t> is an internal node labeled by <t>. Other empty
tags, tag attributes, and text attributes are labels of
leaves. Using this data model, we define the delimiters
to extract text attributes from tree structures, and we
present the algorithm to compute such delimiters from
HTML documents. Give any document P and the posi-
tions of attributes, this algorithm runs in O(n-m) time,
where n is nearly equal to the length of P and m is the
number of types of the attributes (more precisely, n is
the number of nodes of the parsing tree of P).

Finally, we mention the application of such wrap-
per class. One direction of HTML is to grow toward
richer document format. The recommendation HTML
4.0 includes such a new additional features like the
CSS(Cascading Style Sheets). On the other hand, we
focus on the other direction for small information ap-
pliances such as smart phones, smart communicators,
mobile PDAs, and etc. There are several hardware re-
strictions such as small memory, low power CPU, small
or no secondary storage, small display, mono-color, sin-
gle character font, and restricted input method (no
keyboard and mouse). Thus, we need other simple
document format and recently, the Compact HTML is
proposed by (Kamada 1998) which defines a subset of
HTML for small information appliances.

The most hopeful usage of the language is to exist
together with HT'ML, i.e., using HTML documents by
translating to Compact HTML documents as occasion
demands. All tags in Compact HTML is defined in
regular HTMLs, but it is not easy to realize such trans-
lations because the amount of texts is restricted by the
size of a small display. Thus, we must select the impor-
tant attributes from the large texts. However, the usual
wrapper can not extract a portion of all attributes in
a document. Hence, we would study this problem with
the aim of constructing the automatical translate sys-
tem.

Basic Idea

In this section, we briefly explain the notion of wrap-
per induction introduced by Kushmerick (Kusshmer-
ick 2000) and consider the difficult case not covered by
his method. In the next section, we introduce the new
wrapper class in order to overcome the difficulty.

An HTML document is a string over a finite alphabet
3., where ¥ is the ASCII character set. An HTML doc-
ument is defined by the specific tag set and other plain
text. Then, there are two types of attributes for the
problem in this paper, one is the tag attribute and the
other is the text attribute. The tag attribute is the ordi-
nary one which is defined in any HTML tag. For exam-
ple, con-
tains the tag attribute value ” Mailto:hiroshi@i.kyushu-

uw.ac.jp” and contains the tag at-
tribute value ” Arial”.

The text attribute is a string not containing any
tags and appearing between two tags such that
<a>w, where <a> and are tags. For exam-
ples, <h3>H. Sakamoto</h3> contains the text attribute
”H. Sakamoto”. Here, we note that it is not neces-
sary that the <a> and are not beginning and end
tags. For example, if a document contains the string
Kyushu Univ.
, then it contains the
text attribute ”Kyushu Univ.”.

Query language receives some queries and outputs
some HTML documents. Such documents are described
by the repetition of a typical structure. For example,
when we find Web sites by using a search engine, the re-
sulting HTML documents may be described by a format
which consists of three text atrributes which denote the
ranking number of the site, the title of the head, and the
abstract no longer than 100 words in the site, respec-
tively. Such HTML documents are called pages. The
aim of our system is to extract information from pages.

In a page, a sequence of attribute values of the
form (t1,...,tx) is called tuple. Thus, a page can
be described by a set of tuples such that the i-
th tuple consists of the text attributes for the i-th
record in the page. For the simplicity, we denote
any tuple (t1,...,t;) by another description of tuple
({(b1,e1), ..., (bg, ex)), where (b;, ;) is the pair of the be-
gin and end indices of ¢;. Thus, in general, the contents
of text attributes of a page, called label is described by
a set of such tuples as follows.

((b1,1,€1,1)5 -5 (b1j,€1,5), -+ (b1 ks €1,1)),
((bi,1,€i1)s -5 (Digr€ig)s- -y (bik,€ik)),
<<bn715 eﬂ71>7 sy <bn7j, en,j>7 sy <bn,ka en,k>>7

Given a page P and a label L of P, a wrapper W
for (P,L) is a program such that W(P) = L. The
wrapper induction problem is, given a set of examples,
{-..,(P;, Li),...}, to output a wrapper W such that
W(P;) = L; for all i, where P; is the label of L;.

Definition 1 (Kusshmerick 2000) The LR-wrapper is
a sequence of the left and the right delimiters of the
form (¢1,71,..., L, k), where £;,r; € XT.

The procedure execpr takes input an LR-
wrapper and a page P, and it returns the label
{0 {{bm1semi), -, Dmks mk)), - ..+ as follows.

The execpr continues the followings until there are
more occurrences of ¢1 in P. For each (¢;,r;) (1 <i <
k), it finds the first occurrence of ¢; and the first r; after
the ¢;, and it returns the string between the ¢; and 7;
as to the attribute (b, i, €m i), where m is at most the
number of tuples in P.

Example 1 Let us show an example of LR-wrapper
for an HTML documents.

<html>sakamoto <i>hiroshi</i>

arimura <i>hiroki</i>

arikawa <i>setsuo</i></html>

In order to extract the attributes from this doc-
ument, for example, we can find the LR-wrapper
(, <i> </i>). The first left-right delimiters
 and cut the attribute ”Sakamoto” and the sec-
ond delimiters cut the attribute ”Hiroshi”. Thus, the
first tuple is)Sakamoto, Hiroshi). Similarly, the wrap-
per finds the second and third tuples.

Several wrapper classes are defined and the expres-
siveness is studied in (Kusshmerick 2000). The wrapper
classes he introduced are LR, HLRT, OCLR, HOCLRT,
N-LR, and N-HLRT. For example, HLRT is the class in
which the procedure takes additional information (h,t),
where h,t are any indices in P and it excutes the wrap-
per in the part from A to t. The OCLR is similar but
it can takes the information (o, c¢) which indicates the
beginning and the end of each tuple.

The problem in this paper is to extract a portion of
an input HTML. For this purpose, the usal wrapper
classes are not powerful as follows.

e Let t = (t1,...,tx) be a tuple of a page P. We
can not define a wrapper to extract any subsequence
<t¢1, .. .,t¢j> of t.

e Since any HTML document is regarded as a flat text,
the information of tree structure is not used for the
wrapper induction.

Example 2 Let us consider the problem to extract
only the text attributes for email address from the fol-
lowing page P. The algorithm to learn the LR-wrapper
class searches the left hand and right hand of the text
attributes. Then, it find the longest common suffix ">
and the longest common prefix </h3>.

<html><body>

sakamoto

<h2>
www.i.kyushu-u.ac.jp/ hiroshi</h2>

<h3>
hiroshi@i.kyushu-u.ac.jp</h3>

arimura

<h2>
www.i.kyushu-u.ac.jp/ arim</h2>

<h3>
arim@i.kyushu-u.ac.jp</h3>

</body></html>

However, the ("> </h3>) is not correct LR-
wrapper for this document. This LR-wrapper can not
cut the text attributes for email addresses because there
are two occurrences of "> in one tuple of P, one is be-
fore the string www and the other is before the text
attribute for email. Thus, the first delimiter matches
with the first occurrence of ">. Hence, the wrapped
string is the one between the first "> and the occur-
rence of the second delimiter </h3>. This string is
not equal to the required text attribute.

The learning algorithm for LR-wrapper class finds
the longest common suffix/prefix for each i-th text at-
tributes of all tuples in P. However, in general, many
tags have their own tag attributes and these tag at-
tributes are different on each occurrence. In the above
example, all occurrences of <a> contain different tag at-
tributes. Thus, the algorithm can not find sufficiently
long common suffix/prefix. To overcome this difficulty,
we focus on the tree structure of HTML and introduce
the data model for extracting text attributes from tree
structures.

T-wrapper and the algorithm

We denote an HTML is represented by an ordered la-
beled tree such that each tag name, tag attribute, and
text attribute are defined as a label on a node. Thus,
all tag attributes, text attributes, and empty tags are
considered as leaves.

First, we define the method to parse an HTML doc-
ument into a first-order term. Note that a first-order
term is corresponding to a labeled tree in noe-to-one.

Definition 2 An HTML document is corresponding to
an ordered labeled tree over an alphabet consisting of
all tag names, tag attributes, text attributes. The cor-
respondence is defined as follows.

1. Any empty tag <e> is equal to the term (e) which is
a function symbol with arity zero.

2. For each beginning tag <t>, end tag </t>, and a
string w not containing any tag, the string <t>w</t>
is equal to the term (t)(w). If tag attributes by, ..., b,
are defined in <t>, then the term is (¢) (b1, . . ., bn, w).

3. For each beginning tag <t>, end tag </t>, and a
string w, the string <t>w</t> is equal to the term
t)(f(w)), where f(w) is the term recursively de-
fined in the above. Moreover, if tag attributes
b1,...,b, are defined in <t>, then the term is

()(b1, ..., b, f(w)).

Let P, be the term expresstion of a page P defined in
the above. Next, we define the notion of the label L; of
P, corresponding to the label L of P. Since P, equal to
an ordered labeled tree, without lossing generality, we
can identity P, with the tree. Then, let Ny = {0,...,n}
be the set of node of P;, where 0 is the root.

Definition 3 Let (P,L) be a pair of page and
its label and let L = {t1,...,tm}, where t; =
<. . ey <b¢7j, €¢7j>, .. > Then, the label Lt of Pt is defined
as to Ly = {n1,...,nn}, where n; = (..., n;,,...) and
n; ; € Ny such that label(n; ;) in P; is the text attribute
from bi,j to €i,j in P.

Intuitively, n; ; in the above denotes the node num-
ber whose node label corresponds to the text attribute
indicated by the positions b; ; and e; ;. Thus, for a P,
of a page P, the label L; denotes the set of sequence
of such node number to be wrapped. Thus, we next
expand the notion of LR-wrapper to extract such node
labels from P; and introduce the T-wrapper class.

execy (T-wrapper (p1, ..., px), page P;)
pi = (pi1,- - yPigs ;)
m=0
while there are more occurrence of p; 1 in P
m=m-+1
for each p; € {p1,..., 0k}
find a path matches with p; 1 ---p;; on n; in Py
save the label of z;-th child of n; as n,,
return the label {..., (nm1,. .., "m k), ..}

Table 1: The procedure specifies how an T-wrapper is
executed.

Definition 4 The T-wrapper is of the form W =
(p1,...,pK) such that p; = (pin,...,Pij,xi), where all
Di1s---,Pij are node labels and x; is a positive integer.

To explain the semantics of the T-wrapper, we de-
fine some notation for trees. Let T be an ordered la-
beled tree and let {0,...,n} be the set of nodes of
T, where 0 is the root. The label(n;) denotes the
label of the node m;. A path in T is a sequence
of nodes of the form (ni,...,nk) such that n; is a
child of the n;—;. A sequence (w1, ..., wy) of texts
is said to match with the path (ni,...,ng) in T if
(w1, ..., wx) = (label(ny), ..., label(ny)). We also said
that the sequence matches with the path on the node
ny more precisely.

Given a page P, for each p; € {pi1,...,px}, the
procedure first try to find a path which matches with
(Pis---,pij) onn; in Py Next, the procedure extract
the label of the x;-th child of n;. While there are more
tuples not searched, the procedure find the next path.
The procedure is exactly defined in Table 1.

For example, the HTML document P not extracted
by LR-wrapper in Example 2 can be handled by the T-
wrapper W = (<html> <body>, <h3>,<a> 2). The P, is
the tree having the path <html>-<body>-<h3>-<a> and
the last node n of such a path has a child whose label is
an email address. Moreover, such children are exactly
the 2nd child of n. Note that the first child of n is the
tag attribute of the tag <a>. Thus, the T-wrapper can
extract only the email addresses form P;. The model
for extracting text attributes and learning problem of
such wrappers are briefly summarized as follows.

e A page is represented by an ordered labeled tree. T-
wrapper W is a sequence of p; and p; = (g;, z;). The
q; denotes a sequence of some texts and z; is an in-
teger.

e The W finds the first occurrence of a path that

matches with ¢; and extract the label of the next
node. The node is the z;-th children.

e The example given to the learning algorithm is a set
of (P, L), where L,, is the label of the page P,.
The goal of the learning algorithm is to output such
a T-wrapper W such that W(P,) = L,.

We present the algorithm to compute a T-wrapper W
from given pairs (P;, L;) of pages and labels. We assume

procedure Learnp(E = {...,(P,L),...)})
Let N be the set of nodes
Let L = {’IM | n; = <n1-71, .. .,m,k>, N €]\f7 1< < m}
Initialize W = (qu, . . ., qx) such that
gi=()foralll <i<k

For each (P, L) € E,
let (¢4, ..., q) be output of path-finder(P, F)
compute the longest common suffix of ¢; and ¢} and
let it be the latest g;

If a ¢; is empty sequence, then return FALSE
Else return W

procedure path-finder(P, F)
Foreach1 <j <k
compute all paths p(n1;),...,p(nm,;) and
compute the longest common path p; of them
If |p;| = 0, then return FALSE
else if ny ; is the x;-th child, then
return g; = (p;, ;) as a candidate for g;

Table 2: The algorithm to learn T-wrapper W such
that W (P) = L.

that pages P; are parsed into tree expressions. We also
assume a standard partial order of node numbers as
follows. Let n and m be two nodes of a tree T. (1) If m
is a descendant of n, then n < m. (2) Else if n and m are
children of a node such that n is in left for m, then n <
m. (3) Else if n, m are descendants of n’, m/ respectively
such that n’ < m’, then n < m. Let n be a node in
T. Then, let p(n) denote the path from the root to the
parent of the n. Let p(n) = (n1,...,n;) and p(m) =
(ma,...,m;). Then, a sequence (w1, ..., wy) is said to
be a common suffiz of p(n) and p(m) if label(n;—g/41) =
label(m;_g/41) = wi for all 1 < k' < k. The longest
common suffix of p(n) and p(m) is the longest one of
them.

Here, we estimate of the time to compute a T-
wrapper for given example £ = {...,(P,L),...}. Let
K be the number of attributes in a tuple of L and let
L= {nl |7’L1 = <n¢71,...,n1‘7]{>, 1 <) < m} Let |P| be
the size of P, that is the number of nodes in P. The
|P| is at most d - h, where d is the length of the longest
path and A is the number of leaves of P.

We can find each node in P in O(d) by binary search.
Thus, we can make the pointers from attributes in L
from nodes in P in O(m -d- K) = O(|P|- K) because
K+ m < hand d-h < |P|. By using this pointers,
we can find the longest common suffix of m nodes in
O(|P]), which is the delimiter of the i-th attribute (1 <
1 < K). Thus, for each (P, L) € E, the time to find all
delimiters for L is O(|P| - K).

Concluding remark

We define a new wrapper class for extracting attributes
from HTML documents. We present the effective al-
gorithm to compute such wrappers from given pages
and the positions of required attributes in the pages.
This wrapper class can extract attributes for some cases
which the Kushmerick’s wrapper class can not. How-
ever, it is not shown the relation ship between our wrap-
per class and the Kushmerick’s. Now we are verifying
the performance of our algorithm with respect to many
Web sites.

References

Angluin, D. 1988. Queries and concept learning. Ma-
chine Learning 2:319-342.

Bray, T., Paoli, J., and Sperberg-McQueen, C. M.
1998. Extensible Markup Language (XML)
Version 1.0. W3C Recommendation 1998.
www.w3.org/TR/REC-xml

Buneman, P., Davidson, S., Hillebrand, G., and Su-
ciu, D. 1996. A query language and optimization tech-
niques for unstructured data. University of Pennsylva-

nia, Computer and Information Science Department,
Technical Report MS-CIS 96-09.

Clark, J. 1999. XSL Transformations (XSLT)
Version 1.0. W8C Recommendation 1999.
www.w3.org/TR/xslt

Dershowitz, N. and Jouannaud, J.-P. 1990. Rewrite
Systems. Chapter 6, Formal Models and Semantics,
Handbook of Theoretical Computer Science, Vol. B, El-
sevier.

Drewes, F. 1996. Computation by tree transductions.
Ph D. Thesis, University of Bremen, Department of
Mathematics and Informatics.

Hirata, K, Yamada, K., and Harao, M. 1999. Tractable
and intractable second-order matching problems.
Proc. 5th Annual International Computing and Com-
binatorics Conference. LNCS 1627:432-441.

Tkeda, D. 1999. Characteristic sets of strings common
to semi-structured documents. Proc. 2nd International
Conference on Discovery Science. LNAI 1721:13-23.

Kakada, T. 1998. Compact HTML for small in-
formation appliances. W3C NOTE 09-Feb-1998.
www.w3.org/TR/1998/NOTE-compactHTML-19980209

Khardon, R. 1998. Learning function-free Horn ex-
pressions. Proc. COLT’98, 154-165.

Kilpelainen, P and Mannila, H. 1995. Ordered and
unordered tree inclusion. SIAM J. Comput. 24: 340-
356.

Kushmerick, N. 2000. Wrapper induction: efficiency
and expressiveness. Artificial Intelligence 118:15-68.

Sakamoto, H., Arimura, H., and Arikawa, S. 2000.
Identification of tree translation rules from examples.
Proc. 5th International Colloquium on Grammatical
Inference. LNAT 1891:241-255.

Valiant, L. G. 1984. A theory of the learnable. Com-
mun. ACM 27:1134-1142.

