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Abstract. Typed ��-calculus is known to be strongly normalizing and

weakly Church-Rosser, and hence conuent. In fact, Parigot formulated a

parallel reduction to prove conuency of typed ��-calculus by \Tait-and-

Martin-L�of" method. However, the diamond property does not hold for

his parallel reduction. The conuency for type-free ��-calculus cannot be

derived from that of typed ��-calculus and is not known. We analyzed

granualities of the reduction rules. We consider a renaming and con-

secutive structural reductions as one step parallel reduction, and show

that the new formulation of parallel reduction has the diamond property,

which yields the correct proof of conuency of type free ��-calculus. The

diamond property of new parallel reduction is also shown for the call-by-

value version of ��-calculus contains the symmetric structural reduction

rule.

1 Introduction

Parigot's ��-calculus[12] is a formal system for propositional classical logic and

can at the same time be considered as a functional programming language with

continuation. The ��-terms M is constructed as

M = x j �x:M jMM j ��:M j [�]M:

The calculus has the following basic reduction rules.

�-reduction: (�x:M )N !M [x := N ]

Structural reduction: (��:M)N ! ��:M [[�]w := [�](wN )]

Renaming: [�](��:M)!M [� := �]

We assume some familiarity to �-calculus [2, 7, 8]. In the structural reduction,

the substitution is de�ned as follows:
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1. x[[�]w := [�](wN)] = x

2. (�x:M )[[�]w := [�](wN )] = �x:M [[�]w := [�](wN)]

3. (MM)[[�]w := [�](wN)] =M [[�]w := [�](wN )]M [[�]w := [�](wN )]

4. (��:M )[[�]w := [�](wN )] = ��:M [[�]w := [�](wN )]

5-1. ([�]M )[[�]w := [�](wN )] = [�](M [[�]w := [�](wN )]N) if � = �

5-2. ([�]M )[[�]w := [�](wN )] = [�]M [[�]w := [�](wN )] if � 6= �

In [12], Parigot outlined the proof of conuency of ��-calculus. He formu-

lated the parallel reduction and claimed the diamond property for the parallel

reduction:

if M ) N then N )M

�

.

Here M

�

is a term obtained by reducing all the redexes in M . M

�

is usually

referred as the \complete development" ofM [2]. The formulation of the parallel

reduction is based on \Tait-and-Martin-L�of" method, which is explained clearly

in [10]. The method is applicable to prove the conuence of many reduction sys-

tems. However, the method does not work for ��-calculus. In fact, the diamond

property does not hold for the formulation of parallel reduction in [12]. So the

proof of conuence is not so trivial as it seems to be.

The ��-calculus is known to be strongly normalizing[13] and weak Church-

Rosser. For notions of deduction, these two properties yield conuency[2]. But

type free ��-calculus is not strongly normalizing. (For instance, the untypable

term (�x:xx)(�x:xx) dose not have normal form.) The correct proof of conuency

of type free ��-calculus is never published as far as we know.

We think that the reason why the diamond property does not hold for the par-

allel reduction is in the sequential nature of the structural reduction rule. Con-

sider a term M = (��:[�](��:[�]x))y which has a renaming redex and a struc-

tural redex. We have the terms N

1

= (��:[�]x)y andN

2

= ��:[�]((��:[�](xy))y)

by a renaming and a structural reduction respectively. Then we have M ) N

1

and M ) N

2

. If the diamond property would hold, N

1

and N

2

were reducible

to the same term M

�

in one step reduction. However, this is impossible. After

the structural reduction, the \residual" of renaming redex in M is no longer a

renaming redex in N

2

. To make the residual back to a renaming redex, we need

another step of structural reduction. We consider such a successive sequence of
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structural reductions as a one step parallel reduction. With such a formulation,

we prove the strong diamond property for the parallel reduction.

M = (��:[�](��:[�]x))y

N

1

= (��:[�]x)y N

2

= ��:[�]((��:[�](xy))y)

��:[�](xy)

�

�

�	

@

@

@R

@

@

@R

�

�	

�

�	

R S

S

S

R

We consider the ��-calculus as a programming language and reductions as

computation. The reduction rules of ��-calculus captures the mechanism of func-

tional programming languages with control[3, 4, 6]. However we can not apply

an arbitrary reduction for implementation of programming language. Usually

we �x a reduction strategy. A call-by-value ��-calculus ��

v

was �rst considered

by Ong and Stewart [11]. The ��

v

-calculus contains another reduction rule so

called \symmetric structural reduction" such that:

N(��:M)! ��:M [[�]w := [�](Nw)]:

Note that a subsystem is not always conuent even if the whole system is con-

uent. Therefore, the conuence of �� does not yield the conuence of ��

v

,

even if we ignore the symmetric structural reduction rule. We shall formulate an

appropriate parallel reduction for ��

v

and prove the strong diamond property.

2 Parallel Reduction in ��-Calculus

We de�ne the parallel reduction as follows. The rules 1{8 are obtained by

a straightforward application of Tait-and-Martin-L�of method to �-reduction,

structural reduction and renaming. The last inference rule 9 is introduced in the

present paper. It combines a renaming and a consecutive sequence of structural
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reduction. It is easy to see that the transitive and reexive closure of \!" is

identical to the transitive closure of \)".

De�nition 1.

1. x) x

2.

M )M

0

�x:M ) �x:M

0

3.

M )M

0

N ) N

0

MN )M

0

N

0

4.

M )M

0

��:M ) ��:M

0

5.

M )M

0

[�]M ) [�]M

0

6.

M )M

0

N ) N

0

(�x:M )N )M

0

[x := N

0

]

7.

M )M

0

N ) N

0

(��:M )N ) ��:M

0

[[�]w := [�](wN

0

)]

8.

M )M

0

[�](��:M ))M

0

[� := �]

9.

M )M

0

N

1

) N

0

1

� � � N

n

) N

0

n

[�]((��:M )N

1

� � �N

n

))M

0

[[�]w := [�](wN

0

1

� � �N

0

n

)]

We de�ne the complete development M

�

of a term M as follows.

De�nition 2.

1. M = x. Then M

�

= x.

2. M = �x:M

1

. Then M

�

= �x:M

�

1

.

3. M = M

1

M

2

.

3.1 M

1

= �x:M

3

. Then M

�

=M

�

3

[x := M

�

2

].

3.2 M

1

= ��:M

3

. Then M

�

= ��:M

�

3

[[�]w := [�](wM

�

2

)].

3.3 M

�

= M

�

1

M

�

2

o.w.

4. M = ��:M

1

. Then M

�

= ��:M

�

1

.

5. M = [�]M

1

.

5.1 M

1

= ��:M

2

. Then M

�

=M

�

2

[� := �].

5.2 M

1

= (��:M

2

)N

1

� � �N

n

. Then M

�

= M

�

2

[[�]w := [�](wN

�

1

� � �N

�

n

)].

5.3 M

�

= [�]M

�

1

o.w.
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3 Diamond Property of Parallel Reduction

A gap in the proof of conuence in [12] was (2) of the following lemma. Without

the rule 9, (2) does not hold.

Lemma 1. (1) If M )M

0

and N ) N

0

, then M [x := N ])M

0

[x := N

0

].

(2) If M ) M

0

and N ) N

0

, then M [[�]w := [�](wN)] ) M

0

[[�]w :=

[�](wN

0

)].

(3) If M )M

0

, then M [� := �])M

0

[� := �].

Proof. (1) is easily shown by induction on the structure of M )M

0

.

(3) is trivial.

(2) is proved by induction on the structure of M )M

0

. Most cases are routine.

Non-trivial cases are when the last inference of M )M

0

is either 8 or 9. To save

the space of the paper, we explain only the case 8.

Case 8. The last inference rule is 8.

By de�nition of M ) M

0

, M and M

0

have the form M = [�](�:M

1

),

M

0

=M

0

1

[ := �] and M )M

0

has the following form.

M

1

)M

0

1

M = [�](�:M

1

))M

0

1

[ := �] =M

0

8

Since  is a bound variable, we can assume  6= �.

Case 8.1 � = �.

Then we have

M [[�]w := [�](wN)] = ([�](�:M

1

))[[�]w := [�](wN )]

= [�]((�:M

1

[[�]w := [�](wN )])N );

M

0

[[�]w := [�](wN

0

)] = M

0

1

[ := �][[�]w := [�](wN

0

)]

=M

0

1

[[�]w := [�](wN

0

)][[]w := [](wN

0

)][ := �]

By induction hypothesis for M

1

) M

0

1

, we have M

1

[[�]w := [�](wN )] )

M

0

1

[[�]w := [�](wN

0

)]. Thus we have [�]((�:M

1

[[�]w := [�](wN )])N) )

M

0

1

[[�]w := [�](wN

0

)][[]w := [�](wN

0

)][ := �] by the rule 9. Hence Lemma

holds.

Case 8.2 � 6= �.

Then we have

M [[�]w := [�](wN)] = ([�](�:M

1

))[[�]w := [�](wN )]

= [�](�:M

1

[[�]w := [�](wN )]),

M

0

[[�]w := [�](wN

0

)] = M

0

1

[ := �][[�]w := [�](wN)]

=M

0

1

[[�]w := [�](wN )][ := �].



6

By induction hypothesis forM

1

, we haveM

1

[[�]w := [�](wN)])M

0

1

[[�]w :=

[�](wN

0

)]. Therefore we have [�](�:M

1

[[�]w := [�](wN)]) ) M

0

1

[[�]w :=

[�](wN

0

)][ := �] by the rule 8. Thus Lemma holds. QED

Theorem 1. For any ��-term M and M

0

, if M )M

0

then M

0

)M

�

.

The proof is by induction on the structure of M ) M

0

and is shown in

Appendix.

Theorem 2. If M ) M

1

and M ) M

2

, then there exists some M

3

such that

M

1

)M

3

and M

2

)M

3

.

Proof. Put M

3

= M

�

. Then Theorem holds by Theorem 1. QED

Since the transitive and reexive closure of \!" is identical to the transitive

closure of \)", we have the conuence of ��-calculus.

Theorem 3. ��-calculus is conuent.

4 Parallel Computation in Call-by-Value Calculus

A call-by-value version of ��-calculus was �rst provided by Ong and Stewart

[11]. As compared with the call-by-name system, one can adopt some reduction

rules more in the call-by-value system; so-called symmetric structural reduction

[12] such that N (��:M) ! ��:M [[�]w := [�](Nw)]. It is known that adding

such reduction rules breaks down the conuence unless the above term N is in

the form of a value. In this section, the notion of values as an extended form is

introduced based on observation in [5].

V ::= x j �x:M j [�]M

This notion is closed under both a value-substitution and substitutions induced

by structural reduction and symmetric structural reduction de�ned below.

A context E[ ] with a hole [ ] is de�ned as usual, such that

E ::= [ ] j EM j V E :
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For n � 0 and a term N , we will write E

n

[E

n�1

[� � E

1

[N ] � �]] for E[N ], where each

E

i

6� [ ] is either in the form of V [ ] or [ ]M . For simplicity, such E

i

also denotes

the value V or the term M .

The call-by-value ��-calculus consists of the following reduction rules:

�

v

-reduction (�x:M)V !

v

M [x := V ]

Structural reduction (��:M

1

)M

2

!

v

��:M

1

[[�]w := [�](wM

2

)]

Symmetric structural reduction V (��:M)!

v

��:M [[�]w := [�](V w)]

Renaming reduction [�](��:V )!

v

V [� := �]

This renaming rule is di�erent from that in [11]. The distinction is essential

under the extended form of values, and this form of renaming would also be

natural from the viewpoint of CPS-translation such as in [5].

We will show that the new parallel reduction can also be applicable to the

conuence proof for the call-by-value system of ��-calculus, contrary to the

straightforward use of parallel reduction in [11]. To prove this, we de�ne parallel

reduction � as follows:

De�nition 3.

1. x� x

2.

M �M

0

�x:M � �x:M

0

3.

M �M

0

N � N

0

MN �M

0

N

0

4.

M �M

0

��:M � ��:M

0

5.

M �M

0

[�]M � [�]M

0

6.

M �M

0

V � N

0

(�x:M )V �M

0

[x := N

0

]

7.

M �M

0

N � N

0

(��:M )N � ��:M

0

[[�]w := [�](wN

0

)]

8.

M �M

0

V � N

0

V (��:M)� ��:M

0

[[�]w := [�](N

0

w)]

9.

V �M

0

E

1

� E

0

1

� � � E

n

� E

0

n

E = E

n

[� � E

1

[ ] � �] E

0

= E

0

n

[� � E

0

1

[ ] � �]

[�](E [��:V ])�M

0

[[�]w := [�](E

0

[w])]

It can now be seen that the transitive and reexive closure of!

v

is equivalent

to the transitive closure of �.
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Lemma 2. (1) If V �M , then M is also in the form of a value.

(2) If M � N and V � N

0

, then M [x := V ]� N [x := N

0

].

(3) If M � M

0

and N � N

0

, then M [[�]w := [�](wN)] � M

0

[[�]w :=

[�](wN

0

)].

(4) If M � M

0

and V � N

0

, then M [[�]w := [�](V w)] � M

0

[[�]w :=

[�](N

0

w)].

(5) If M �M

0

, then M [� := �]�M

0

[� := �].

(6) Let n � 0. Let E[ ] = E

n

[� � E

1

[ ] � �] and E

0

[ ] = E

0

n

[� � E

0

1

[ ] � �]. If M �M

0

and E

i

� E

0

i

(1 � i � n), then M [[�]w := [�](E [w])]�M

0

[[�]w := [�](E

0

[w])].

Proposition 1. For any ��-term M , there exists M

�

such that for any N ,

N �M

�

whenever M � N .

Proof. By induction on the derivation of�. Here, the complete development

M

�

can be given inductively as follows:

De�nition 4.

1. M = x. Then M

�

= x.

2. M = �x:M . Then M

�

= �x:M

�

.

3. M = M

1

M

2

.

3.1 M

1

= �x:M

3

and M

2

= V

2

. Then M

�

= M

�

3

[x := V

�

2

].

3.2 M

1

= ��:M

3

. Then M

�

= ��:M

�

3

[[�]w := [�](wM

�

2

)].

3.3 M

1

= V

1

and M

2

= ��:M

4

. Then M

�

= ��:M

�

4

[[�]w := [�](V

�

1

w)].

3.4 M

�

= M

�

1

M

�

2

o.w.

4. M = ��:M

1

. Then M

�

= ��:M

�

1

.

5. M = [�]M

1

.

5.1 M

1

= E [��:V

2

]. Then M

�

= V

�

2

[[�]w := [�](E

�

[w])], where E

�

[ ] is de�ned

as E

�

n

[� � E

�

1

[ ] � �] for E [ ] = E

n

[� � E

1

[ ] � �] and n � 0.
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5.2 M

�

= [�]M

�

1

o.w.

We show only the case M of [�]M

1

. The remaining cases can also be justi�ed

following a similar pattern.

1. Case [�]M

1

of [�](E [��:V ]):

1-1. M � N = [�]N

1

is derived from E [��:V ]� N

1

by 5:

1-1-1. E [��:V ] � ��:V :

In this case, ��:V � N

1

= ��:N

2

is derived from V � N

2

by 4, where N

2

is also a value. From the induction hypothesis, we have N

2

� V

�

, and hence

N = [�](��:N

2

)� V

�

[� := �] =M

�

is obtained by 9.

1-1-2. E [��:V ] � E

n

[� � E

1

[��:V ] � �] (n � 1):

Since E

1

[��:V ] is not a value, E

n

[� � E

1

[��:V ] � �] � N

1

must be derived from

E

1

[��:V ] � N

0

2

and E

j

� E

0

j

(2 � j � n) by the successive use of 3, where

N

1

= E

0

n

[� � E

0

2

[N

0

2

] � �]. Here, we have two cases for E

1

and two derivations for each

of those.

1-1-2-1. E

1

[��:V ] � V

1

(��:V ):

1-1-2-1-1. V

1

(��:V )� N

0

2

= N

0

3

N

0

4

is derived from ��:V � N

0

4

and V

1

� N

0

3

by 3:

Since ��:V � N

0

4

= ��:N

0

5

must be derived from V � N

0

5

by 4, we have

N

0

5

� V

�

by the induction hypothesis, where N

0

5

is also a value. Let E

0

1

be N

0

3

[ ],

where N

0

3

is a value. Then the induction hypothesis gives N

0

3

� V

�

1

abbreviated

as E

0

1

� E

�

1

. From the induction hypotheses for E

j

(2 � j � n), we also have

E

0

j

� E

�

j

, and then [�](E

0

n

[� � E

0

1

[��:N

0

5

] � �]) � V

�

[[�]w := [�](E

�

n

[� � E

�

1

[w] � �])] is

obtained by 9.
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1-1-2-1-2. V

1

(��:V ) � N

0

2

= N

0

3

[[�]w := [�](N

0

4

w)] is derived from V

1

� N

0

3

and V � N

0

4

by 8:

The induction hypotheses give N

0

3

� V

�

1

and N

0

4

� V

�

. From the substitu-

tion lemma, we have N

0

4

[[�]w := [�](N

0

3

w)]� V

�

[[�]w := [�](V

�

1

w)], where N

0

4

is

also a value and values are closed under substitutions. The induction hypotheses

for E

j

(2 � j � n) also give E

0

j

� E

�

j

. Hence, the use of 9 derives

[�](E

0

n

[� � E

0

2

[��:N

0

4

[[�]w := [�](N

0

3

w)]] � �])

� (V

�

[[�]w := [�](V

�

1

w)])[[�]w := [�](E

�

n

[� � E

�

2

[w] � �])],

whose right-hand side is equivalent to V

�

[[�]w := [�](E

�

n

[� � E

�

1

[w] � �])], where E

�

1

is V

�

1

[ ].

1-1-2-2. E

1

[��:V ] � (��:V )M

2

:

In this case, we have two derivations for (��:V )M

2

� N

0

2

by the use of 3

or 7. Each case can be veri�ed following a similar pattern to the above two cases.

1-2. M � N = N

0

[[�]w := [�](E

0

[w])] is derived from V � N

0

and E

i

� E

0

i

(1 � i � n), where E [ ] = E

n

[� � E

1

[ ] � �] and E

0

[ ] = E

0

n

[� � E

0

1

[ ] � �]:

The successive application of the substitution lemma to the induction hypothe-

ses.

2. Otherwise:

The straightforward use of the induction hypothesis. QED

Finally, the conuence for the call-by-value ��-calculus can be con�rmed,

since � has the diamond property.

Theorem 4. The call-by-value ��-calculus has the conuence.

5 Related Works and Further Problems

Parallel reduction is very clear and intuitive idea which means to reduce a num-

ber of redexes (existing in the term) simultaneously. It is often applied to prove
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the conuence of reduction system. However, a naive formulation parallel reduc-

tion does not always work. The ��-calculus is one of such reduction systems. We

showed that the di�culty is in the sequentiality of the structural reduction. So we

think that consecutive sequence of structural reduction should be considered as

one step of parallel reduction. As pointed out in Takahashi [10], the idea does not

work for ��

�1

, i.e., �-calculus with �-expansion:M ! �x:Mx. The conuence of

��

�1

is proved in [1, 9]. Jay and Ghani [9] proved the conuence by introducing

\parallel expansion" which includes, roughly speaking, a consecutive applica-

tion of �

�1

: M ! �x

1

:Mx

1

! �x

1

x

2

:Mx

1

x

2

! �x

1

x

2

x

3

:Mx

1

x

2

x

3

! � � � : Van

Raamsdonk[14] introduced a notion of \superdevelopment" to prove conuence

of the orthogonal combinatory reduction systems. A superdevelopment is a re-

duction sequence in which besides redexes that descend from the initial term

some redexes that are created during reduction may be contracted. A key of

these works is to overcome some sequentiality of reduction. We cannot tell ,at

the moment, what kind of reduction contains such sequentiality. To �nd some

criterion to tell such sequentiality is a further work.

Parigot's ��-calculus has another reduction rule �

�

: ��:[�]M ! M if � has

no free occurrence inM . Consider a termM = ��:[�]((��:[]x)yz). ThenM has

�

�

-redex and the redex with respect to the rule 9 of De�nition1. The reduction

of each redex is represented by \�

�

" and \RS" in the following �gure.

��:[�]((��:[]x)yz)

(��:[]x)yz

��:[]x

(��:[]x)z

@

@

@R

�

�

�+

�

�

�+?

RS

�

�

S

S

By \RS", we reach ��:[]x with one step parallel reduction. If we apply �

�

�rst,

we have (��:[]x)yz from which we cannot reach ��:[]x with one step parallel

reduction. It seems that we can overcome this situation by counting a series of

structural reductions as one step. We have a formulation of parallel reduction
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with �

�

with this idea. However, the de�nition of the complete developmentM

�

becomes very complex and will be discussed elsewhere.
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Appendix:Proof of Theorem 1

Theorem 4 For any ��-term M and M

0

, if M )M

0

then M

0

)M

�

.

Proof. By induction on the structure of M )M

0

.

1. M = x.

Then we have M

�

= M

0

= x. Thus we have M

0

)M

�

.
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2. M = �x:M .

Then M )M

0

has the following form.

M

1

)M

0

1

M = �x:M

1

) �x:M

0

1

=M

0

2

By induction hypothesis we have M

0

1

)M

�

1

. Thus we have M

0

= �x:M

0

1

)

�x:M

�

1

=M

�

.

3. M = M

1

M

2

.

3.1. M = (�x:M

3

)M

2

.

Then we have M

�

= M

�

3

[x := M

�

2

] and the last inference rule of M )M

0

is

either 3 or 6.

3.1.1. The last inference rule is 3.

Then M )M

0

has the following form.

M

3

)M

0

3

�x:M

3

) �x:M

0

3

2

M

2

)M

0

2

M = (�x:M

1

)M

2

) (�x:M

0

3

)M

0

2

=M

0

3

By induction hypothesis, we have M

0

2

) M

�

2

and M

0

3

) M

�

3

. Applying the

rule 6, we have (�x:M

0

3

)M

0

2

)M

�

3

[x := M

�

2

]. Thus M

0

)M

�

holds.

3.1.2. The last inference rule is 6.

M )M

0

has the following form.

M

3

)M

0

3

M

2

)M

0

2

M = (�x:M

3

)M

2

)M

0

3

[x := M

0

2

]

6

By induction hypothesis, we haveM

0

2

)M

�

2

andM

0

3

)M

�

3

. By Lemma 1(1),

it follows M

0

3

[x := M

0

2

] ) M

�

3

[x := M

�

2

]. Thus M

0

) M

�

and Theorem

holds.

3.2. M = (��:M

3

)M

2

.

Then the last inference of M )M

0

is either 3 or 7.

3.2.1. The last inference rule of M )M

0

is 3.

Then M )M

0

has the following form.

M

3

)M

0

3

��:M

3

) ��:M

0

3

4

M

2

)M

0

2

M = (��:M

3

)M

2

) (��:M

0

3

)M

0

2

3
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By induction hypothesis we have M

0

2

) M

�

2

and M

0

3

) M

�

3

. Applying the

rule 7, we have (��M

0

3

)M

0

2

) ��:M

�

3

[[�]w := [�](wM

�

2

)]. Hence M

0

) M

�

and Theorem holds.

3.2.2. The last inference rule of M )M

0

is 7.

Then M )M

0

has the following form.

M

3

)M

0

3

M

2

)M

0

2

(��:M

3

)M

2

) ��:M

0

3

[[�]w := [�](wM

0

2

)]

7

By induction hypothesis we have M

0

2

) M

�

2

and M

0

3

) M

�

3

. Applying

Lemma 1(2), we have ��:M

0

3

[[�]w := [�](wM

0

2

)]) ��:M

�

3

[[�]w := [�](wM

�

2

)].

Hence M

0

)M

�

and Theorem holds.

3.3. M = M

1

M

2

and M

1

is not a �-abstraction or a �-abstraction.

Then M

�

=M

�

1

M

�

2

and M )M

0

has the following form.

M

1

)M

0

1

M

2

)M

0

2

M = M

1

M

2

)M

0

1

M

0

2

= M

0

3

By induction hypothesis, we have M

0

1

)M

�

1

and M

0

2

)M

�

2

. Thus we have

M

0

1

M

0

2

)M

�

1

M

�

2

. Therefore Theorem holds.

4. M = ��:M

1

.

Then we have M

�

= ��:M

�

1

and M )M

0

has the following form.

M

1

)M

0

1

��:M

1

) ��:M

0

1

4

By induction hypothesis we have M

0

1

) M

�

1

. Applying the rule 4, we have

��:M

0

1

) ��:M

�

1

. Hence Theorem holds.

5. M = [�]M

1

.

5.1. M = [�](��:M

2

).

Then we have M

�

= M

�

2

[� := �]. The last inference rule of M ) M

0

is

either 5 or 8.

5.1.1. The last inference rule of M )M

0

is 5.

Then M )M

0

has the following form.

M

2

)M

0

2

��:M

2

) ��:M

0

2

4

M = [�](��:M

2

)) [�](��:M

0

2

) = M

0

5
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By induction hypothesis we haveM

0

2

)M

�

2

. Apply the rule 8. Then we have

[�](��:M

0

2

))M

�

2

[� := �]. Hence M )M

0

and Theorem holds.

5.1.2. The last inference rule of M )M

0

is 8.

M

2

)M

0

2

M = [�](��:M

2

)) [�]M

0

2

[� := �]) = M

0

8

By induction hypothesis, we have M

0

2

)M

�

2

. Apply Lemma 1(3). Then we

have M

0

2

[� := �])M

�

2

[� := �], hence M

0

)M

�

.

5.2. M = [�]((��:M

2

)N

1

� � �N

n

).

Then we have M

�

= M

�

2

[[�]w := [�](wN

�

1

� � �N

�

n

)]. The last inference rule

of M )M

0

is either 5 or 9.

5.2.1. The last inference rule of M )M

0

is 5.

Then M )M

0

has the followoing form.

(��:M

2

)N

1

) Q

0

N

2

) N

0

2

� � � N

n

) N

0

n

(��:M

2

)N

1

� � �N

n

) Q

0

N

0

1

� � �N

0

n

3; � � � ; 3

M = [�]((��:M

2

)N

1

� � �N

n

)) [�](Q

0

N

0

1

� � �N

0

n

) = M

0

5

Then the last inference rule of (��:M

2

)N

1

) Q

0

is either 3 or 7.

5.2.1.1. The last inference rule of (��:M

2

)N

1

) Q

0

is 3.

Then Q

0

= ��:M

0

2

for some M

0

2

and M )M

0

has the following form.

M

2

)M

0

2

��:M

2

) ��:M

0

2

4

N

1

) N

0

1

N

2

) N

0

2

� � � N

n

) N

0

n

(��:M

2

)N

1

� � �N

n

) (��:M

0

2

)N

0

1

� � �N

0

n

3; � � � ; 3

M = [�]((��:M

2

)N

1

� � �N

n

)) [�]((��:M

0

2

)N

0

1

� � �N

0

n

) = M

0

5

By induction hypothesis, we have M

0

2

) M

�

2

; N

0

1

) N

�

1

� � � ; N

0

n

) N

�

n

.

Apply the rule 9. Then we have [�]((��:M

0

2

)N

0

1

� � �N

0

n

) ) M

�

2

[[�]w :=

[�](wN

�

1

� � �N

�

n

)]. Hence M

0

)M

�

holds.

5.2.1.2. The last inference rule of (��:M

2

)N

1

) Q

0

is 7.

Then M )M

0

has the following form.

M

2

)M

0

2

N

1

) N

0

1

(��:M

2

)N

1

) ��:M

0

2

[[�]w := [�](wN

0

1

)]

7

N

2

) N

0

2

� � � N

n

) N

0

n

(��:M

2

)N

1

� � �N

n

) (��:M

0

2

[[�]w := [�](wN

0

1

)])N

0

1

� � �N

0

n

3; � � � ; 3

M = [�]((��:M

2

)N

1

� � �N

n

)) [�]((��:M

0

2

[[�]w := [�](wN

0

1

)])N

0

1

� � �N

0

n

) =M

0

5

By induction hypothesis, we haveM

0

2

)M

�

2

and N

0

1

) N

�

1

. By Lemma 1(2),

we haveM

0

2

[[�]w := [�](wN

0

1

)])M

�

2

[[�]w := [�](wN

�

1

)]. On the other hand,
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we have N

0

2

) N

�

2

; � � �N

0

n

) N

�

n

by induction hypothesis. Apply the rule 9.

Then we have

[�]((��:M

0

2

[[�]w := [�](wN

0

1

)])N

0

2

� � �N

0

n

)

)M

�

2

[[�]w := [�](wN

�

1

)][[�]w := [�](wN

�

2

� � �N

�

n

)]

=M

2

[[�]w := [�](wN

�

1

N

�

2

� � �N

�

n

)].

Hence M )M

0

and Theorem holds.

5.2.2. The last inference rule of M )M

0

is 9.

Then M )M

0

has the following form.

M

2

)M

0

2

N

1

) N

0

1

� � �N

n

) N

0

n

[�]((��:M

2

)N

1

� � �N

n

))M

0

2

[[�]w := [�](wN

0

1

� � �N

0

n

)]

9

By induction hypothesis we haveM

0

2

)M

�

2

; N

0

1

) N

�

1

; � � � ; N

0

n

) N

�

n

. Apply

Lemma 1(2) and (3), we haveM

�

2

[[�]w := [�](wN

0

1

� � �N

0

n

)]) M

2

� [[�]w :=

[�](wN

�

1

� � �N

�

n

)]. Hence M

0

)M

�

and Theorem holds.

5.3. M = [�]M

1

andM

1

is not of the formM

1

= ��:M

2

orM

1

= (��:M

2

)N

1

� � �N

n

.

Then we have M

�

= [�]M

�

1

and M )M

0

has the following form.

M

1

)M

0

1

[�]M

1

) [�]M

0

1

5

By induction hypothesis we have M

0

1

) M

�

1

. Applying the rule 5, we have

[�]M

0

1

) [�]M

�

1

. Hence Theorem holds.

QED


