SN KREZZ2MTIER Y R b

Kyushu University Institutional Repository

Parallel Reduction in Type Free A w-Calculus

Baba, Kensuke
Graduate School of Information Science and Electrical Engineering, Kyushu University

Hirokawa, Sachio
Computer Center, Kyushu University

Fujita, Ken-etsu
Department of Computer Science, Interdisciplinary Faculty of Science and Engineering Shimane
University

https://hdl. handle. net/2324/3035

HhRIE#R : DOI Technical Report. 177, 2000-08-18. Department of Informatics, Kyushu University
N— 30

HEFIBAMR

DOI-TR-177

Technical Report

Parallel Reduction in Type Free Au-Calculus

by

KENSUKE BABA, SACHIO HIROKAWA, KEN-ETSU FuJiTA

August 18, 2000

Department of Informatics
Kyushu University
Fukuoka 812-81, Japan

Email: baba@i.kyushu-u.ac.jp Phone: +81-92-641-3131(8806)

Parallel Reduction in Type Free Au-Calculus

Kensuke Baba!, Sachio Hirokawa?, and Ken-etsu Fujita®

! Graduate School of Information Science and Electrical Engineering, Kyushu
University
Fukuoka, 812-8581 Japan, E-mail: baba@i.kyushu-u.ac.jp
2 Computer Center, Kyushu University
% Department of Computer Science, Interdisciplinary Faculty of Science and
Engineering
Shimane University, Matsue, 690-8504 Japan

Abstract. Typed Ap-calculus is known to be strongly normalizing and
weakly Church-Rosser, and hence confluent. In fact, Parigot formulated a
parallel reduction to prove confluency of typed Au-calculus by “Tait-and-
Martin-L6f” method. However, the diamond property does not hold for
his parallel reduction. The confluency for type-free Au-calculus cannot be
derived from that of typed Au-calculus and is not known. We analyzed
granualities of the reduction rules. We consider a renaming and con-
secutive structural reductions as one step parallel reduction, and show
that the new formulation of parallel reduction has the diamond property,
which yields the correct proof of confluency of type free Ap-calculus. The
diamond property of new parallel reduction is also shown for the call-by-
value version of Au-calculus contains the symmetric structural reduction
rule.

1 Introduction

Parigot’s Ap-calculus[12] is a formal system for propositional classical logic and
can at the same time be considered as a functional programming language with

continuation. The Ap-terms M is constructed as
M=z|XM|MM |pa.M|[a]M.

The calculus has the following basic reduction rules.

(B-reduction: (Az. M)N - M[z:=N
Structural reduction: (pa.M)N — po.M[[a]w := [a](wN)]
Renaming: Bl(pa.M) = Mo := 3]

We assume some familiarity to A-calculus [2,7,8]. In the structural reduction,

the substitution is defined as follows:

1. z[[a]w := [a](wN)] =z

2. (Az.M)[[a]w := [a](wN)] = Az.M[[a]w := [a](wN)]

3. (M M)[faw = [a)(wN)] = Mjafw := [a] (wN)]| Mfajw = [a)(wN)]
4. (uB.M)[[aJw := [a)(wN)] = .M [o]w := [a] (wN)

5-1. ([81M)[[adw := [a](wN)] = [)(M[la]uw := [a)(wN)IN) if a =5
5-2. ([8)M)[[adw := [a](wN)] = [A)M[[a]w = [a)(wN)] if o #

In [12], Parigot outlined the proof of confluency of Au-calculus. He formu-
lated the parallel reduction and claimed the diamond property for the parallel

reduction:
if M = N then N = M*.

Here M* is a term obtained by reducing all the redexes in M. M* is usually
referred as the “complete development” of M [2]. The formulation of the parallel
reduction is based on “Tait-and-Martin-Lof” method, which is explained clearly
in [10]. The method is applicable to prove the confluence of many reduction sys-
tems. However, the method does not work for Ap-calculus. In fact, the diamond
property does not hold for the formulation of parallel reduction in [12]. So the

proof of confluence is not so trivial as it seems to be.

The Ap-calculus is known to be strongly normalizing[13] and weak Church-
Rosser. For notions of deduction, these two properties yield confluency[2]. But
type free Ap-calculus is not strongly normalizing. (For instance, the untypable
term (Az.zz)(Az.zz) dose not have normal form.) The correct proof of confluency

of type free Au-calculus is never published as far as we know.

We think that the reason why the diamond property does not hold for the par-
allel reduction is in the sequential nature of the structural reduction rule. Con-
sider a term M = (po.[a](pB.[a]z))y which has a renaming redex and a struc-
tural redex. We have the terms N; = (pa.[a]z)y and Ny = pa.fa]((18.[a](zy))y)
by a renaming and a structural reduction respectively. Then we have M = N;
and M = N,. If the diamond property would hold, N; and N, were reducible
to the same term M™ in one step reduction. However, this is impossible. After
the structural reduction, the “residual” of renaming redex in M is no longer a
renaming redex in Na. To make the residual back to a renaming redex, we need

another step of structural reduction. We consider such a successive sequence of

structural reductions as a one step parallel reduction. With such a formulation,

we prove the strong diamond property for the parallel reduction.

M = (ua[a](uf.la]e))y
N; = (pa.falz)y Ny = pa[a]((#8.lo](zy))y)
\i\ J
pa.[a](zy)

We consider the Ap-calculus as a programming language and reductions as
computation. The reduction rules of Ay-calculus captures the mechanism of func-
tional programming languages with control[3,4,6]. However we can not apply
an arbitrary reduction for implementation of programming language. Usually
we fix a reduction strategy. A call-by-value Au-calculus Au, was first considered
by Ong and Stewart [11]. The Ap,-calculus contains another reduction rule so

called “symmetric structural reduction” such that:

N(pa.M) — pa.M[a]w := [a](Nw)].

Note that a subsystem is not always confluent even if the whole system is con-
fluent. Therefore, the confluence of Ay does not yield the confluence of Ap,,
even if we ignore the symmetric structural reduction rule. We shall formulate an

appropriate parallel reduction for Ay, and prove the strong diamond property.

2 Parallel Reduction in Ag-Calculus

We define the parallel reduction as follows. The rules 1-8 are obtained by
a straightforward application of Tait-and-Martin-Lof method to (-reduction,
structural reduction and renaming. The last inference rule 9 is introduced in the

present paper. It combines a renaming and a consecutive sequence of structural

reduction. It is easy to see that the transitive and reflexive closure of “—” is

identical to the transitive closure of “=".
Definition 1.

1. x=>=2
M=M

2. \z.M = Az M'
M=M N= N

3. MN = M'N'
M=M

4. pa.M = pa. M’
M= M
5. [a]M = [a]M'
M=M N=N
6. (A\z.M)N = M'[z:= N']
M=M N=N
7. (pa.M)N = pa.M'[[a]w := [a](wN")]

M= M
8. [Bl(pa.M) = M'[a :=]
M=>M N=N -+ N,=> N,

9. [B]((na-M)Ny -+ Np) = M'[[a]w := [B](wN] --- N,,)]

We define the complete development M* of a term M as follows.

Definition 2.

1. M =z. Then M* = x.

2. M =Ax.My. Then M* = Az.M{.

3. M = M1 M,.

3.1 My = Az.M3. Then M* = M3 [z := M3].

3.2 My = pa.Ms. Then M* = pa. M3 [[a]w = [a](wM3)].
3.3 M* = M;M; o.w.

4. M = po.M;. Then M* = pa. M7 .

5. M = [a]M;.

5.1 My = puB.My. Then M* = M3 := a.

5.2 My = (uB8.M3)Ny --- N,,. Then M* = M;[[Blw := [a](wN7 --- NJ)].
5.3 M* = [a]M] o.w.

3 Diamond Property of Parallel Reduction

A gap in the proof of confluence in [12] was (2) of the following lemma. Without
the rule 9, (2) does not hold.

Lemma 1. (1) If M = M' and N = N', then M[z := N] = M'[z := N'].

(2) If M = M' and N = N', then M[[alw := [a](wN)] = M'[lalw =
[(wN")].

(8) If M = M’, then M[3:= o] = M'[3 :=q.

Proof. (1) is easily shown by induction on the structure of M = M’.
(3) is trivial.
(2) is proved by induction on the structure of M = M'. Most cases are routine.
Non-trivial cases are when the last inference of M = M’ is either 8 or 9. To save

the space of the paper, we explain only the case 8.

Case 8. The last inference rule is 8.
By definition of M = M', M and M’ have the form M = [8](uy.M1),
M' = M{[y:=p] and M = M’ has the following form.
M, = M{
M = [B)(uy-My) = Mi[y:= 8] = M’

8

Since v is a bound variable, we can assume v # a.
Case 8.1 a = (.

Then we have

M[a]w := [a](wN)] = ([a](py-31))[[a]w := [a](wN)]

= M|{[[a]w := [a] u;N') [Y]w := [¥](wN)[y := o]
By induction hypothesis for My = M{, we have Mi[[a]w := [a](wN)] =

M[[a]w := [a](wN')]. Thus we have [a]((py.-My[[a]w = [a](wN)]))N) =
M{[[alw = [a](wN)][[v]w := [a](wN"')][y := a] by the rule 9. Hence Lemma
holds.

Case 8.2 a #£ (.

Then we have
Mla]w := [a](wN)] = ([8](py.M1))[[a]w := [a](wN)]

= [Bl(py-M1[[o])
oo = o) = Mily = Al - foloN)

By induction hypothesis for M7, we have M;[[a]w := [a](wN)] = M{[[a]w =
[a](wN")]. Therefore we have [B](py.M;[[a]w := [a](wN)]) = M{[[a]w :=
[a](wN")][y := B] by the rule 8. Thus Lemma holds. QED

Theorem 1. For any Ap-term M and M', if M = M’ then M' = M*.

The proof is by induction on the structure of M = M’ and is shown in
Appendix.

Theorem 2. If M = M; and M = M,, then there exists some Mg such that
My = M3 and My = M3s.

Proof. Put M3 = M*. Then Theorem holds by Theorem 1. QED

Since the transitive and reflexive closure of “—” is identical to the transitive

closure of “=”, we have the confluence of Ap-calculus.

Theorem 3. Ap-calculus is confluent.

4 Parallel Computation in Call-by-Value Calculus

A call-by-value version of Ap-calculus was first provided by Ong and Stewart
[11]. As compared with the call-by-name system, one can adopt some reduction
rules more in the call-by-value system; so-called symmetric structural reduction
[12] such that N(pa.M) — pa.M[[alw := [a](Nw)]. It is known that adding
such reduction rules breaks down the confluence unless the above term N is in
the form of a value. In this section, the notion of values as an extended form is

introduced based on observation in [5].
Vi=a|daeM | [a]lM

This notion is closed under both a value-substitution and substitutions induced

by structural reduction and symmetric structural reduction defined below.

A context £[] with a hole [] is defined as usual, such that

Eu=]]1EM |VE.

For n > 0 and a term N, we will write £,[E,_1[-- £1[N] -]] for E[N], where each
&; # [] is either in the form of V[] or [|M. For simplicity, such &; also denotes
the value V or the term M.

The call-by-value Ap-calculus consists of the following reduction rules:

By-reduction (Az. M)V —, M[z :=V]

Structural reduction (pa.M1) My —, po.My[[a]w := [a](wMs)]
Symmetric structural reduction V(pa.M) =, pa.Mja]w := [a](Vw)]
Renaming reduction Blpa.V) =, Via := 3]

This renaming rule is different from that in [11]. The distinction is essential

under the extended form of values, and this form of renaming would also be

natural from the viewpoint of CPS-translation such as in [5].

We will show that the new parallel reduction can also be applicable to the

confluence proof for the call-by-value system of Ap-calculus, contrary to the

straightforward use of parallel reduction in [11]. To prove this, we define parallel

reduction >> as follows:

Definition 3.

1.

2.

3.

T >T
M>»M

Az M > Az M’

M>»M N>»N
MN > M'N'
M>M

. pa.M > pa M’

M> M

. [a] M > [a] M'

M>»M V>N

. (A M)V > M'[lz .= N'|

M>»M N>»N

. (haM)N > por. M'[olw = o] (wN)]

M>»M V>N

. V(pa. M) > pa.M'[[a]w = [a](N'w)]

VXM &>& - &»E E=&[-&[]-] &=E[&[]]
[a](E[pB.V]) > M'[[Blw := [a](€'[w])]

It can now be seen that the transitive and reflexive closure of —, is equivalent

to the transitive closure of >>.

Lemma 2. (1) IfV > M, then M is also in the form of a value.

(2) If M > N and V > N', then M[z := V]| > N[z := N'].

(3) If M > M' and N >» N’, then M[[a]lw = [a](wN)] > M'[la]w :
[a](wN")].

(4) If M >» M' and V > N’, then M[lalw := [a](Vw)] > M'[[a]w :
[(N'w)].

(5) If M > M', then M3 :=a] > M'[3:= a].

(6) Let n > 0. Let E[| = E,[- - &[] -] and E'[) =EL[- &[] 1] If M > M’
and & > & (1 <i < n), then M[a]w := [a](E[w])] > M'[[a]w = [a](E'[w])].

Proposition 1. For any Au-term M, there exists M* such that for any N,
N > M* whenever M > N.

Proof. By induction on the derivation of >>. Here, the complete development

M* can be given inductively as follows:
Definition 4.

1. M =x. Then M* = z.

2. M =Xz M. Then M* = Aa. M".

3. M = M1 M,.

3.1 My = Az. M3 and My = V3. Then M* = M3z := V5.

3.2 My = pa.Ms. Then M* = po. M3 [[a]w = [a](wM])].

3.3 My =V1 and My = pa.My. Then M* = pa. M [[a]w := [a](Vi*w)].

3.4 M* = M{M5 o.w.

4. M = po.My. Then M* = po. M7 .

5. M = [a]M;.

5.1 My = E[pB.Va]. Then M* = Vy'[[Blw := [a](E[w])], where £7[] is defined
as E[- E[1+] for €[] = £al-- &[]+] and n> 0.

5.2 M* = [a]M] o.w.

We show only the case M of [a] M. The remaining cases can also be justified
following a similar pattern.

1. Case [a]M7 of [a](E[pB.V]):

1-1. M > N = [a]Ny is derived from £[pB.V] > Ny by b:

1-1-1. E[uB.V] = pB.V:

In this case, uB.V > N; = puB.Ns is derived from V > Ny by 4, where N»
is also a value. From the induction hypothesis, we have Ny > V*, and hence

N = [a](uB.N3) > V*[B3:= a] = M~ is obtained by 9.

1-1-2. E[pB.V] = Eul- - &1[pB.V] -] (n > 1):
Since & [pB.V] is not a value, E,[- - &1[pB.V] - -] > N1 must be derived from
&E1[pB.V] > Ny and & > & (2 < j < n) by the successive use of 3, where
Ny =& [--&4[N3] --]. Here, we have two cases for & and two derivations for each

of those.

1-1-2-1. & [pB.V] = Vi(uB.V):

1-1-2-1-1. V1 (uB.V) > N3 = N3N, is derived from pB8.V > Nj and Vi > Nj
by 3:
Since pB.V > N, = pB.Ni must be derived from V > N{ by 4, we have
Nt > V* by the induction hypothesis, where N} is also a value. Let £ be Nj[|,
where Nj is a value. Then the induction hypothesis gives Nj >> V" abbreviated
as & > &. From the induction hypotheses for &; (2 < j < n), we also have
£ > £, and then [a)(EL[- E[[A-NY] -) > V*[[Blw = [a)(E5L - & [w] -)] s
obtained by 9.

10

1-1-2-1-2. V1(pB.V) > Nj = Nilla]w = [a](Njw)] is derived from Vi > Nj
and V > N, by 8:

The induction hypotheses give N3 >> V" and N >>» V*. From the substitu-
tion lemma, we have Ny [[Blw := [B](Nsw)] > V*[[Blw := [B](V{*w)], where N is
also a value and values are closed under substitutions. The induction hypotheses
for £ (2 < j < n) also give £ > £;. Hence, the use of 9 derives

(al(E4[- - E4{uB.NY[[Bw = [BY(Njw)]) -)
> (VA [[Blw := [BI(Viw)])[[Blw := [a](E3[- - & [w] - -])],
whose right-hand side is equivalent to V*[[Blw := [a](E:[- £ [w] - -])], where &F
is Vi*[]

1-1-2-2. & [pB.V] = (pB.V)M,:

In this case, we have two derivations for (u8.V)M, > Nj by the use of 3

or 7. Each case can be verified following a similar pattern to the above two cases.

1-2. M > N = N'[[a]w := [8](&'[w])] is derived from V > N’ and &; > &/
(1<i<n), where E[|=&,[-- &[] -Jand E[]1 =& - &[] -]
The successive application of the substitution lemma to the induction hypothe-

S€ES.

2. Otherwise:
The straightforward use of the induction hypothesis. QED

Finally, the confluence for the call-by-value Ap-calculus can be confirmed,
since > has the diamond property.

Theorem 4. The call-by-value Ap-calculus has the confluence.

5 Related Works and Further Problems

Parallel reduction is very clear and intuitive idea which means to reduce a num-

ber of redexes (existing in the term) simultaneously. It is often applied to prove

11

the confluence of reduction system. However, a naive formulation parallel reduc-
tion does not always work. The Au-calculus is one of such reduction systems. We
showed that the difficulty is in the sequentiality of the structural reduction. So we
think that consecutive sequence of structural reduction should be considered as
one step of parallel reduction. As pointed out in Takahashi [10], the idea does not

1 i.e., A-calculus with n-expansion:M — Az.Mz. The confluence of

work for Ay~
An~1is proved in [1,9]. Jay and Ghani [9] proved the confluence by introducing
“parallel expansion” which includes, roughly speaking, a consecutive applica-
tion of n: M — Ax;. Mz, — Azqz9.Mxi29 — A2 2923. M2 2983 — ---. Van
Raamsdonk[14] introduced a notion of “superdevelopment” to prove confluence
of the orthogonal combinatory reduction systems. A superdevelopment is a re-
duction sequence in which besides redexes that descend from the initial term
some redexes that are created during reduction may be contracted. A key of
these works is to overcome some sequentiality of reduction. We cannot tell ,at

the moment, what kind of reduction contains such sequentiality. To find some

criterion to tell such sequentiality is a further work.

Parigot’s Au-calculus has another reduction rule n*: pa.[a]M — M if a has
no free occurrence in M. Consider a term M = pa.[a]((18.[¥]z)yz). Then M has
77"-redex and the redex with respect to the rule 9 of Definitionl. The reduction
of each redex is represented by “n*” and “RS” in the following figure.

N

RS (1B.[v]2)yz

S
%ﬁ-[’r]m)z

pa.fa]((pB-[v]z)yz)

po.[y]z

By “RS”, we reach pa.[y]z with one step parallel reduction. If we apply n* first,
we have (u83.[y]#)yz from which we cannot reach pa.[y]z with one step parallel
reduction. It seems that we can overcome this situation by counting a series of

structural reductions as one step. We have a formulation of parallel reduction

12

with #* with this idea. However, the definition of the complete development M *

becomes very complex and will be discussed elsewhere.

References

1. Y. Akama: “On Mints’s Reduction for CCC-Calculus”, Lecture Notes in Computer
Science 664, pp. 1-15, 1993.

2. H. P. Barendregt: “The Lambda Calculus,” 2nd ed., North-Holland, Amsterdam,
1984.

3. Ph. de Groote: “On the Relation between the Au-Calculus and the Syntactic The-
ory of Sequential Control”, Lecture Notes in Computer Science 822, pp. 31-43,
1994.

4. M. Felleisen, D. P. Friedman, E. Kohlbecker and B. Duba: “A Syntactic Theory of
Sequential Control”, Theoretical Computer Science 52, pp. 205-237, 1987.

5. K. Fujita: “Calculus of Classical Proofs 1”7, Lecture Notes in Computer Science
1345, pp. 321-335, 1997.

6. T. Griffin: “A Formulae-as-Types Notion of Control”, Conference Record of 17th
ACM Symposium on Principles of Programming Languages, pp. 47-58, 1990.

7. J. R. Hindley: “Basic Simple Type Theory”, Cambridge University Press, 1997.

8. J. R. Hindley, J. P. Seldin: “Introduction to Combinators and A-Calculus”, Cam-
bridge University Press, 1986.

9. C. B. Jay and N. Ghani: “The Virtues of Eta-expansion ”, LFCS report ECS-
LFCS-92-243, October 1992.

10. M. Takahashi: “Parallel Reductions in A-Calculus”, Information and Computa-
tionll8, pp. 120-7, 1995.

11. C. -H. L. Ong and C. A. Stewart: “A Curry-Howard Foundation for Functional
Computation with Control”, Proc. 24th Annual ACM SIGPLAN-SIGACT Sym-
posium of Principles of Programming Languages, 1997.

12. M. Parigot: “Au-calculus: An Algorithmic Interpretation of Classical Natural De-
duction”, Lecture Notes in Artificial Intelligence 624, pp. 190-201, Springer, 1992.

13. M. Parigot: “Strong Normalization for Second Order Classical Natural Deduction”,
Proc. 8th Annual IEEE Symposium on Logic in Computer Science, pp. 39-46, 1993.

14. F. van Raamsdonk: “Confluence and Superdevelopment”, Lecture Notes in Com-
puter Science 690, pp. 168-182, 1993.

Appendix:Proof of Theorem 1

Theorem 4 For any Ap-term M and M', if M = M’ then M' = M*.

Proof. By induction on the structure of M = M'.

1. M = =.
Then we have M* = M' = . Thus we have M' = M*.

13
2. M =Xz M.
Then M = M’ has the following form.

M, = M{
M =Xz My = e M{ =M

2

By induction hypothesis we have M{ = M7. Thus we have M' = Az. M{ =
Ae.M; = M~
3. M = M1 M>.

3.1. M = (Ae.M3)Ms.

Then we have M™* = M3 [z := M;] and the last inference rule of M = M’ is

either 3 or 6.
3.1.1. The last inference rule is 3.

Then M = M’ has the following form.

Mg = Mg)
Az. M3 = Az. M3 My = M,
M = (Aze.M1) My = (Aze.M3)M; = M’

3

By induction hypothesis, we have M4 = My and M3 = M. Applying the
rule 6, we have (Az.M3) M} = M|z := M;]. Thus M' = M* holds.

3.1.2. The last inference rule is 6.
M = M’ has the following form.

M3 = Mé My = Mé
M = (Az.M3)Ms = Ms[z := Mj]

6

By induction hypothesis, we have M5 = M3 and M3 = M3. By Lemma 1(1),
it follows Mj[x := M;] = M3z := M3]. Thus M' = M* and Theorem
holds.
3.2. M = (pa.M3)Ms.
Then the last inference of M = M’ is either 3 or 7.
3.2.1. The last inference rule of M = M’ is 3.
Then M = M’ has the following form.
M3 = Mg .
po.Ms = pa. My "My = M,
M = (pa.M3)Ms = (po.M3) M}

14

By induction hypothesis we have M5 = M5 and M35 = M;. Applying the
rule 7, we have (paM3) M4 = poa.MS[[a]w = [a](wM3)]. Hence M' = M*
and Theorem holds.
3.2.2. The last inference rule of M = M’ is 7.
Then M = M’ has the following form.
Ms = M; M= M,
(pa.M3s)Ms = po. Mi[[a]w := [a](wM3)]

7

By induction hypothesis we have M) = Mj; and Mj = M;. Applying
Lemma 1(2), we have pa. Mj[[a]w := [a](wM3)] = pa. M3 [[a]w = [o](wM5)].
Hence M’ = M* and Theorem holds.

3.3. M = M1 M, and M; is not a A-abstraction or a p-abstraction.
Then M* = M{Mj and M = M’ has the following form.

M :>M{ M2:>Mé
M = MyM; = M{ My = M

By induction hypothesis, we have M{ = M; and M} = M. Thus we have
M{M; = M{ M. Therefore Theorem holds.

4. M = pa.M;.
Then we have M* = pa. My and M = M’ has the following form.

M, = M{
po My = po M

By induction hypothesis we have M{ = M{. Applying the rule 4, we have
po. M| = pa. M. Hence Theorem holds.
5. M = [a]Ml.

5.1. M = [a](pB.-M>).
Then we have M* = M3[8 := a]. The last inference rule of M = M’ is
either 5 or 8.

5.1.1. The last inference rule of M = M’ is 5.
Then M = M' has the following form.

M2:>Mé

pB-Mz = pB.Mj
M = [a](uB.-Mz) = [a](nB.M3) = M’

4

5

15

By induction hypothesis we have M} = My . Apply the rule 8. Then we have
[a](uB.M4) = M3[B := o). Hence M = M' and Theorem holds.
5.1.2. The last inference rule of M = M’ is 8.

My, = Mé
M = [a](uB-M5) = [a]M3[B =) = M’

8

By induction hypothesis, we have Mj = M, . Apply Lemma 1(3). Then we
have M58 := o] = M5[B := a], hence M' = M*.
5.2, M = [a]((#B-M2)N1 - -+ Np).
Then we have M* = M5[[Blw := [a](wN{ - -- N;)]. The last inference rule
of M = M’ is either 5 or 9.
5.2.1. The last inference rule of M = M’ is b.
Then M = M’ has the followoing form.
(#B8.-M2)N1 = Q@ Ny=Nj --- N, =N, 5.3
(48-M2)N1 -~ No = Q'Nj--- N, .
M = [a]((uB.M3)Ny--- Ny) = [](Q'Ny --- N,) = M!

Then the last inference rule of (pB8.M2)N1 = @' is either 3 or 7.
5.2.1.1. The last inference rule of (u3.M2)N1 = @' is 3.
Then Q' = pB.Mj for some M4 and M = M’ has the following form.

My, = Mé 4
uB.Ms = uB.Mj Ny= N, N:=Nj --- N,= N} 3 3
(#B8-M2)Ny - N, = (u3.M4)N; --- N/, 5’ ’

M = [a]((pB.Ma)Ny - - - Np) = [a]((uB.M3) Ny - - - Ny,) = M

By induction hypothesis, we have My = M3 ,N{ = Ni---,N] = N;.
Apply the rule 9. Then we have [a]((#8.M3)N{---N)) = M;[[Blw :=
[a](wNy --- N})]. Hence M' = M* holds.
5.2.1.2. The last inference rule of (u3.M2)N; = Q' is 7.
Then M = M’ has the following form.
My = Mj; N; = N
(B-Mo)N: = pB.My[Blw = [BIwN])] 'Na= Nj - No =N
(#B-M3)Ny - - Np = (pB.My[[Blw := [B](wN{)]) Ny --- Ny,

M = [a]((pB8.M3)N1 - - - Np) = [a]((pB.My[[Blw := [Bl(wN{))Ny -~ Np) = M’

3,--,3
5

By induction hypothesis, we have M3 = M5 and N{ = Ny. By Lemma 1(2),
we have Mj[[Blw := [Bl(wN])] = M3[[B]lw := [B](wN7)]. On the other hand,

16

we have Nj = N5 ,--- N} = N by induction hypothesis. Apply the rule 9.

Then we have
[a]((uB-M;[[Blw := [B](wN)])N3 - - - Ny)
= M3 [[flw == [B](wN7)][[Blw := [a](wN3 -+ N7)]
= M;[[Blw := [a](wN{ N3 --- N7).
Hence M = M' and Theorem holds.
5.2.2. The last inference rule of M = M' is 9.

Then M = M’ has the following form.

My=>Mj N;=N{ ---N,= N}
[a]((#B-M2)N1 - - - Np) = Ma[[Blw := [a](wN7 - -~ Ny)]

9

By induction hypothesis we have M5 = My, N{ = Ny,---,N. = N;. Apply
Lemma 1(2) and (3), we have M, [[Blw := [a](wNy --- N})] = My« [[Blw :=
[a](wN7 --- N;)]. Hence M' = M* and Theorem holds.

5.3. M = [a]M; and M; is not of the form My = puB.Ms or M1 = (uB.M3)Ny -+ N,.
Then we have M* = [a]M{ and M = M’ has the following form.

M, = M{
[a] My = [a]M]

By induction hypothesis we have M{ = M. Applying the rule 5, we have
[a]M{ = [a] M. Hence Theorem holds.

QED

