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Abstract

The concept of domains of recognition is introduced for three-layered neural

networks. The domain lies in the input space and can be represented using con-

nection weights and thresholds of the network. We propose a learning method

of the network so as to enlarge the domain of recognition by extending its range

mapped into the hidden space and by minimizing the slope of a�ne transforms

in the mapping. Based on the method, we introduce a cost function whose

minimization process gives a learning algorithm of the network. A land cover

classi�cation problem has been considered in our simulation.

1 Introduction

Many learning methods for three-layered neural networks have been studied from the

viewpoints of classi�cation and recognition abilities. The back propagation learning

is one of the most popular learning techniques and widely recognized as a powerful

tool for learning the input-output mapping. The outputs of the network that was

learnt by this method are close to supervised signals for training patterns. However,

this method does not guarantee what kind of unknown patterns can be classi�ed in

the same category. Several neural network theories and methods for adaptive learning

and for dynamic modi�cation of neural network structures have been introduced so

far: incremental learning [1]; growing neural networks [2, 6]; pruning neural networks

[3, 4, 5]. A problem of these networks is that their theoretical properties are not

related directly to the concrete design of the general pattern. In fact, these properties

say that the networks have excellent approximation properties, but do not give us any

hint about how to predict the category for the unknown pattern.
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Recently, one of the authors derived cone-like domains of attraction, each of which

contains a memorized pattern, in autoassociative memory networks in a real-valued

vector space [7]. We proposed there a learning method of the network that enlarges

the domain of attraction. Any pattern in the domain can be classi�ed in the same

category as the memorized pattern in the domain. The enlargement of the domain was

done by using the fact that its boundaries consist of some hyperplanes expressed by

the weights and thresholds in the network. Such a simple shape of the domain comes

from a single layer perceptron. In neural networks with hidden units, the domain of

attraction has a complicated form due to nonlinear sigmoid functions in the network.

In this paper, we derive domains in the input space each of which includes several

memorized patterns and represents a category in the case of classi�cation. We call the

domain a domain of recognition from now on. In this case, pattern recognition can be

de�ned as the categorization of input data into identi�able domains via the extraction

of signi�cant features or attributes of the data from a background of irrelevant detail.

The boundaries of such a domain contain a nonlinear sigmoid function as well as the

weights and thresholds in the network. This makes di�cult to learn the network so as

to enlarge the domain of recognition. An attention has been paid to the range of the

domain mapped into the hidden space. This range is a con-like domain surrounded by

a hypercube having zero as a center in the hidden space. However, the enlargement

of the range is not su�cient to extend the domain of recognition in the input space.

To make large the domain of recognition, we need an additional condition. It is

to minimize the slope of a�ne transforms in the network mapping from the input

space into the hidden space. Such two requirements are formulated as a minimization

problem of some cost function. The cost function includes supervised conditions

as a penalty term. The minimization of the cost function is carried out by applying

gradient methods such as the steepest descent method and conjugate gradient method.

These minimization processes give our learning algorithm for three-layered neural

networks.

The plan of this paper is as follows: In Section 2, domains of recognition for three-

layered neural networks are introduced in the same way as in the cone-like domains in

a single layer perceptron [7]. The range of the domain of recognition into the hidden

space takes the form of cone-like domain, and is surrounded by a hypercube having

zero as a center. In Section 3, we derive a condition to make large such a range.

The domain of recognition can be enlarged by considering an additional condition

for minimizing the slope of a�ne transforms included in the network between the

input and hidden layers. By unifying the above two conditions, we make a functional

to be minimized under the supervised conditions. We �nally derive a cost function

containing these supervised conditions as a penalty term, and minimize the function

by various gradient methods. This minimization process gives our learning algorithm.

Section 4 is devoted to a computer simulation. We apply our learning method to a

land cover classi�cation problem in remote sensing. Section 5 is a conclusion.
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2 Three-Layered Neural Network

Let n be the number of input nodes, h the number of hidden units, and l the number

of output units. We consider a three-layered neural network:

y

i

= g(

h

X

j=1

w

ij
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n

X

k=1
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jk

x

k

� �
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); i = 1; 2; :::; l; (1)

where v

jk

and w

ij

denote weights connecting the k-th input node and the j-th hidden

unit, and connecting the j-th hidden unit and the i-th output unit, respectively. The

�

j

and �

i

indicate thresholds at the j-th hidden unit and at the i-th output unit,

respectively. The functions f(t) and g(t) represent sigmoid functions:
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with the transpose symbol

t

. Then, (1) is expressed using the inner product symbol �
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Figure 1: Three-layered neural network
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3 Domains of Recognition

We assume that the number of categories to be separated is l. We have m

�

training

data for the � -th category, where � = 1; 2; � � � ; l. Let us denote the whole training

data by x

�

, � = 1; 2; : : :; m with m =

P

l

�=1

m

�

. We introduce the set

J

k

= f� j

k�1

X

j=0

m

j

< � �

k

X

j=0

m

j

g; m

0

= 0:

For latter convenience, we de�ne the index function q(�) by

q(�) = k; � 2 J

k

; k = 1; 2; � � � ; l:

On the output value '

i

(x

�

) at the i-th output unit, we impose the following su-

pervised condition
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) � 1� "; i = q(�); (4)
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) � "; i 6= q(�) (5)

with a su�ciently small " satisfying 0 < " < 1=2. Since the function s = f(t)

is monotonically increasing and has the inverse function t = ln(s=(1 � s)), we can

rewrite (4) and (5) as follows:
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in the input space. Although this domain has a complicated form because its bound-

aries contain the nonlinear function f(t), we can prove the following result.

Theorem 1: For any x in D

�

(x

�

), we have
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Using this inequality and (6), we can derive
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This theorem means that any x belonging to D

�

(x

�

) can be recognized as the

training pattern x

�

. We call D

�

(x

�

) a domain of recognition.

As a result of Theorem 1. we can prove

Theorem 2: We de�ne l unions of D

�

(x

�

) by

S

k
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�2J

k

D

�

(x

�

); k = 1; 2; � � � ; l:

Then, S

k

are mutually disjoint.

Proof: The proof is done by proof of contradiction. Suppose that S

k

\ S

k

0
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for k 6= k

0

, where � denotes an empty set. Then there exists x

�

belonging to D

�

(x

�

)

for � 2 J

k

and D

�

(x

�

) for � 2 J

k

0

. Since J

k

and J

k

0

are di�erent, there exists i such

that '

i

(x

�

) � 1� "

1��

and '

i

(x

�

) � "

1��

. This leads us to contradiction.

Theorem 2 implies that if a di�erent �ring condition per each di�erent category

is given as a supervised condition, the neural network has classi�cation ability. This

fact will be applied to land cover classi�cation problems to be described in Section

IV.

4 Learning Method

In the previous section, we de�ned the domain of recognition D

�

(x

�

). This domain is

desirable to be as large as possible. So we want to determine the connection weights

and the thresholds in the network so as to enlarge the domain D

�

(x

�

).



6 Koichi Niijima, Akito Ohkubo, Marghny H. Mohamed

If there is no hidden layer in the network (1), this domain takes the form

D
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) = fx 2 R

n

j W
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which has a very simple form because the boundaries of the domain are hyperplanes.

Using this fact, we derived in [7] a learning algorithm of a single layer perceptron.

In the neural network having hidden layers, the boundaries of the domain D

�

(x

�

)

has a complicated shape, which makes di�cult a learning of the neural network. So

we consider a mapping of the domain D

�

(x
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) into the hidden space R
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. It can be

represented as

E
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We see from (10) that the boundaries of E

�

( (x

�

)) consist of hyperplanes. But it

should be noticed that the range E

�

( (x

�

)) is in the h-dimensional cube [�1; 1]

h

. For

latter use, we de�ne l unions of E

�

( (x

�

)) by

H

k

= [

�2J

k

E
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( (x

�

)); k = 1; 2; � � � ; l:

We illustrate the relation between the unions S

k

and the unions H

k

in Fig.2.

Concerning the union H

k

, we have the following result.

Corollary 1: At most one H

k

includes zero in the hidden space R

h

.

Proof: The proof is obvious from Theorem 2.

Corollary 1 will be used to enlarge E

�

( (x

�

)) in the cube [�1; 1]

h

.

Although D

�

(x

�

) has a complicated form, E
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�

)) is a region whose boundaries

consist of hyperplanes. To enlarge D
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As was done in [7], we make large the width of Str( (x

�

)) which can be expressed

as

�jW
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:

Since this width depends on the number � of training data, we maximize the squared
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Concerning the Cone( (x
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)), we maximize the angle  where the hyperplanes
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It is insu�cient to extend only E
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( (x
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)) itself. We must enlarge the region

E
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( (x
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)) in the cube [�1; 1]

h

. From Corollary 1, we see that it is desirable for
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k (x

�

)k to be as close to zero as possible. So we minimize

m
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2

:

To make large the domain D

�
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), we also need to consider the mapping from
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) into E
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)). The essence of this mapping lies in an a�ne transform
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in the function  
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(x). Since the sigmoid function f(s) contained in  
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) is larger if the norm of V
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:

Finally, we consider the supervised conditions (4) and (5). Let us introduce the

following function

z
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from above, we can realize the supervised conditions (4) and (5).

The expression for the cost function F , in terms of the above conditions, is given
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; (11)

where C

i

denote penalty constants. Our learning algorithm is given as a minimizing

process for this cost function. The training of the network takes care of the task

of minimization of F with respect to W

i

, V

j

and �

i

which is performed by gradient-

descent technique.
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In actual computation, however, we minimize the following functional in place of

(11) to avoid numerical instability:
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where we have put U

i

= W

i

=kW

i

k, �

i

= �

i

=kW

i

k, �

i

= kW

i

k, and � = ln((1� ")=").

We minimize �nally the cost function (12) by the gradient method. This minimization

process gives our learning algorithm.

5 Land Cover Classi�cation

5.1 Data Description

Data for land cover classi�cation are obtained by the Thematic Mapper (TM) installed

in Landsat-5 and the Active Microwave Instrument (AMI) installed in ERS-2. Each

of the data is 7 band values which are from visible to infrared reections observed

by TM, or 8 band values consisting of these values and 1 band value of microwave

scattering observed by AMI. The TM value of each band has a 8 bits expression.

However, since the AMI value I has a 16 bits expression, the value I is converted into

a 8 bits value D

n

by the following equations:

�

0

= 20� log

10

(I)� 68:5 (dB);

D

n

= 5(�

0

+ 30)

in which �

0

is called a backscattering coe�cient. In Simulation I, 7 band data of TM

will be treated to learn a neural network. Simulation II deals with 7 band data of

TM and 1 band data of AMI for training a neural network. In both simulations, an

object area to be classi�ed is Chikushi plain in Kyushu Island, Japan, shown in Fig.3.

Categories to be classi�ed are paddy, �eld and orchard, forest, urban and residential

area, bare soil, and sea and river. Furthermore, forest is divided into two subcategories

to get good classi�cation results. Therefore, the total number of categories is 7.
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Figure 3: Landsat 5 TM false color composite image in Chikushi plain, Japan, ac-

quired on April 24, 1997. The image displays band 5 as red, band 4 as green and

band 3 as blue. Bird's eye view.

5.2 Simulation I

Input data of the neural network are orthogonal components obtained by applying the

principal component analysis to 7-dimensional real vectors corresponding to 7 band

data of TM. The training data were chosen from the data whose categories are known

in advance.

The structure of the neural network is as follows: the number n of input units of

the network is 7, the number h of hidden units is 5, and the number l of output units

is 7 which corresponds to the number of categories. The number of training data for

each category was chosen as m

1

= 13, m

2

= 12, m

3

= 9, m

4

= 16, m

5

= 16, m

6

= 16,

and m

7

= 11. Therefore, the total number m of training data is 93. The penalty

constants in the cost function (12) were selected as C

1

= 5, C

2

= 15, C

3

= 1, C

4

= 50

and C

5

= 0:5. As initial values of the weights W

i

and V

j

, random numbers were

chosen. Initial values of thresholds �

i

and �

j

, and " were selected as �

i

= 5, �

j

= 0

and " = 10

�2

. We used the steepest descent method as a minimizing process of (12).

By the learning of neural network, we can obtain 7 unions each of which consists of

several domains of recognition.

Fig.4 illustrates a land cover classi�cation map constructed by estimating which

union each pixel of the image data in Chikushi plain is contained in. We succeeded

to classify 90:5% pixels in the image data ([8, 9]).

Table 1 shows ratios of land cover in Fig.4 and in the map constructed using Digital

National Land Information.

We see from Table 1 that our classi�cation results are close to those in the Land

use.

5.3 Simulation II

We use 7 band data of TM and 1 band data of AMI. AMI data in the area where the

altitude is higher than 70m are prone to be inuenced by mountains. So, we cut the

mountain area in our analysis. Fig.5 shows an AMI image.
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Figure 4: Land cover classi�cation map produced by LDR method for TM image in

Fig. 3, displaying by bird's eye view.

Table 1: Ratios of land cover in Fig.4 and in the map constructed using Digital

National Land Information

Category Our Land

method use

1)2)

1 Paddy 39.3 34.5

2 Field and or-

chard

10.5 8.4

3 Forest 30.0 37.7

4 Urban and 16.4 14.1

residential area

5 Bare soil 3.0 4.3

6 Sea and river 0.8 1.0

Total 100.0

3)

100.0

1) Digital National Land Information.

2) The values for 1,3,4,5 and 6 indicate total

valuesof some subcategories.

3) Unclassi�ed pixels are not included.

Figure 5: ERS-2 AMI image in Chikushi plain, Japan, acquired on January 17, 1997.

The image displays back scatter with a gray scale. Bird's eye view.
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The 8 band data are converted into the orthogonal components by the principal

component analysis, which are used as input data of a neural network. The number

of training data in each category is the same as in Simulation I.

The structure of the neural network is also the same as in Simulation I except for

the number 8 of input nodes. We chose the penalty constants in (12) in the same way

as in Simulation I. As initial values of weights and thresholds, random numbers were

chosen. We employed the steepest descent method as in Simulation I to learn a neural

network. By the learning of neural network, we can obtain 7 unions each of which

consists of several domains of recognition. Fig.6 illustrates a land cover classi�cation

map made by estimating which union each pixel of the image data in Chikushi plain

is contained in. We succeeded to classify 92:3% pixels in the image data ([8, 9]). This

result is better than in Simulation I.

Figure 6: Land cover classi�cation map produced by LDR method for TM and AMI

images in Fig. 3 and Fig. 5, displaying by bird's eye view

Table 2 shows ratios of land cover in Fig.6 and in the map constructed using Digital

National Land Information.

Table 2 shows that the ratios in paddy, and sea and river are extremely close to

those in Land use. The cover ratios in other areas except for forest are almost in the

same situation as in Table 1 when comparing with the values in Land use.

6 Conclusions

We proposed a new learning method for three-layered neural networks based on the

concept of domains of recognition. The feature of our method is to enlarge the domain

by expanding its range in the hidden space and to minimize slopes of a�ne transforms

in the network mapping between the input and hidden layers.

We designed two neural networks: one of them was learnt using 7 band data of

TM, and the other learnt using 7 band data of TM and 1 band data of AMI for
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Table 2: Ratios of land cover in Figure 6 and in the map constructed using Digital

National Land Information

Category Our Land

method use

1)2)

1 Paddy 56.2 57.5

2 Field and or-

chard

4.9 6.3

3 Forest 15.3 5.8

4 Urban and 19.5 23.7

residential area

5 Bare soil 2.6 5.3

6 Sea and river 1.5 1.6

Total 100.0

3)

100.0

1) Digital National Land Information.

2) The values for 1,3,4,5 and 6 indicate total

valuesof some subcategories.

3) Unclassi�ed pixels are not included.

land cover classi�cation. As a result, we could get two land cover classi�cation maps.

Unclassi�ed pixels on the map constructed using 8 band data decreased in comparison

with those made using 7 band data.

Classi�cation ability of neural networks depends on the choice of penalty constants

in the cost function and training data. It is a future work how to select the penalty

constants and training data in order to improve the classi�cation ability.
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