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On Behaviors of Cellular Automata with Rule 14
and 142

Shuichi INOKUCHT *

Abstract

In this paper we deal with 1-D finite cellular automata with a triplet local
transition rule 14 and 142. And we investigate their behaviors and they are
compared with each other.

1 Introduction

Cellular automata are discrete dynamical systems, which have discrete time and space,
and have a local transition rule. Cellular automata were introduced by J. von Neu-
mann as a simulator of a system having self-reproduction and universal computation.
Since cellular automata have wide variety and their behavior are similar to those of
complex systems as fractal and chaotic phenomenon for the last two decades many
researchers investigated their behaviors and applied in mathematics, physics, biology,
computer science and so on[1, 2, 3, 4]. Although Cellular automata have simple struc-
ture, their behaviors are very complicated. Behaviors of linear cellular automata were
investigated by using algebraic methods[5, 8, 9, 10]. But those of many nonlinear
cellular automata except some cellular automata[6, 7] are not analysed yet since we
cannot investigate them by algebraic methods.

The transition rule of nonlinear cellular automata is difficult to deal with because
of not to be able to use algebraic methods. But their behaviors are not always difficult.
The numbers of limit cycles and transient length of many nonlinear cellular automata
obey simple rules in particular.

In this paper behaviors of the nonlinear cellular automata CA-14,_3(m) and CA-
142,,_5(m) are compared while being investigated. We investigate their behaviors and
show rules of the number of limit cycles, period length and transient length.

*Department of Informatics, Kyushu University 33, Fukuoka 812-8581, Japan
E-mail: inokuchi@i.kyushu-u.ac.jp
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2 Preliminaries

In this section, we define 1-dimensional finite cellular automata and necessary nota-
tions for after discussion.

X is the set {0,1}™, which is called a configuration space, and an element in X
is called a configuration. Usually a configuration (z1, s, - -, x,,) denotes z1zy - - -z,
for short.

The triplet local transition rule f is a function {0,1}* — {0,1}, and f is repre-
sented as follows:

111 110 101 100 011 010 001 000
r7 Te Ts T4 T3 T2 T To

Rule number R of f is defined as follows:
R=2"r; + 257+ -+ +2%,.

For instance,
14=22x0+22x1+2"'x1

and
142=2"x 0422 x1+2°x1+2"x1,

so the triplet local transition rule of rule number 14 and 142 are illustrated as follows:

111 110 101 100 011 010 001 000
Rule 14| 0O 0 0 0 1 1 1 0
Rule 142 | 1 0 0 0 1 1 1 0

A cellular automaton which is dealed with in this paper is a pair (X, ) where a
global transition function ¢ : X — X is defined by a triplet local transition rule f as
follows;

Mz12ze - xm) = (f(axixe) f(z12923) - - - f(Zm_12m0))

We call a pair (o, 3) a boundary. The boundary condition is cyclic if and only if
a = x, and 8 = 1, and the boundary condition is fixed if o and g are fixed in
{0,1}. And in particular we called the boundary condition a — b if @ = a and = b.
The triplet local transition rule of rule number R ( or the global transition function
d defined by f of rule number R) is denoted by “rule R” for short.

The cellular automaton (X,0) such that X = {0,1}™ and the rule number of a
triplet local transition rule f which define ¢ is R and its boundary condition is a — b
is denoted by CA-R,_p(m).

The configuration x is on a limit cycle of period length T if there exists a positive
integer s such that 6°(x) = z, and T = min{s > 1|6°(xz) = x}. And the configurations
z(1),2(2),- -+, z(T —1) form a limit cycle of period length T"if x(i + 1) = ¢(x(7)) and
x(T) = z(1), and (i) is on a limit cycle of period length T where 1 <i < T —1. A
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limit cycle of period length 7" is denoted by a T-cycle, in particular 1-cycle is called
a fixed point. And a number of a limit cycle of period length 7" is denoted by ~r(m).
A configuration x is non-initial if there exists a configuration y such that x = §(y).
The height h(x) of = from a limit cycle is defined as follows:

h(z) = min{s > 0/§°(x) is on a limit cycle}
Then the transient length H(m) of CA-R,_;(m) is defined as follows;
H(m) = maz{h(z)|x € {0,1}™}
The symmetric transition rule f7 of a local transition rule f is defined as follows;

fT(‘,'E7 y? Z) = f(z7 y’x)

The reverse transition rule f of a local transition rule f is defined as follows;

f(lU,y,Z):1—f(1—37,1—y,1—2)

For example, the symmetric rule, the reverse rule and the symmetric reverse rule
of rule 14 are rule 84, rule 143 and rule 213 respectively. And the symmetric rule, the
reverse rule and the symmetric reverse rule of rule 142 are rule 212, rule 142 and rule
212 respectively. They are illustrated as follows;

111 110 101 100 011 010 001 000
Rule 84| 0 1 0 1 0 1 0 0
Rule 143 | 1 0 0 0 1 1 1 1
Rule 212 | 1 1 0 1 0 1 0 0
Rule 213 | 1 1 0 1 0 1 0 1

So CA-14, 5(m), CA-845 ,(m), CA-143; z(m) and CA-2135 ,(m) are isomorphic
each other, and CA-142, 3(m), CA-2125_4(m), CA-142; 5(m) and CA-2125 ,(m)
are isomorphic each other.

For the discussion in this paper the following notations are defined;
Let A be a subsequence. Then the sequence composed of k& A’s, the sequence composed
of k bits taken from some A’s and an arbitrary bit are denoted by A, A% and x,
respectively. For example, (011)? = 011011, (010)¢ = 01001 and (010); = (010)2.

3 Behaviors of CA-14,_3(m) and CA-142,_3(m)

In this section we investigate behaviors of CA-14,_g(m) and CA-142,_5(m) and com-
pare their behaviors with each other. And we investigate the differences between their
behaviors caused by the difference between rule 14 and rule 142.

The number of limit cycles and transient length of CA-14,_3(m) and CA-142,_5(m)
are as table 1 and table 2.



4 Suuicur INOKUCHI

a-f m 11234516 |7 |89 |10]11 12|13 |14 |15
0.0 l—cycle|2/2)/3/3]4]4]|5 /5|66 |7 7|8]8]9
tranden. || 023 4|56 | 7|89 10|11 12|13 14|15
0-1 l—eycle| 1|1 (1|1 {11 |1 |1 1|1 1|1 [1]1]1
tranden. || 1|35 | 7|9 1113|1517 19|21 |23 |25 |27 |29
1.0 l—cycle| 1221313414 ,/5/5]6 /6| 7|7]8]8
tranden. || 11|34 (5|6 |7 |89 |10 11]|12|13|14 |15
1.1 l—eycle| 1|1 (1|1 {11 |1 |1/ 1|1 1|1 [1]1]1
tranden. || 12|46 |8 [10|12|14 16|18 |20 |22 |24 | 26 | 28
Table 1: CA-14,_5(m)
Q- m 1123145678910 |11 12|13 |14 15
0-0 l—cycle||2/23|3[4|4|5[5]6|6 | 7|7 /|8]|8]|9
tranden. || 023|456 |7|8|9[10| 111213 |14 |15
0-1 l—cycle| 112|233 |4|4|5|5|6 |6 |7 |7|8]8
tranden. || 123|456 |7|8|9[10|11 1213|1415
1.0 l—cycle|1223[3|4|/4[5|5|6 |6 |7 |7]|8]|8
tranden. || 123|456 |7|8|9[10| 111213 |14 |15
11 l—cycle||223|3[4|4|5[5]6|6 | 7|7 /|8]|8]|9
tranden. || 023|456 |7|8|9[10| 111213 |14 |15

Table 2: CA-142,_3(m)

From table 1 and table 2 we can easily see that CA-14,_g(m) and CA-142,_5(m)
behave regularly. And CA-14,_(m) and CA-142,_¢(m) behave the same but CA-
14,-1(m) and CA-142,_4(m) do differently. So it is conjectured that at boundary
condition o — 0 there exist no effects on the number of limit cycles and transient
length of CA-14,_¢(m) and CA-142,_o(m) by the different between rule 14 and rule
142. In order to show it we will investigate their behaviors in detail.

First necessary and sufficient conditions for a configuration ¢ to be a fixed point
are as follows;

Lemma 1 1. The configuration c is a fived point of CA-14,_g(m) if and only if c
satisfies the following conditions.
e acf contains no 001.
e acf contains no 110.
e acfl contains no 111.

2. The configuration c is a fized point of CA-142,_3(m) if and only if ¢ satisfies
the following conditions;



On Behaviors of Cellular Automata with Rule 14 and 142 )

e acf contains no 001.

e acf contains no 110.

Proof.

1. Let d = d(c).
(sufficient condition) Since f(111) = f(110) = 0 and f(001) = 1 if e contains
111, 110 or 001, then ¢ is not a fixed point. So if ¢ is a fixed point then acf
contains no 111, no 110 and no 001.

(necessary condition) Note that f(xyz) = y for xyz # 111,110 and 001. So if
acf3 contains no 111, no 110 and no 001, then trivially ¢ is a fixed point.

2. (sufficient condition) Assume that acf contains 001 or 110. Since f(110) = 0
and f(001) =1 cis not a fixed point.
(necessary condition) Assume that «c contains no 001 and no 110. Then ¢ is
a fixed point since f(zyz) =y for zyz # 001 and 110.

O
By the above lemma we can easily get the configurations which are fixed points of
CA-14,_p(m) and CA-142,_g(m) as the following corollaries.

Corollary 1 1. All fized points of CA-14¢_o(m) are (10)°0™ % and (10), where
0<i <[]

2. All fized points of CA-14;_o(m) are (01)°0™~* where 0 < 1 < [2].
3. The configuration (10)}, is the unique fized point of CA-14¢_1(m).

4. The configuration (01)% is the unique fized point of CA-141_1(m).

Corollary 2 1. All fized points of CA-142y_(m) are (10)°0™ 2 and (10)%, where
0<i<[Zl.

2. All fized points of CA-142,_¢(m) are (01)'0™~*" where 0 < i < [Z].

3. All fized points of CA-142y_1(m) are (10)'1™~%" where 0 < i < [Z].

4. All fized points of CA-142,_1(m) are (01)'1™ * and (01)%, where 0 < i < [2].
Lemma 2 The followings are common behaviors of CA-14,_¢(m) and CA-142,_¢(m).

1. Let c and ¢ be configurations such that c;yq = 0 and ¢ = cicy - -, 0™ %, d = d(c)

and d' = 6(c"). Then
didy---di = d\dy- - d.
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2. Let ¢ be a configuration and d = 6(c). If Cp—iCm—it1+** Cm = 07 then dy_idp_i1 -+ dyy =
0+ where 0 < i <m — 1.

3. Let ¢ be an arbitrary configuration and d = §(c). Then the number of the
subsequences 01 of ad0 is equal to that of acO.

4. Let ¢ be an arbitrary configuration and d = 6(c). Then the number of the
subsequences 10 of ad0 1s equal to that of acO.

Proof.

1. It is trivial.
2. It is trivial.

3. First we assume that c;c;.; = 01. Then if ¢;_y = 0 then d;_1d; = 01, and if
¢i—1 = 1 then d;d;; = 01. Next we assume that d;d;; = 01.

e Case of CA-14, o(m)
From d;; = 1 we have ¢;jc;i1c;02 = 011,010 or 001 and from d; = 0
Ci—1CiCit1Ci+o = 1011, 1010 or *001.

e Case of CA-142, ((m)
From d;; = 1 we have c¢;¢;11¢,00 = 111,011,010 or 001. ¢;cipic00 = 111
contradicts with d; = 0. If d;d;.1 = 01 then ¢;_i¢;ci11¢i00 = 1011,1010 or
*001.

So the subsequence 01 is derived from itself and results to itself. Hence the
number of 01 of ad0 is equal to that of acO0.

4. First we assume that c;c;1 1 = 10

e Case of CA-14,_¢(m).
If Ci—1Ci—|+1 " Ci—1 = 01171 then di—ldi—l—l—l v di_|_1 = 1101 or 0101 where
1<I1<i Ifaciey---¢i_1 =1 then adidy - - - djyq = 1071,

e Case of CA-142,_¢(m).
If Ci—1 — 1 then di—ldidi—i—l = 100. P And if Ci_1 — 0 then di—ldidi—i—l = x10.

Next we assume that d;d;;, = 10.

e Case of CA-14,_¢(m).
From d; = 1 we have ¢; _ic;c;y1 = 011,010 or 001 and from d;;; = 0
Ci—1C;**Ciqj = 01]0 where 1 S ] S [if di+2di+3 v di—l—l—l—l = 011

e Case of CA-142,_¢(m).
From d; = 1 we have ¢; _i¢;¢;41 = 111,011,010 or 001 and from d;;; = 0
C;i—1CiCi+1Cj12 = 0]_0*, 0110 or 1110.
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So the subsequence 10 is derived from itself and results to itself. Hence the
number of 10 of ad0 is equal to that of acO0.

We let R be 14 or 142 then the following corollary holds;

Corollary 3 Let ¢ and ¢’ be the transition functions of CA-R o(m) and CA-R, (i),
respectively, ¢ and d be configurations of CA-Ra_o(m) such that ¢, 1Cipo -+ € = 0™
and d = 6(c), and ¢ and d' be configurations of CA-Ra—o(i) such that ¢ = cico---¢;
and d' = 0'(c"). Then

didy---d; =d.

And in the following lemma we investigate behaviors of the subsequence 1! in CA-
14,_3(m) and CA-142,_o(m).

Lemma 3 1. For CA-14,_3(m) the following hold; Let ¢ be an arbitrary configu-
ration. 6(c) contains no subsequence 111.

2. Let c be a configuration, d = 6(c) and ¢;11¢i40 - Ciyy and dy1dyyo---dyip be
nth subsequences of acO and ad0 such that ciciyy + - Cipppr = 0110 and dydy 1y -+ - dyp 1y g =
0190, respectively. Then for CA-142,_o(m) if | =1 then !’ =1 or 2, and if | < 2
thenl'! =1—1 orl.

Proof.

1. Let d = 6(c). From the local transition rule 14 d; = 1 is derived from only
Ci1 = 0. So if di—ldidi—i—l = 111 then Ci_9C;_1C; = 000. But since f(OOO) =0
¢i_oc¢;1¢; = 000 contradicts with d; id;d;; = 111. Hence d contains no 111.

2. From lemma 2 and their proof we see that the subsequence 01 and 10 are derived
from themselves and nth subsequence d;1d; o ---dyyp of ad0 is derived from
nth subsequence ¢;11¢;19 -+ ¢;yy of acO.

e First we assume that [ = 1, that is, ¢;c;11¢00 = 010. If ¢,y =1 ore =0
then didi+1di+2 = 010, and if Ci_1 = 0 then dz',ldidzqudlurg = 0110.

e Next we assume that [ > 2, that is, ¢;cip1 -~ ¢ipupr = 01%0. If ¢;_; =1 or
1 = 0 then didﬂ_l o 'di-l—l = 011710, and if Ci1 = 0 then di—ldi © 'di—l—l =
01°0.

Hence if [ =1 then " =1 or 2, and if [ > 2 then I’ =1 or [ — 1.

O

The following lemma states how the subsequence 0! behaves in CA-14,_¢(m) and
CA-142,_o(m).
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Lemma 4 1. Let ¢ be a non-initial configuration, d = 6(c) and ¢; 1649+ ¢y and
dipy1dirio -+ - dpyp benth subsequences of acO and ad0 such that c;civq -+ - Cirjp1 =
1011 and dydy gy - - - dypp oy = 1011, respectively. Then for CA-144_o(m) if I = 1
thenl' =1 or 2, and if L <2 thenl'=1—1 orl.

2. Let ¢ be a configuration, d = 6(c) and ¢; 1649+ iy and dy1dyyo -+ dyp be
nth subsequences of acO and ad0 such that ciciz1 - - - Cipipr = 1011 and dydy 1 -+ - dip 1y 41 =
101, respectively. Then for CA-1424_o(m) if | = 1 thenl' =1 or 2, and if | < 2
thenl' =1—1 orl.

Proof.

1. From lemma 2 and their proof we see that the subsequence 01 and 10 are derived
from themselves and nth subsequence d;y1d; s ---dyp of ad0 is derived from
nth subsequence ¢;11¢;19 -+ ¢iyy of acO.

e First we assume that [ = 1, that is, ¢;¢;11¢.0 = 101, If ¢,y =0o0r¢ =20
then didi—l—ldi-I—Q = 101, and if Ci—1 = 1 then di—ldidi—i—ldi-I—Q = 1001.

e Next we assume that [ > 2, that is, ¢;cip1 -~ €ipupr = 1041, If ¢;_; = 0 or
1 = 0 then didi+1 . 'di+l = 101_11, and if Ci 1 = 1 then difldi o 'dz'+l =
10'1.

Henceif =1 then!'=1or 2, andif [ > 2 thenl' =1 or [ — 1.

2. By the same way as 1 we can show it.

For only CA-14, 3(m) the following lemma holds. The behaviors stated in the
following lemma are caused by f(111) = 0. So in CA-142,_3(m) it does not hold.

Lemma 5 For CA-14,_g(m) the following hold;

1. Let ¢ be a configuration and d = §(c). If did; 1 = 11 then ¢;_1¢;¢;01 = 001.

2. Let c be a configuration and e = §(c). If e;e;11€i10€;03 = 1101 then ¢;_oc;i_1cicipy =
1101 where 2 <i<m — 3.

3. Let ¢ be a configurations such that cica++-ciy1 = 01 (1 < i < m —1) and
e=06F(c) (i+t>3). Then ejes---e€;ps1 contains no subsequence 1101,

Proof.

1. Let d;d;;1 = 11 where 1 <7 < m—1. Then ¢; 1¢; = 00 from the local transitions
rule 14. So we have ¢; 1¢;¢;11 = 001 since f(000) = 0 and f(001) = 1.
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2. Let d = 0(c). From the local transition rule 14 if d; = 1 then ¢;_; = 0. Now
we assume that e;e;11€;10€;13 = 1101, then d;_y = d; = d;120. And since
£(000) = 0 and f(010) = 1 we have d; 1d;d;+1d;1o = 0010. And from d;;; = 1
we have ¢; = 0, and since f(000) # 1 ¢;11¢;40 = 11,10 or 01. But ¢;41¢;10 = 01
contradicts with d; o = 0. So ¢;11¢;.9 = 11 or 10, which don’t contradict with
diio = 0. Since ¢;_1¢;¢;41 # 000 ¢;_1 = 1, and similarly ¢;,_o = 1. Hence we
have ¢; oc; 1c;c;01 = 1101 if e;e;,1€;10€;,.3 = 1101.

3. We prove it by induction on k. Let ¢ be a configuration such that cico - - ¢j11 =
01, d = 6(c), b = 6%(c), a = 6*(c), e = 6%(c) and g = 6**2(c). First if i > 2 then
didy -+ diio = 071110, so ¢i¢p -+ - ¢4 and dydy - - - dj o contain no 1101. And if
¢t = 1 then dydsds = 110 and byb2b3 = 100. So we have ay = 0. Hence bibybsby
and ajasy - - - a5 contain no 1101. Next we assume that ejes -« - €;1,11 contains no
1101. If g1 99 - - - gi1 k13 contains any 1101 then by 2 ejes - - - €141 contains some
1101. So ¢192 - gi+k+3 does not contains any 1101.

Lemma 6 1. Let ¢ be an arbitrary configuration and e = 6*(c). Then for CA-
149 1(Mm) em k€m k11 - - €m contains no subsequence 000 where 2 < k < m — 1.

2. Let ¢ be an arbitrary configuration and d = §(c). Then for CA-145_¢(m)

1oy # OL.

3. Let ¢ be a configuration and d = 6(c). Then for CA-14,_g(m)

d1 - 0
Proof.

1. Let d = d(c), b = 6%(c), e = §(c) and g = 6**'(c). First we assume that
bm—2bm_1by, = 000. Then since d,,,_1d,,1 # 000 d,,,_; = 1. Similarly d,,,_3d,,_o =
11. But by lemma 3 1 d contains no 111. So we have b,, b, 1b,, # 000.
Next we assume that e,,_g€m,_gi1-- €, contains no 000. By the assump-
tion ¢ kGm_k+19m contains no 000. So we let ¢,k 19m k9m_rr1 = 000. If
Em—kem—k+1€m—rk+2 7 000 then e, _r oem _k_1€m_r = 111. But by lemma 3 1
e contains no 111. So e, kem—k+1€m—k+2 = 000. This is contradiction. Hence

Im—k—19m—k9m—k+1 7 000 and gm, k- 19m—k - - - gm contains no 000.
2. It is trivial.

3. Tt is trivial since f(1 %) = 0.
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O
By lemma 6 3 we can regard CA-14;_g(m) after one step transition as CA-14¢_g(m —

1).
Lemma 7 Let ¢ be a configuration and d = 6(¢). Then the following hold;

1. For CA-142y_o(m) if c1co = 01 then d; = 1.
2. For CA-142,_o(m) if c1co = 01 then dydy = 01.

3. For CA-142,_o(m) if cica-+-¢; = 0 then didy-+-di_y = 071 where 2 < i <
m — 1.

Proof. It is trivial. O
With respect to transient length the following lemma hold;

Lemma 8 1. Let C(m,n) = {c | ¢ is a non-initial configuration of CA-14¢_o(m)
and Oc contains n subsequences 01} and h'(m,n) = max{h(c) | ¢ € C(m,n)}.
Then for CA-14_o(m)

h'(m,n) <m—1.

2. Let C(m,n) = {c | ¢ is a configuration of CA-142, o(m) and acO contains
n subsequences 01} and h'(m,n) = max{h(c) | ¢ € C(m,n)}. Then for CA-
1424 _o(m)

h'(m,n) < m.

3. Let ¢ be an arbitrary configuration and e = 6™ *(¢) (k > 0). Then for CA-
140_1(m)
€1€g €411 = (10)24»1

That s, ejeq---epqq1 s Stable.
Proof.

1. We prove it by induction on n. Let ¢ be an arbitrary configuration in C(m, n+1),
and ¢;_1¢; be nth subsequence 01 of ¢. By lemma 6 2 if ¢;,; = 0 then the range
of 7 is from 2n — 1 to m — 3, and if ¢;;; = 1 then it is from 2n — 1 to m — 4.
First we assume that ¢;;1 = 0. Then we let ¢;1¢;y;+1 be (n+1)th 01 of ¢, that
is, ¢ = cico -+ - ¢;_16,0110™ 72 or ¢ = ¢1¢p - - - ¢j_1¢;0710m"=7~1 By lemma 6
2wehave 1 <j<m—1—2.

e If j =1 or 2 then there exists a non negative integer £ < h'(i + 1,n) such
that 6*(c) = 1(01)"*00110™ 23 by lemma 2 1, corollary 3 and lemma 4
1. So §5*2(c) = 1(10)"0™~2"~1 that is, 6¥*2(c) is a fixed point.

e If j > 3 then there exists a non negative integer k < h'(i + 1,n) such that
6% (c) = 1(01)»10'110™2n=1=1 where | < j. So §¥*(c) = 1(01)"0™ 21,
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Next we assume that ¢;;1 = 1. Then we let ¢;1j11¢i1j42 be (n+1)th 01 of ¢, that
is,c=c1--ci_16107110™ "3 or c =¢; - - - ¢i_1¢,10710™" =2, By lemma 6 2

we have 1 <j7<m —1— 3.

e If j =1 or 2 then there exists a non negative integer £ < h/(i + 1,n) such
that 6%(c) = 1(01)"100110™ 273, and §**2(c) is a fixed point.

e If j > 3 there exists a non negative integer £ < h'(i + 1,n) such that
6F =1(01)"10'110m=2"==1 where [ < j. So 6**!(c) is a fixed point.

Hence from the above discussion we have

/ < ! -
h'(m,n+1) < max{ 2n71rrgl?gxmi3{h (i +1,n) + 2},
, . .
2n—1H§l?§Xm—3{h (i+1,n)+m—1i—2},
, .
2n71H§1?§Xm74{h (Z + 1, n) + 2}7
max {A'(i+1,n)+m—i—3}}.

2n—1<i<m—4

So

h'(m,n+1)<  max {h'(+1,n)+2,h'(Gi+1,n)+m—i—2}.
2n—-1<i<m—3
Now it is trivial that h'(m, 1) = m—2 < m—1 for any m. If b'(m',n) < m'—1 for
any m' < mthen h'(i+1,n)+m—i—2 < m—2 < m—1and b'(i+1,n)+2 < i+2.
That is, if A'(m’,n) < i —1 for any m’ < m then we have h'(m,n+1) <m —1.

. we prove it by induction on n. Let ¢ be an arbitrary configuration in C'(m,n+1),
and ¢; 1¢; be nth subsequence 01 of 0c0. If ¢;;; = 0 then the range of 7 is from
2n—1tom—2, and if ¢;;; = 1 then the range of 7 is from 2n —1 to m — 3. First
we assume that ¢;11 = 0, and we let ¢;1c;y;41 be (n+ 1)th 01 of 0c0. That is,
c=cicy - ;010" T where 1 <j<m-—i—land1<I<m—i—j.

e If j =1 and [ = 1, then there exists a non negative integer k < h'(i,n)
such that ¢*(c) = (10)"07'1"0™ 277"~ where 0 < j' < land 1 <1’ < 2.
So 6¥*2(c) = (10)"+H10™=2"=2 that is, §*72(c) is a fixed point.

e If j =1 and | > 2, then there exists a non negative integer k < h'(i,n)
such that 6%(c) = (10)"07'1"0™ 27" where 0 < j' < land 1 < I' < [.
So 8K+ (¢) = (10)"+10m =272 that is, 05+ (¢) is a fixed point.

e If j > 2 and [ = 1, then there exists a non negative integer k < h'(i,n)
such that 6*(c) = (10)"07'1"0™ 27"~V where j' < j —1and 1 < I' < 2.
So 6k '+ (¢) = (10)"+10™2"=2 that is, 6¥+7'*1(c) is a fixed point.

e If j > 2 and [ > 2, then there exists a non negative integer k < h'(i,n)
such that 6%(c) = (10)"07'1"0™ 2" 7"~ where 0 < j' < j—land 1 < I' < L.
So 6%+ (¢) = (10)"+10™=27=2 that is, ¥+ (¢) is a fixed point.
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Next we assume that ¢; 11 = 1, and let ¢; 4 544¢i1 51441 be (n+1)th 01 of 0c0. That
is,c=cicy- - 1°0110" 5 where 1 <s<m—i—2,1<t<m-—i—s—1
and 1 <[ <m-—i—s5—1t.

e Ift =1 and [ = 1 then there exists a non negative integer k£ < h'(i +
s,n) such that 6%(c) = (10)"0* 1¥0™=2"=*~" where ¢/ < 1 and I' < 2. So
5k+2(0) — (10)n+10m—2n—2‘

e If t =1 and [ > 2 then there exists a non negative integer k£ < h'(i +
s,n) such that 6*(c) = (10)"0"1¢0™ 2"~ where ¢ < 1 and I' < I. So
5k+t’+l'(c) — (10)n+10m72n72‘

e If ¢t > 2 and [ =1 then there exists a non negative integer k < h'(i + s, n)
such that 6%(c) = (10)"0*1"0™ 2"~ where ' < ¢t — 1 and I' < 2. So
5k+t’+1(c) — (10)n+10m—2n—2.

e If ¢ > 2 and [ > 2 then there exists a non negative integer k < h'(i + s, n)
such that ¢6*(c) = (10)"0Y170™=2»="'~" where ' < t — 1 and I’ < I. So
5k+t’+l'(0) — (10)n+10m72n72‘

So by the above discussion we have
h'(m,n+1) < max{ ,,_max 2{h'(i,n) + 2},

n—1<i<m—

max {h'(i,n) +m — i},

2n—1<i<m—2

max_ {h'(i + s,n) + 2},

max
2n—1<i<m—2 1<s<m—i—2
I . .
2nf{rgl?§mfz 1gsI§nn%§ifQ{h (04 sn)+m—i—s}}
Trivially A'(m, 1) = m, and if A'(m/,n) < m’ for m" < m then h'(m,n+1) < m.

. We prove it by induction on k. Let d = d(c), b = §™(c), e = §™"*(c) and
g = 6™**+1(¢c). First we assume that ¢; = 1 then d; = 1 by f(01x) = 1 and we
have b; = 1 = (10)}, and we assume that cico-+ -1 = 01 (1 < i < m) then
didy---d; = 0711 and a; = 1 where a = §°(c), so we have b = 1 = (10)%. Next
we assume that ejes - - epy1 = (10);,,. If & is even then trivially gi1go- - - grio =
(10), since f(1 % %) = 0. Otherwise since ey i€ €513 7 000 by lemma 6 1
we have gpio = 1. That is, g1g2 - - - g2 = (10)5 0.

From the above discussion we have the following theorems.

Theorem 1 1. The cellular automaton CA-149_o(m) has only fized points and for

the number of fized points the following formula holds;
m+3

wim) =[5

And its transient length is m.
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2. The cellular automaton CA-14¢_1(m) has an unique fized point. And its tran-
sient length is 2m — 1.

3. The cellular automaton CA-14;_o(m) has only fized points and for the number
of fized points the following formula holds;

m+ 2

mim) = [#3=].

And its transient length is m.

4. The cellular automaton CA-14;_1(m) has an unique fized point. And its tran-
sient length is 2m — 2.

Theorem 2 1. The cellular automata CA-1429_o(m) and CA-142,_1(m) have only
fized points and for the number of fized point the following holds;

m—+ 3

lm) =[5

And their transient length is m.

2. The cellular automata CA-142,_og(m) and CA-142¢_1(m) have only fized points
and for the number of fixed point the following holds;

m+2]

nlm) =[5

And their transient length is m.

4 Conclusion

In this paper we analysed behaviors of CA-14, g(m) and CA-142, z(m). The dif-
ference between rule 14 and rule 142 is the image of the subsequence 111. For the
boundary condition oz — 0 the behaviors after m step transition are not influenced by
the difference. But for the boundary condition o — 1 since the subsequence 111 does
not disappear in CA-142, ;(m) the differences between behaviors of CA-14, ;(m)
and CA-142, 1(m) don’t disappear.

So at boundary condition av—0 it is not important whether f(111) =0 or f(111) =
1 when f(110) =0, £(101) = 0, £(100) = 0, £(011) = 1, £(010) = 1, £(001) = 1 and
f(000) = 0. But cellular automata with 1-bit different rule from rule 14 don’t behave
always like CA-14¢_¢(m) as table 3

It is guessed that the transition rule of CA-14, o(m) except for 111 characterize
its behaviors. In the future we will analyse the behaviors of other cellular automata
in the same point of view and make an universal theory of cellular automata.
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m 172(374[5 (6781910111213

T—cycle |2 3468 [11]15|20]27| 36 | 48 | 64 | 85

CA-T80-0o(m) 1 o133 5 5 7 17 91 9 |11 |11 |13
T—eydel|2]2(2]2[ 22222222 2
CA-460—o(m) e o2 31415 67 8| 9|70 | 11|12 | 13
T—eydel| 21212121212 ]1]2
CA-300_o(m) [2—cycle [0 [1]0|1]0|1]0|1]0]| 1|0 1|0
tranden. | 0|1 |4 |8 14|15 |17 |24 28| 32 | 34 | 39 | 44

T_cyce| 2233445566 7 7]|S8

CA-6o—o(m) tranden. |0 (22166 101014 14| 18 | 18 | 22 | 22
Toeycde|[1 |11 |11 |1 |1 [1[1] 1 |1]1]1
CA-100—0(m) 1 AT 231415 6|7 |8 |9 |70 | 11|12 | 13
T—cycle | 23|58 13[21 345589144 | 233377610

CA-129-9(m) tranden. | O [ 1|11 1 111111171
Toeyde|[1 |11 |11 T |1 [1[1] 1 |1]1]1
CA-L50-0(m) o en T2 3141516 | 718|910 | 11| 12|13

Table 3: Other cellular automata with 1-bit different rule from rule 14
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