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Abstract. Lattice structures are fundamental and useful in mathematics

and theoretical computer science. It is well-known that lattice structures with

meet and join operations satisfying associative, commutative and absorption

laws are equivalent to lattice structures de�ned by ordering relations having

joins and meets. This note de�nes a notion of lattices in Dedekind categories

and tudies on some basic properties on lattice structures with element-free

discussion using relational calculaus.
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1 Introduction

A lattice is a triple (X;_;^) of a set X and two functions _ : X �X ! X

and ^ : X �X ! X satisfying:

Associative Law: (L1_) (x_y)_z = x_(y_z) and (L1^) (x^y)^z = x^(y^z)

Commutative Law: (L2_) x _ y = y _ x and (L2^) x ^ y = y ^ x

Absorption Law: (L3_) x ^ (x _ y) = x and (L3^) x _ (x ^ y) = x

for all elememts x; y and z of X . It is well-known that a lattice (X;_;^) has a

natural ordering � de�ned by x � y for x; y 2 X i� x_y = y. Demonstrating

this fact is good exercise for undergraduate students. In detail it mainly

consists of checking that the ordering � is in fact reexive, transitive and

antsymmetric, and that it has a few alternative de�nitions such as x � y i�

x ^ y = x. Conversely, it is also well-known that the concept of lattices is

obtained from ordered sets with joins and meets.

The motivation of this note is just to demonstrate these facts in categories

[4]. To discuss binary operations such as _ : X�X ! X and ^ : X�X ! X

the involved category needs to have (�nite) cartesian products. Furthermore

the category has to be equipped a kind of relational structures, as we treat

with an ordering within it. This is a reason why categorical lattice theory is

formalized in Dedekind categories [5]. The modern algebraic theory of binary

relations was founded by Tarski [7], and the categorical study for relations

was initiated by Mac Lane [3]. Thought Dedekind categories in this note

are synonyous as allegories due to Freyd and Scedrov [1] and heterogeneous

relation algebras by Schmidt and Str�ohlein [6], the author adopt Dedekind

categories after the historical emergence in literatures. The note is organised

as follows:

In section 2 we de�ne Dedekind categories and relational products, and review
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some fundamentals on Dedekind categories. In section 3 a notion of lattices

in Dedekind categories is de�ned, and some basic facts on a natural partial

ordering on a lattice in a Dedekind category are investigated. In section 4 we

try to construct a lattice from a partial ordering with joins and meets in a

Dedekind category.

2 Dedekind Categories

In this section we recall the fundamentals on relation categories, which we

will call elementary Dedekind categories.

Throughout this note, a morphism � from an object X into an object Y

in a Dedekind category (which will be de�ned below) will be denoted by a

half arrow � : X + Y , and the composite of a morphism � : X + Y followed

by a morphism � : Y + Z will be written as �� : X + Z. Also we will

denote the identity morphism on X as id

X

.

De�nition 2.1. A Dedekind category D is a category satisfying the follow-

ing:

D1. [Distributive Lattice] For all pairs of objects X and Y the hom-set

D(X;Y ) consisting of all morphisms of X into Y is a distributive lattice

with the least morphism 0

XY

and the greatest morphism r

XY

. Its lattice

structure will be denoted by

D(X;Y ) = (D(X;Y );v;t;u; 0

XY

;r

XY

):

D2. [Converse] There is given a converse operation

]

: D(X;Y ) ! D(Y;X).

That is, for all morphisms �;�

0

: X + Y , � : Y + Z, the following converse

laws hold:

(a) (��)

]

= �

]

�

]

, (b) (�

]

)

]

= �, (c) If � v �

0

, then �

]

v �

0

]

for all morphisms �; �

0

: X + Y and � : Y + Z.

D3. [Dedekind Formula] For all morphisms � : X + Y , � : Y + Z and

 : X + Z the Dedekind formula �� u  v �(� u �

]

) holds.

D4. [Residues] For all morphisms � : Y + Z and  : X + Z the residue

(or division)  � � : X + Y is a morphism such that �� v  if and only if

� v  � � for all morphisms � : X + Y . �

The following is a basic property of Dedekind categories, which will be

repeatedly used in this paper.

Proposition 2.1. Let �; �

0

: X + Y and �; �

0

: Y + Z be morphisms in a

Dedekind category. If � v �

0

and � v �

0

, then �� v �

0

�

0

.

Proof. Assume � v �

0

and � v �

0

. First we will see �� v �

0

�. The character-

istic property of residues leads �

0

v �

0

� � � from the reexivity �

0

� v �

0

�.
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Hence we have � v �

0

� � � by the assumption � v �

0

, and so �� v �

0

�

again by the characteristic property of residues. Finally we will see �� v ��

0

.

As �

]

v �

0

]

by D2(c), the former result shows �

]

�

]

v �

0

]

�

]

and so we have

�� = (�

]

�

]

)

]

v (�

0

]

�

]

)

]

= ��

0

by D2(a)-(c). �

More details on fundamental properties of relational categories is referred

to [2]. The following is a basic lemma [1] in Dedekind categories.

Lemma 2.1. For two relations � : X + Y and � : Y + X an equality

id

X

u (� u �

]

)(�

]

u �) = id

X

u �� holds.

Proof.

id

X

u �� = id

X

u id

X

u ��

v id

X

u (id

X

�

]

u �)(�

]

id

X

u �) f Dedekind Formula g

= id

X

u (� u �

]

)(�

]

u �)

v id

X

u ��:

�

A morphism f : X + Y such that f

]

f v id

Y

(univalent) and id

X

v ff

]

(total) is called a function and may be introduced as f : X ! Y .

Corollary 2.1. Let � : X + Y and � : Y + X be relations in a Dedekind

category D. If �� = id

X

and �� = id

Y

, then � = �

]

.

Proof. As �� = id

X

we have id

X

= id

X

u id

X

= id

X

u �� = id

X

u (� u

�

]

)(�

]

u �) by Lemma 2.1. Hence id

X

v ��

]

and id

X

v �

]

�. Also it follows

from id

X

v ��

]

and �� = id

Y

that �

]

� v �

]

���

]

= �

]

�

]

= (��)

]

= id

X

.

Therefore �

]

� = id

X

and so �

]

= �

]

�� = � from �� = id

Y

. �

De�nition 2.2. A Dedekind category D has relational products if for each

pair of objects A and B there is a pair of functions p : A � B ! A and

q : A� B ! B such that p

]

q = r

AB

and pp

]

u qq

]

= id

A�B

. The functions

p and q will be called a pair of projections of relational products. �

Throughout the rest of the note we assume that D is a �xed Dedekind

category with relational products.

Proposition 2.2. Let p : A � B ! A and q : A � B ! B be a pair of

projections of A� B. For each pair of functions f : X ! A and g : X ! B,

a relation f>g = fp

]

u gq

]

: X + A � B is a unique function such that

(f>g)p = f and (f>g)q = g.

X

f

||x

x

x

x

x

x

x

x

x

g

##

F

F

F

F

F

F

F

F

F

f>g

��

A

A�B

p

oo

q

//

B
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Proof. Set h = f>g. The univalency (or, single-valuedness) of h simply follows

from

h

]

h = (fp

]

u gq

]

)

]

(fp

]

u gq

]

)

= (pf

]

u qg

]

)(fp

]

u gq

]

)

v pf

]

fp

]

u qg

]

gq

]

v pp

]

u qq

]

(by f

]

f v id

A

and g

]

g v id

B

)

= id

A�B

:

Also the totality of h comes from

id

X

u hh

]

= id

X

u (fp

]

u gq

]

)(fp

]

u gq

]

)

]

= id

X

u (fp

]

)(gq

]

)

]

f Lemma 2.1 g

= id

X

u fp

]

qg

]

w id

X

u ff

]

gg

]

f f

]

g v r

AB

= p

]

q g

= id

X

f id

X

v ff

]

and id

X

v gg

]

g

The uniqueness of h follows from h = hid

A�B

= h(pp

]

u qq

]

) = hpp

]

u hqq

]

.

�

Remark. It is trivial that p>q = id

A�B

.

Corollary 2.2. For a function k : X ! A an equality k(f>g) = kf>kg

holds. �

Proposition 2.3. Let p

AB

: A � B ! A and q

AB

: A � B ! B be a pair

of projections of A � B, and p

BA

: B � A ! B and q

BA

: B � B ! A a

pair of projections of B � A. The twist function t

AB

: A � B ! B � A is

de�ned as the unique function such that t

AB

p

BA

= q

AB

and t

AB

q

BA

= p

AB

.

(That is, t

AB

= q

AB

p

]

BA

u p

AB

q

]

BA

= q

AB

>p

AB

.) Then t

AB

t

BA

= id

A�B

and t

BA

t

AB

= id

B�A

.

Proof. By Proposition 2.2 we have

t

AB

t

BA

= t

AB

(q

BA

>p

BA

) = t

AB

q

BA

>t

AB

p

BA

= p

AB

>q

AB

= id

A�B

:

�

In general the pair of projections will be denoted by p

AB

: A � B ! A

and q

AB

: A � B ! B. The diagonal function d

A

: A ! A � A is de�ned

as a unique function such that d

A

p

AA

= id

A

and d

A

q

AA

= id

A

. That is,

d

A

= id

A

>id

A

= p

]

AA

u q

]

AA

. The associative function a

ABC

: (A�B)�C !

A� (B � C) is de�ned by

a

ABC

= p

A�BC

p

AB

>(p

A�BC

q

AB

>q

A�BC

)

Another associative function b

ABC

: A� (B � C)! (A� B)� C is de�ned

by

b

ABC

= (p

AB�C

>q

AB�C

q

BC

)>q

AB�C

q

BC

:
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It is trivial that a

ABC

and b

ABC

are mutually inverses, that is, a

ABC

b

ABC

=

id

(A�B)�C

and b

ABC

a

ABC

= id

A�(B�C)

.

For a pair of functions f : A ! X and g : B ! Y we de�ne a function

f�g : A�B ! X�Y by f�g = p

AB

f>q

AB

g(= p

AB

fp

]

XY

uq

AB

gq

]

XY

). That

is, f�g is a unique function such that (f�g)p

XY

= p

AB

f and (f�g)q

XY

=

q

AB

g.

A

p

AB

 ���� A�B

q

AB

����! B

?

?

y

f

?

?

y

f�g

?

?

y

g

X  ����

p

XY

X � Y ����!

q

XY

Y:

The following lemma indicates a well-known example of pullbacks.

Lemma 2.2. An equality p

]

AB

(f � id

B

) = fp

]

XB

holds for every function

f : A! B.

A� B

f�id

B

����! X � B

?

?

y

p

AB

?

?

y

p

XB

A ����!

f

X

Proof. Note that p

]

AB

q

AB

q

]

XB

= r

AB

q

]

XB

= r

AX�B

by p

]

AB

q

AB

= r

AB

and the totality of q

XB

. (r

AX�B

v r

AX�B

q

XB

q

]

XB

v r

AB

q

]

XB

=

p

]

AB

q

AB

q

]

XB

.)

p

]

AB

(f � id

B

) = p

]

AB

(p

AB

fp

]

XB

u q

AB

q

]

XB

)

v p

]

AB

p

AB

fp

]

XB

v fp

]

XB

f p

]

AB

p

AB

v id

A

g

= fp

]

XB

u p

]

AB

q

AB

q

]

XB

f p

]

AB

q

AB

q

]

XB

= r

AX�B

g

v p

]

AB

(p

AB

fp

]

XB

u q

AB

q

]

XB

) f Dedekind Formula g

= p

]

AB

(f � id

B

)

�

Lemma 2.3. Let p : A � B ! A, q : A � B ! B and p

0

: A � B

0

! A,

q

0

: A� B

0

! B

0

be projections of products A�B and A� B

0

, respectively.

Then

(a) � = p

]

(p� u q) = p

]

p� for every relation � : A + B.

(b) If relations �

0

; �

1

: A�B + B satisfy �

0

v q and �

1

v q, then p

]

�

0

up

]

�

1

=

p

]

(�

0

u �

1

).

(c) If relations 

0

; 

1

: A � B

0

+ A � B satisfy 

0

v p

0

p

]

and 

1

v p

0

p

]

,

then p

]

0



0

u p

]

0



1

= p

]

0

(

0

u 

1

) and 

0

q u 

1

q = (

0

u 

1

)q.

Proof. (a) � = � u p

]

q v p

]

(p� u q) v p

]

p� v �.

(b)
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p

]

�

0

u p

]

�

1

v p

]

(�

0

u pp

]

�

1

) fDedekind Formulag

= p

]

(�

0

u pp

]

�

1

u q) f�

0

v qg

v p

]

[�

0

u (pp

]

u q�

]

1

)�

1

] fDedekind Formulag

v p

]

[�

0

u (pp

]

u qq

]

)�

1

] f�

1

v qg

= p

]

(�

0

u �

1

): fpp

]

u qq

]

= id

A�B

g

(c)



0

q u 

1

q v (

0

u 

1

qq

]

)q fDedekind Formulag

= (

0

u p

0

p

]

u 

1

qq

]

)q f

0

v p

0

p

]

g

v [

0

u 

1

(

]

1

p

0

p

]

u qq

]

)]q fDedekind Formulag

v [

0

u 

1

(pp

]

0

p

0

p

]

u qq

]

)]q f

1

v p

0

p

]

g

v [

0

u 

1

(pp

]

u qq

]

)]q fp

]

0

p

0

v id

A

g

= (

0

u 

1

)q: fpp

]

u qq

]

= id

A�B

g

�

3 Lattices

In this section we will see that lattice structures with meet and join opera-

tions satisfying associative, commutative and absorption laws induce reex-

ive, transitive and antisymmetric relations. We will write p = p

XX

, q = q

XX

,

t = t

XX

, d = d

X

, a = a

XXX

and b = b

XXX

.

De�nition 3.1. A lattice in a Dedekind category D is a triple (X;_;^) of

an object X, and two functions (binary operations) _ : X � X ! X and

^ : X �X ! X satisfying

Associative Law:

(L1_) (_ � id

X

)_ = a(id

X

�_)_ f (x _ y) _ z = x _ (y _ z) g

(L1^) (^ � id

X

)^ = a(id

X

�^)^ f (x ^ y) ^ z = x ^ (y ^ z) g

Commutative Law:

(L2_) t_ = _ f x _ y = y _ x g

(L2^) t^ = ^ f x ^ y = y ^ x g

Absorption Law:

(L3_) (p>_)^ = p f x ^ (x _ y) = x g

(L3^) (p>^)_ = p f x _ (x ^ y) = x g

�

The above laws for lattices are illustrated by the following commutative

diagrams:

(L1_)
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(X �X)�X

_�id

X

//

a

��

X �X

_

��

X � (X �X)

id

X

�_

//

X �X

_

//

X

(L2_)

X �X

t

//

_

##

G

G

G

G

G

G

G

G

G

X �X

_

{{w

w

w

w

w

w

w

w

w

X

(L3_)

X �X

p>_

//

p

##

G

G

G

G

G

G

G

G

G

X �X

_

{{w

w

w

w

w

w

w

w

w

X

Recall (p>_)t = _>p by the property of the twist function t and so

(_>p)^ = (p>_)t^ = (p>_)^ = p by (L2^) and (L3_). Hence (L3_

0

)

(_>p)^ = p and (L3^

0

) (^>p)_ = p are equivalent to (L3_) and (L3^),

respectively.

Proposition 3.1. An identity d_ = id

X

holds in every lattice (X;_;^) in

a Dedekind category.

Proof. First note that d(p>p) = dp>dp = id

X

>id

X

= d by Corollary 2.2.

Hence

d_ = d(p>p)_ f d = d(p>p) g

= df(p>_)p>(p>_)^g_ f (p>_)p = p and (L3_) g

= d(p>_)(p>^)_ f Corollary 2.2 g

= d(p>_)p f (L3^) g

= dp f (p>_)p = p g

= id

X

�

De�ne relations � = p

]

(q u _) : X + X and � = (p u ^)

]

q : X + X.

(For concrete relations: 8x; y 2 X , x�y () y = x _ y () x � y, and

x�y () x = x ^ y () x � y.)

Note. It is easy to see the following basic fact on concrete lattices:

(x; y) 2 � = p

]

(q u _)

() 9(x

0

; y

0

) :: (x; (x

0

; y

0

)) 2 p

]

and ((x

0

; y

0

); y) 2 q u _

() 9(x

0

; y

0

) :: x = x

0

and y

0

= y and x

0

_ y

0

= y

() x _ y = y:
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(x; y) 2 p

]

_

() 9(x

0

; y

0

) :: (x; (x

0

; y

0

)) 2 p

]

and ((x

0

; y

0

); y) 2 _

() 9y

0

:: y = x _ y

0

:

(x; y) 2 � = (p u ^)

]

q

() 9(x

0

; y

0

) :: (x; (x

0

; y

0

)) 2 (p u ^)

]

and ((x

0

; y

0

); y) 2 q

() 9(x

0

; y

0

) :: x = x

0

and x

0

^ y

0

= x and y

0

= y

() x ^ y = x:

(x; y) 2 ^

]

q

() 9(x

0

; y

0

) :: (x; (x

0

; y

0

)) 2 ^

]

and ((x

0

; y

0

); y) 2 q

() 9x

0

:: x = x

0

^ y:

Proposition 3.2. Let (X;_;^) be a lattice in a Dedekind category and set

� = p

]

(q u _) : X + X. Then an identity id

X

u d_ = id

X

u � holds.

Proof.

id

X

u � = id

X

u p

]

(q u _)

= id

X

u (p u q u _)

]

(p u q u _) f Lemma 2.1 g

= id

X

u (p u q)

]

_ f Lemma 2.1 g

= id

X

u d _ : f d = p

]

u q

]

g

�

Combining with Propositions 3.1 and 3.1 we have the following

Corollary 3.1. Let (X;_;^) be a lattice in a Dedekind category. Then � =

p

]

(q u _) : X + X satis�es id

X

v � (reexive). �

Proposition 3.3. Let (X;_;^) be a lattice in a Dedekind category. Then

� = p

]

(q u _) : X + X satis�es � u �

]

v id

X

(antisymmetric).

Proof.

� u �

]

= p

]

(q u _) u (q u _)

]

p

v (q u _)

]

[(q u _)p

]

u p(q u _)

]

](q u _) f Dedekind Formula g

v _

]

(qp

]

u pq

]

)_

= _

]

t_ f t = qp

]

u pq

]

g

= _

]

_ f (L2_) g

v id

X

: f The univalency of _ g

�

Proposition 3.4. Let (X;_;^) be a lattice in a Dedekind category, and set

� = p

]

(q u _) : X + X and � = (p u ^)

]

q : X + X. Then an identity

� = p

]

_ = ^

]

q = � holds.
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Proof. First note p = pup = (p>_)pu (p>_)^ = (p>_)(pu^) by (L3_) and

Corollary 2.2. Hence

� = p

]

(q u _)

v p

]

_

= [(p>_)(p u ^)]

]

(p>_)q f p = (p>_)(p u ^) and (p>_)q = _ g

= (p u ^)

]

(p>_)

]

(p>_)q

v (p u ^)

]

q f The univalency of p>_ g

= �:

Similarly it follows from p = p u p = (^>p)q u (^>p)_ = (^>p)(q u _) by

(L3^

0

), Proposition 2.2 and Corollary 2.2 and so q = tp = t(^>p)(q u _) =

(t ^ >tp)(q u _) = (^>q)(q u _) by by (L2^). Hence

� = (p u ^)

]

q

v ^

]

q

= [(^>q)p]

]

(^>q)(q u _) f q = (^>q)(q u _) and (^>q)p = ^ g

= p

]

(^>q)

]

(^>q)(q u _)

v p

]

(q u _) f The univalency of ^>q g

= �:

�

Proposition 3.5. Let (X;_;^) be a lattice in a Dedekind category. Then

� = p

]

(q u _) : X + X satis�es �� v � (transitive).

Proof.

�� = p

]

_ p

]

_ f Proposition 3.4 g

= p

]

p

0

]

(_ � id

X

)_ f Lemma 2.2 g

= p

]

p

0

]

a(id

X

� _)_ f (L1_) g

= p

]

p

0

]

b

]

(id

X

� _)_ f a = b

]

g

= (bp

0

p)

]

(id

X

�_)_

= [(id

X

�_)p]

]

(id

X

� _)_ f bp

0

p = p

1

= (id

X

� _)p g

= p

]

(id

X

�_)

]

(id

X

� _)_

v p

]

_ f The univalency of id

X

�_ g

= �: f Proposition 3.4 g

�

Note. The following three diagrams may help to understand the proof of the

last proposition.
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X

X �X

_

//

p=p

XX

OO

X

(X �X)�X

p

0

=p

X�XX

OO

_�id

X

//

a

XXX

��

X �X

p=p

XX

OO

_

��

X �X

id

X

�_

//

X �X

_

//

X

X � (X �X)

b

XXX

//

p

1

=p

XX�X

��

(X �X)�X

p

0

��

X

X �X

p

oo

X � (X �X)

id

X

�_

//

p

1

%%

L

L

L

L

L

L

L

L

L

L

L

X �X

p

{{x

x

x

x

x

x

x

x

x

X

Theorem 3.1. Let (X;_;^) be a lattice in a Dedekind category. Then � =

p

]

(q u _) : X + X is reexive, transitive and antisymmetric. Moreover,

� = p

]

(q u _) = p

]

_ = ^

]

q = (p u ^)

]

q holds. �

4 Orderings

In this section we will see that orderings having joins and meets induce lat-

tice structures also in Dedekind categories. First we show a technical lemma

needed later.

Lemma 4.1. Let � : X + X and  : Y + X be relations, and let h : Z ! Y

and k : Y ! X be functions. Then

(a) hf(� � )

]

u g = (� � h)

]

u h,

(b) If id

X

v � and � = , then k v (� � )

]

u  if and only if k� = .

Proof.

(a)

hf(� � )

]

u g = h(� � )

]

u h

= f(� � )h

]

g

]

u h

= f(� � )� hg

]

u h

= (� � h)

]

u h:
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(b)

k v (� � )

]

u  () k v (� � )

]

and k v 

() k

]

 v � and k v 

()  v k� ^ k v  f k is a function g

()  = k� f id

X

v � and � =  g

�

De�nition 4.1. A relation � : X + X is an ordering on X if id

X

v �

(reexive), �� v � (transitive) and � u �

]

v id

X

(antisymmetric). �

For two relations �; �

0

: X + X we de�ne relations �j�

0

: X �X + X and

_

0

: X �X + X by �j�

0

= p� u q�

0

(= (�

]

>�

0

]

)

]

) and _

0

= (� � �j�)

]

u �j�.

Note that this de�nition was suggested by Dr. Wolfram Kahl, Universit�at

der Bundeswehr M�unchen, when he visited to Kyushu University in August,

1997.

Note. The following may give concrete meanings of relations �j� and _

0

.

x � z and y � z

() (x; z) 2 � and (y; z) 2 �

() ((x; y); z) 2 p� and ((x; y); z) 2 q�

() ((x; y); z) 2 p� u q� = �j�:

8z

0

:: x � z

0

and y � z

0

) z � z

0

() 8z

0

:: ((x; y); z

0

) 2 �j� ) (z; z

0

) 2 �

() (z; (x; y)) 2 � � �j�

() ((x; y); z) 2 (� � �j�)

]

:

�

It is clear that if � is antisymmetric then _

0

is univalent.

_

]

0

_

0

v (� � �j�)(�j�) u (�j�)

]

(� � �j�)

]

v � u �

]

v id

X

As usual we say � has joins (least upper bounds) if _

0

= (� � �j�)

]

u �j�

is total, and � has meets (greatest lower bounds) if ^

0

= (�

]

� �

]

j�

]

)

]

u �

]

j�

]

is total.

Theorem 4.1. Let � : X + X be an ordering on X, _

0

= (� � �j�)

]

u �j�

and ^

0

= (�

]

� �

]

j�

]

)

]

u �

]

j�

]

. If � has least upper bounds and greatest lower

bounds, then

(a) _

0

� = �j�,
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(b) p

]

_

0

= � and q

]

_

0

= �,

(c) t_

0

= _

0

and t^

0

= ^

0

,

(d) (p>_

0

)^

0

= p and (p>^

0

)_

0

= p,

(e) (_

0

� id

X

)_

0

= a(id

X

� _

0

)_

0

.

Proof. (a) By the transitivity �� v � of � we have (�j�)� v �j�. Hence an

equality _

0

� = �j� follows from the de�nition of _

0

and Lemma 4.1(b).

(b) It is trivial that p

]

_

0

v p

]

(�j�) v p

]

p� v �. Recall that � = p

]

(p� u q)

by Lemma 2.3(a). So it su�ces to show that p� u q v _

0

. First p� u q v �j�

follows from p�uq = p�uq(�u�

]

) v p�uq�. Now note that p�uq v (���j�)

]

if and only if (p� u q)

]

(�j�) v �. However, the latter condition follows from

(p� u q)

]

(�j�) = (p� u q)

]

(p� u q�) v q

]

q� v �.

(c) First note that t(�j�) = tp� u tq� = q� u p� = �j�. By Lemma 4.1(a) we

have

t_

0

= f� � t(�j�)g

]

u t(�j�) = (� � �j�)

]

u �j� = _

0

:

(d) An inequality p�

]

v _

0

�

]

follows from p�

]

v _

0

_

]

0

p�

]

= _

0

(p

]

_

0

)

]

�

]

=

_

0

�

]

�

]

= _

0

�

]

(since � is transitive). Then we have (p>_

0

)(�

]

j�

]

) =

(p>_

0

)p�

]

u (p>_

0

)q�

]

= p�

]

u _

0

�

]

= p�

]

, and so

(p>_

0

)^

0

= (p>_

0

)f(�

]

� �

]

j�

]

)

]

u �

]

j�

]

g

= f(�

]

� (p>_

0

)(�

]

j�

]

)g

]

u (p>_

0

)�

]

j�

]

f Lemma 4.1(a) g

= (�

]

� p�

]

)

]

u p�

]

:

Therefore Lemma 4.1(b) proves p v (p>_

0

)^

0

, and so p = (p>_

0

)^

0

.

(e) De�ne two relations _

1

: (X �X)�X + X and _

2

: X � (X �X) + X

by

_

1

= f� � (�j�)j�g

]

u (�j�)j� and _

2

= f� � �j(�j�)g

]

u �j(�j�):

First we will prove that (_

0

� id

X

)_

0

= _

1

and (id

X

� _

0

)_

0

= _

2

, which

follows from (_

0

� id

X

)_

0

v _

1

and (id

X

� _

0

)_

0

v _

2

, respectively, since

(_

0

� id

X

)_

0

and (id

X

�_

0

)_

0

are total functions, and _

1

and _

2

are partial

functions. Hence, by Lemma 4.1(b) we have to see that (_

0

� id

X

) _

0

� =

(�j�)j� and (id

X

�_

0

) _

0

� = �j(�j�). But we have

(_

0

� id

X

) _

0

� = (_

0

� id

X

)(�j�)

= (_

0

� id

X

)(p� u q�)

= (_

0

� id

X

)p� u (_

0

� id

X

)q�

= p

0

(�j�) u q

0

�

= p

0

_

0

� u q

0

�

= (�j�)j�;

and

(id

X

�_

0

) _

0

� = (id

X

�_

0

)(�j�)

= (id

X

�_

0

)(p� u q�)

= (id

X

�_

0

)p� u (id

X

�_

0

)q�

= p

0

� u q

0

_

0

�

= �j(�j�):
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This proves that (_

0

� id

X

)_

0

= _

1

and (id

X

�_

0

)_

0

= _

2

. Finally we have

(_

0

� id

X

)_

0

= a(id

X

� _

0

)_

0

from af�j(�j�)g = (�j�)� and

a(id

X

�_

0

)_

0

= a_

2

= af� � �j(�j�)g

]

u af�j(�j�)g

= [� � af�j(�j�)g]

]

u af�j(�j�)g

= f� � (�j�)j�g

]

u (�j�)j�

= _

1

= (_

0

� id

X

)_

0

;

which completes the proof. �

Theorem 4.2. Let (X;_;^) be a lattice in a Dedekind category D. If � =

p

]

(_ u q) and _

0

= (� � �j�)

]

u �j�, then _ = _

0

.

Proof. Since _ is a function and _

0

is univalent, it su�ces to show that

_ v _

0

. To see this we have to show that _ v �j� and �j� v _� by Lemma

4.1(b). (Note that � is an ordering on X by the result in Section 2.) First

_ = _ u _ v pp

]

_ uqq

]

_ = p� u q� = �j�. Noticing that (p� id

X

)q = q

0

and

(q � id

X

)q = q

0

and id

X

� f = p

0

p

]

u q

0

fq

]

v p

0

p

]

, it follows that

�j� = pp

]

(_ u q) u qp

]

(_ u q)

= p

]

0

(p� id

X

)(_ u q) u p

]

0

(q � id

X

)(_ u q)

f Lemma 2.2 g

= p

]

0

f(p� id

X

)(_ u q) u (q � id

X

)(_ u q)g

f Lemma 2.3(b) g

= p

]

0

f(p� id

X

) _ u(q � id

X

) _ uq

0

g

= p

]

0

fa(id

X

� q) _ ua(id

X

� _)q u a(id

X

� q)qg

= p

]

0

af(id

X

� q) _ u(id

X

� _)q u (id

X

� q)qg

= p

]

0

af(id

X

� q) _ u((id

X

�_) u (id

X

� q))qg

f Lemma 2.3(c) g

v p

]

0

af(id

X

� _) u (id

X

� q)gf((id

X

�_) u (id

X

� q))

]

(id

X

� q) _ uqg

v p

]

0

a(id

X

�_)_

= p

]

0

(_ � id

X

)_

f (L1_) g

= _p

]

_

f Lemma 2.2 g

= _�:

�

Note. The following four diagrams may help to understand the proof of the

last theorem.
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(X �X)�X

p

0

��

f�id

X

//

(PB)

X �X

p

��

X �X

f

//

X

(X �X)�X

a

��

p�id

X

//

X �X

id

X�X

��

X � (X �X)

id

X

�q

//

X �X

X � (X �X)

q

1

��

id

X

�g

//

(PB)

X �X

q

��

X �X

g

//

X

(X �X)�X

a

��

q�id

X

//

X �X

id

X�X

��

X � (X �X)

q

1

//

X �X

�
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