
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Pattern Matching Machine for Text Compressed
Using Finite State Model

Takeda, Masayuki
Department of Informatics Kyushu University

https://hdl.handle.net/2324/3011

出版情報：DOI Technical Report. 142, 1997-10. Department of Informatics, Kyushu University
バージョン：
権利関係：

DOI-TR-142

DOI Technical Report

Pattern Matching Machine for Text Compressed

Using Finite State Model

by

M. Takeda

October 1997

Department of Informatics

Kyushu University

Fukuoka 812-81, Japan

Email: takeda@i.kyushu-u.ac.jp Phone: +81-92-642-2692

Pattern Matching Machine for

Text Compressed Using Finite State Model

Masayuki Takeda

Department of Informatics

Kyushu University

Fukuoka 812-81

Japan

takeda@i.kyushu-u.ac.jp

Abstract

The classical pattern matching problem is to �nd all occurrences of patterns

in a text. In many practical cases, since the text is very large and stored in

the secondary storage, most of the time for the pattern matching is dominated

by data transmission of the text. Therefore the text compression can speed-up

the pattern matching. In this framework it is required to develop an e�cient

pattern matching algorithm for searching the compressed text directly without

decoding. In 1992, Fukamachi et al. proposed a method of constructing pattern

matching machine that runs on Hu�man coded text, based on the Aho-Coracick

algorithm. However, since the Hu�man code is optimal only under the assump-

tion of the memoryless source model, the compression ratio is not very high. On

the other hand, it is known that English text can be highly compressed by the

compression method based on the Markov model. In this paper, we focus our

attention on the �nite-state model, which subsumes the Markov model as an

important special case, and show an algorithm for constructing pattern match-

ing machine for text compressed under the assumption of this model. We also

give a proof of the correctness of the algorithm.

1 Introduction

The classical pattern matching problem is to �nd all occurrences of patterns in a text.

In many practical cases, since the text is large and stored in the secondary storage,

most of the time for the pattern matching is dominated by the data transmission of

the text. It is not easy to decrease the processing time only by improving pattern

matching algorithm itself. The data transmission time can be reduced by using text

compression. In other words, the text compression can speed-up the pattern matching.

In this framework, it is required to develop an e�cient pattern matching algorithm

for searching directly the compressed text without decoding.

The compressed pattern matching problem has been studied by many researchers

[6, 5, 1, 2, 3, 7, 9, 4, 10, 13, 11], mainly from theoretical viewpoints. Most of the

2 M. Takeda

compression methods dealt with are the adaptive compression methods such as the

LZ77 compression [15] and the LZW compression [14]. Since in such compression

methods the encoding of text substring depends on the previous part of the text, it

is needed to keep track of some information about the compression together with the

pattern matching. For this reason we shall focus our attention on the non-adaptive

compressions in this paper.

Now, the problems to be overcome in the compressed pattern matching are sum-

marized as follows.

(1) It is needed to determine the �rst bits of codewords in a compressed text when

searching for a compressed pattern. That is, a syncronization mechanism is

needed to avoid misdetection of the pattern.

(2) Bitwise processing slows down the pattern matching.

(3) The number of the encodings of pattern can grow exponentially, especially in a

dictionary based compression method.

In 1994 Manber [11] proposed a simple method that assigns the unused area of the

ASCII code to some frequent pairs of characters. A compressed pattern is searched

for within a compressed text by an arbitrary algorithm. Since all the codewords are of

8 bits, the problems (1) and (2) do not arise. To avoide the problem (3), he proposed

a method of decreasing the number of the encodings of a pattern. The compression

ratio is about 70%, and then the running time is reduced to nearly the same rate.

On the other hand, in 1992 Fukamachi et al. [8] presented an algorithm for con-

structing a pattern matching machine that runs on the Hu�man coded text. It is

an extension of the Aho-Corasick algorithm. The problem (1) arises since the Hu�-

man code is a variable length code. They solved this problem by incorporating an

automaton accepting the set of codewords into the pattern matching machine. This

method avoids misdetection of patterns without extra works. Whereas the problem

(3) does not arise, the problem (2) is crucial. In fact, we must make state transitions

and checks of outputs bit-by-bit. This problem can be overcome by a simple method:

Substitute one state-transition for 4 consecutive state-transitions caused by 4 bits of

the Hu�man coded text. The experimental results on the Brown corpus showed that

the running time is reduced to 64% of the uncompressed case [12].

To highly speed-up the pattern matching, we shall consider to improve the com-

pression ratio. The Hu�man code is optimal only when the memoryless source model

is assumed. It is known that English texts show a good compression ratio when

compressed under an assumption of the Markov model. In this paper, we use the

�nite-state model in which the probablity distribution is conditioned by the current

state. The Markov model is an important special case of this model.

The compression based on this model can be formalized as a �nite-state encoder

(FSE, for short). An FSE reads each character of text, emits the corresponding code-

word, and then changes its state. That is, an FSE is a kind of Mealy type generalized

sequential machine. In this paper we show an algorithm for constructing pattern

matching machine that runs on the text coded by FSE. We also give a correctness

proof of the algorithm.

Pattern Matching Machine for Text Compressed Using Finite State Model 3

A/111
B/10
C/110

A/00
D/11

1
D/0B/01

C/10 2

Figure 1: Finite-state encoder with two states.

01

0

0

1

10

0 1

1

1A B C D
0

A

B

C

D

for state 1 for state 2

Figure 2: Code-trees.

2 Finite-State Encoder

Figure 1 shows an example of an FSE with two states, where the source alphabet is

fA;B;C;Dg, and the code alphabet is f0; 1g. The code-trees for the two states 1 and

2 are shown in Fig. 2.

Formally, an FSE is a 6-tuple (Q; q

0

;�;�; �; �), where Q is a �nite set of states; q

0

in Q is the initial state; � is a source alphabet; � is a code alphabet; � : Q��! Q

is a state-transition function; and � : Q��! �

�

is a coding function which satis�es

the condition that, for all q in Q and all a; b in �, if �(q; a) is a pre�x of �(q; b), then

a = b. De�ne for each state q in Q the function '

q

: � ! �

�

by '

q

(a) = �(q; a)

(a 2 �). Then, the above condition means that, for any state q, '

q

is a one-to-one

mapping and the set of codewords C

q

= f'

q

(a)ja 2 �g has the pre�x property.

4 M. Takeda

input: D B B D C A B

state: 1 ! 2 ! 1 ! 1 ! 2 ! 1 ! 2 ! 1

output: 11 10 01 11 110 00 10

Figure 3: Move of FSE.

01

0 1

0 1

2 1 1 2

1

0 1

0 1

10

1

1

1

2

2

Figure 4: Automaton that accepts the set of encoded strings.

The broken line circles indicate the root node with the

same number.

Extend � into the function from Q� �

�

to Q by

(

�(q; ") = q;

�(q; xa) = �(�(q; x); a);

and then extend � into the function from Q� �

�

to �

�

by

(

�(q; ") = ";

�(q; xa) = �(q; a) � �(�(q; x); a);

where q 2 Q, x 2 �

�

, and a 2 �. The encoding of a text T 2 �

�

by an FSE is then

de�ned to be the string �(q

0

; T).

For example, the FSE of Fig. 1 takes as input a text DBBDCAB, makes state-

transitions of 1! 2! 1! 1! 2! 1! 2! 1, and emits string �(1;DBBDCAB) =

11 10 01 11 110 00 10. See Fig. 3.

To �nd keywords in a compressed text without decoding, we have to scan the

text with recognizing the state changes of the FSE. Figure 4 shows the automaton

accepting the set of strings encoded by the encoder of Fig. 1. The automaton is

obtained from the code-trees of Fig. 2 in a simple way. Notice that every leaf of

the code-trees is replaced by the root of some code-tree. The replacement should be

done according to the state-transition function � of the encoder. For example, since

�(2; C) = 1 in Fig. 1, the leaf representing the symbol C in the code-tree for state 2

is replaced by the root of the code-tree for state 1.

Pattern Matching Machine for Text Compressed Using Finite State Model 5

1

1

1

0

0

1

BD AB

0

1

1

1

1

1

1

0

0

BD

AB

for state 1 for state 2

Figure 5: Keyword-trees for AB and BD.

The thick line circles correspond to the �rst bit of code-

words.

Suppose the keywords are AB and BD. In state 1 we shall search for the strings

�(1; AB) = 00 10 and �(1; BD) = 01 11, and in state 2 the strings �(2; AB) = 111 01

and �(2; BD) = 10 11. The keyword-trees for states 1 and 2 are shown in Fig. 5.

PMM for text coded by FSE is constructed from the automaton of this kind and

the keyword-trees. The next section presents a method of constructing such PMM.

3 PMM for text coded by FSE

A PMM is composed of the goto, the failure, and the output functions, which are de-

noted by g, f , and o, respectively. Figure 6 shows PMM for the running example. The

solid and the broken arrows represent the goto and the failure functions, respectively.

The underlined strings adjacent to the nodes mean the outputs from them. The goto

function is obtained by combining the keyword-trees of Fig. 5 with the automaton of

Fig. 4. Note that the leaves of the code-trees represented by broken circles mean the

root nodes of the keyword-trees with the same number.

The computation of the failure function are almost the same as Aho-Corasick's.

It is computed for all nodes in the keyword-trees. De�ne the depth of a node in a

keyword-tree to be the length of the path from the root. We shall compute the failure

function for all nodes of depth 0, then for all nodes of depth 1, and so on, until the

failure function has been computed for all nodes in the keyword-trees. The di�erence

6 M. Takeda

01

0 1

0 1

2 1 1 2

0 1

0 1

10

1

1

1

2

1

1

1

0

0

1

1

BD AB 1

1

1

1

1

1

0

0

2

BD

AB

0

Figure 6: Pattern matching machine

Pattern Matching Machine for Text Compressed Using Finite State Model 7

is on the values of the failure function for the nodes of depth 0. The computation is as

follows: Let n

i

be the root node of the keyword-tree corresponding to a state i of the

encoder, and set f(n

i

) to be the root node of the code-tree corresponding to the state

i. The values for the nodes of depth d > 0 are computed from the falilure function

for the nodes of depth less than d, in exactly the same manner as Aho-Corasick's

algorithm. That is, we consider each node r of depth d� 1 and perform the following

actions.

1. If g(r; a) = fail for all a in �, do nothing.

2. Otherwise, for each a in � with g(r; a) = s, do the following:

(a) Set t = f(r).

(b) Execute the statement t f(t) zero or more times, until a value for t is

obtained with g(t; a) 6= fail.

(c) Set f(s) = g(t; a).

The computation of the output function is the same as Aho-Corasick's.

4 Correctness of Construction of PMM

A PMM is said to be valid for a set of patterns � if it reports that pattern � 2 �

ends at position i of text T if and only if T = u�v and ju�j = i. This section gives a

correctness proof of the construction algorithm of our PMM.

Let

S =

8

>

<

>

:

hp; x; ui 2 Q� �

�

��

�

�

�

�

�

�

�

�

u is a proper pre�x of

the codeword �(�(p; x); a)

for some a 2 �.

9

>

=

>

;

:

Let us de�ne an equivalence relation � on S by

hp; x; ui � hq; y; vi , �(p; x) = �(q; y) and u = v:

For a subset X of �

+

, put

S

X

=

8

>

>

>

<

>

>

>

:

hq; x; ui 2 S

�

�

�

�

�

�

�

�

�

�(q; x) � u is a pre�x of

the encoded string �(q; w)

for some w 2 X such that

x is a pre�x of w.

9

>

>

>

=

>

>

>

;

:

Let K be the set of keywords. Then there is a natural one-to-one correspondance

between S

K

and the set of nodes in the keyword-trees. Every node in the keyword-

trees is represented by an element in S

K

. Similarly, every node in the code-trees is

represented by an element in S

�

. Of course, an element in S

K

\ S

�

represents both a

node in the keyword-trees and a node in the code-trees.

De�nition 1 For any hp; x; ui in S

K

with x 6= ", let �(p; x; u) be the tupple hq; y; vi

in S

K

[S

�

such that y is the longest proper su�x of x with hp; x; ui � hq; y; vi.

8 M. Takeda

Note that �(p; x; u) is always de�ned for x 6= " because of hp; x; ui � h�(p; x); "; ui 2

S

�

.

Lemma 1 Let s be a node in the keyword-trees that is represented by hp; x; ui.

(1) When x = ", f(s) is the node in the code-trees that is represented by the same

tupple hp; x; ui.

(2) When x 6= ", if �(p; x; u) is in S

K

, f(s) is the node in the keyword-trees that

is represented by �(p; x; u); otherwise, f(s) is the node in the code-trees that is

represented by �(p; x; u).

Proof. By the induction on depth of s. It is easy to show (1). To prove (2), we

consider the following two cases.

a) When u 6= ", u is written as u = wa for some w in �

�

, a in �. Then there exist

a sequence of states p

0

; p

1

; : : : ; p

m

and a sequence of strings x

0

; x

1

; : : : ; x

m

such

that

m > 0;

p

0

= p;x

0

= x;

hp

i

; x

i

; wi 2 S

K

[S

�

(0 � i � m);

�(p

i�1

; x

i�1

; w) = hp

i

; x

i

; wi (1 � i � m);

hp

i

; x

i

; wai 62 S

K

[S

�

(1 � i < m);

hp

m

; x

m

; wai 2 S

K

[S

�

:

By the de�nition of � we have

�(p; x; wa) = hp

m

; x

m

; wai:

By the induction hypothesis and the computation of the failure function, we can

see that the node f(s) is represented by �(p; x; wa).

b) When u = ", we can prove in a similar way that f(s) is represented by �(p; x; ").

Lemma 2 Let s be a node in the keyword-trees that is represented by hp; x; ui. Then,

the state s has � 2 K as output if and only if u = " and � is a su�x of x.

From Lemmas 1 and 2, we have the following theorem.

Theorem 1 PMM constructed by the algorithm presented in the previous section is

valid.

5 Concluding remarks

In this paper, we addressed the problem of compressed pattern matching in which

texts are compressed by �nite state encoders (FSE). We presented an algorithm for

constructing pattern matching machine that runs on a text compressed by an FSE.

We also gave a correctness proof of the algorithm.

One of the future directions of this study is to establish a way of �nding a `good'

model for a given text.

Pattern Matching Machine for Text Compressed Using Finite State Model 9

References

[1] A. Amir and G. Benson. E�cient two-dimensional compressed matching. In

Proc. Data Compression Conference, page 279, 1992.

[2] A. Amir and G. Benson. Two-dimensional periodicity and its application. In

Proceedings of the 3rd Annual ACM-SIAM Symposium on Discrete Algorithms,

pages 440{452, 1992.

[3] A. Amir, G. Benson, and M. Farach. Optimal two-dimensional compressed

matching. In Proc. 21st International Colloquium on Automata, Languages and

Programming, pages 215{226, 1994.

[4] A. Amir, G. Benson, and M. Farach. Let sleeping �les lie: Pattern matching in

Z-compressed �les. Journal of Computer and System Sciences, 52:299{307, 1996.

[5] A. Amir, G. M. Landau, and U. Vishkin. E�cient pattern matching with scaling.

Journal of Algorithms, 13(1):2{32, 1992.

[6] T. Eilam-Tzore� and U. Vishkin. Matching patterns in strings subject to multi-

linear transformations. Theoretical Computer Science, 60(3):231{254, 1988.

[7] M. Farach and M. Thorup. String-matching in Lempel-Ziv compressed strings.

In 27th ACM STOC, pages 703{713, 1995.

[8] S. Fukamachi, T. Shinohara, and M. Takeda. String pattern matching for com-

pressed data using variable length code | E�cient retrieval of Genome informa-

tion. In Proc. Symposium on Infomatics 1992, pages 95{103, 1992.

[9] L. G�asieniec, M. Karpinski, W. Plandowski, and W. Rytter. E�cient algorithms

for Lempel-Ziv encoding. In Proc. 4th Scandinavian Workshop on Algorithm The-

ory, volume 1097 of Lecture Notes in Computer Science, pages 392{403. Springer-

Verlag, 1996.

[10] M. Karpinski, W. Rytter, and A. Shinohara. Pattern-matching for strings with

short descriptions. In Proc. Combinatorial Pattern Matching, volume 637 of

Lecture Notes in Computer Science, pages 205{214. Springer-Verlag, 1995.

[11] U. Manber. A text compression scheme that allows fast searching directly in the

compressed �le. In Proc. Combinatorial Pattern Matching, volume 807 of Lecture

Notes in Computer Science, pages 113{124. Springer-Verlag, 1994.

[12] M. Miyazaki. Speeding-up of pattern matching machines for compressed texts

by using look-ahead techniques. Diploma thesis (in Japanese), Kyushu Institute

of Technology, 1996.

[13] M. Miyazaki, A. Shinohara, and M. Takeda. An improved pattern matching

algorithm for strings in terms of straight-line programs. In Proc. Combinatorial

Pattern Matching, volume 1264 of Lecture Notes in Computer Science, pages

1{11. Springer-Verlag, 1997.

10 M. Takeda

[14] T. A. Welch. A technique for high performance data compression. IEEE Comput.,

17:8{19, June 1984.

[15] J. Ziv and A. Lempel. A universal algorithm for sequential data compression.

IEEE Trans. on Inform. Theory, IT-23(3):337{349, May 1977.

