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Convergence Rate of Minimization Learning for

Neural Networks

Marghny H. Mohamed Teruya Minamoto Koichi Niijima

Abstract

In this paper, we present the convergence rate of the error in a neural network

which was learnt by a constructive method. The constructive mechanism is used

to learn the neural network by adding hidden units to this neural network. The

main idea of this work is to �nd the eigenvalues of the transformation matrix

concerning the error before and after adding hidden units in the neural network.

By using the eigenvalues, we show the relation between the convergence rate in

neural networks without and with thresholds in the output layer.

Keywords-Convergence rate, Constructive mechanism, Minimization learning, Hid-

den unit,Threshold, Error function, Matrix, Eigenvalues

1 Introduction

The size of a hidden layer in multilayer neural networks is one of the most important

considerations when solving actual problems using the networks. In general, increasing

the number of hidden units in a neural network may improve its approximation quality

for training patterns, but not always improves the quality for new patterns. The size

of neural network is desirable to be small. One way of improving a neural network is

to reduce the number of hidden units preserving its quality. There are many methods

to reduce the structure of the networks such as destructive, constructive, and genetic

algorithms (Weymaere and Martens, 1994).

Destrucitive or pruning methods start from a fairly large network and remove u-

nimportant connections or units (Chen, Thomas and Nixon, 1994; Hassibi and Stork,

1993; Moze and Smolensky, 1989). Constructive or growth methods start from a small

network and dynamically grow the network (Fritzke, 1994; Giles, Chen, Sun, Chen,

Lee and Goudreau, 1995; Heywood and Noakes, 1995; Hwang, Lay, Maechler, Martin

and Schimert 1994; Nabhan and Zomaya, 1994; Niijima et al., 1997). First, these

algorithms start from a minimal neural network with an input layer and an output

layer. Second, add new hidden units to the network and train the corresponding

weights until the neural network can map all the inputs to the corresponding outputs

within an error bound. The advantage in using this method is that it can automat-

ically �nd the size and the topology of the neural network without specifying them

before training.

In the paper (Niijima et al., 1997), we proposed a learning algorithm which is

carried out by the following two stages:
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1. Determine the connection weights between the added hidden units and output

units by minimizing the error function.

2. Determine the weights between the input layer and the hidden units.

This paper describes the convergence rate of the network learnt by our method above.

This analysis is carried out by �nding the transformation matrix concerning the error

before and after adding hidden units in the neural network. The key idea is to �nd

the eigenvalues of this matrix. We consider two types of neural network without and

with thresholds in the output layer.

This paper is organized as follows. We present the analysis of the convergence rate

in a neural network without and with thresholds in the output layer in Sect.2 and

Sect.3 respectively. Section 4 presents the conclusion of this paper.

2 Convergence Rate in a Neural Network without

Thresholds in the Output Layer

We consider a neural network which consists of an input layer with n + 1 nodes, a

hidden layer with h units, and an output layer with l units:
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Figure 1: Neural network without thresholds in its output layer

The paper (Niijima et al., 1997) presents a technique for determining the weights

V and W successively by adding one unit to the hidden layer of this network. Let v

denote a connection weight vector between the (h + 1)-th hidden unit and the input

layer, and let w be a weight vector connecting the (h + 1)-th hidden unit with the

output layer. The neural network after adding the (h+ 1)-th hidden unit is shown in

Fig.2.
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Figure 2: Neural network after adding one unit in the hidden layer in Fig.1
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We describe how to determine the added weight vector w . Since
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We note that the matrix �
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where �
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Hence the eigenvalues of this matrix are given by

� = 1; 1; . . . ; 1; 0:

These eigenvalues mean that the convergence rate of errors before and after adding

hidden units is not depending on the connection weights v between the hidden layer

and input layer.


