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Abstract

Important re�nements of concept learning in the limit from positive data consider-

ably restricting the accessibility of input data are studied. Let c be any concept; every

in�nite sequence of elements exhausting c is called positive presentation of c. In all

learning models considered the learning machine computes a sequence of hypotheses

about the target concept from a positive presentation of it. With iterative learning,

the learning machine, in making a conjecture, has access to its previous conjecture and

the latest data item coming in. In k-bounded example-memory inference (k is a priori

�xed) the learner is allowed to access, in making a conjecture, its previous hypothesis,

its memory of up to k data items it has already seen, and the next element coming in.

In the case of k-feedback identi�cation, the learning machine, in making a conjecture,

has access to its previous conjecture, the latest data item coming in, and, on the basis

of this information, it can compute k items and query the database of previous data

to �nd out, for each of the k items, whether or not it is in the database (k is again a

priori �xed). In all cases, the sequence of conjectures has to converge to a hypothesis

correctly describing the target concept.

Our results are manyfold. An in�nite hierarchy of more and more powerful feedback

learners in dependence on the number k of queries allowed to be asked is established.

However, the hierarchy collapses to 1-feedback inference if only indexed families of

in�nite concepts are considered, and moreover, its learning power is then equal to

learning in the limit. But it remains in�nite for concept classes of only in�nite r.e. con-

cepts. Both k-feedback inference and k-bounded example-memory identi�cation are

more powerful than iterative learning but incomparable to one another. Furthermore,

there are cases where redundancy in the hypothesis space is shown to be a resource

increasing the learning power of iterative learners. Finally, the union of at most k

pattern languages is shown to be iteratively inferable.
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1. Introduction

The present paper derives its motivation to a certain extent from the rapidly emerging

�eld of knowledge discovery in databases (abbr. KDD). Historically, there is a variety of

names including data mining, knowledge extraction, information discovery, data pattern

processing, information harvesting, and data archeology all referring to the notion of �nding

useful information about the data that has not been known before. Throughout this paper we

shall use the term KDD for the overall process of discovering useful knowledge from data and

data mining to refer to the particular subprocess of applying speci�c algorithms for learning

something useful from the data. Thus, the additional steps such as data presentation, data

selection, incorporating prior knowledge, and de�ning the semantics of the results obtained

belong to KDD (cf., e.g., Fayyad et al. [14]). Prominent examples of KDD applications in

health care and �nance include Matheus et al. [27] and Kloesgen [22]. The importance of

KDD research �nds its explanation in the fact that the data collected in various �elds such as

biology, �nance, retail, astronomy, medicine are extremely rapidly growing, while our ability

to analyze those data has not kept up proportionally.

KDD mainly combines techniques originating from machine learning, knowledge acquisi-

tion and knowledge representation, arti�cial intelligence, pattern recognition, statistics, data

visualization, and databases to automatically extract new interrelations, knowledge, patterns

and the like from huge collections of data. Usually, the data are available from massive data

sets collected, for example, by scienti�c instruments (cf., e.g.,Fayyad et al. [13]), by scientists

all over the world (as in the human genome project), or in databases that have been built

for other purposes than a current purpose.

We shall be mainly concerned with the extraction of concepts in the data mining process.

Thereby, we emphasize the aspect of working with huge data sets. For example, in Fayyad

et al. [13] the SKICAT-system is described which operates on 3 terabytes of image data

originating from approximately 2 billion sky objects which had to be classi�ed. If huge

data sets are around, no learning algorithm can use all the data or even large portions of it

simultaneously for computing hypotheses about concepts represented by the data. Di�erent

methods have been proposed for overcoming the di�culties caused by huge data sets. For

example, sampling may be a method of choice. That is, instead of doing the discovery

process on all the data, one starts with signi�cantly smaller samples, �nds the regularities in

it, and uses the di�erent portions of the overall data to verify what one has found. Clearly,

a major problem involved concerns the choice of the right sampling size. One way proposed

to solve this problem as well as other problems related to huge data sets is interaction and

iteration (cf., e.g., Brachman and Anand [6] and Fayyad et al. [14]). That is, the whole

data mining process is iterated a few times, thereby allowing human interaction until a

satisfactory interpretation of the data is found.

Looking at data mining from the perspective described above, it becomes a true limiting

process. That means, the actual result of the data mining algorithm application run on a

sample is tested versus (some of) the remaining data. Then, if, for any reason whatever,

a current hypothesis is not acceptable, the sample may be enlarged (or replaced) and the

algorithm is run again. Since the data set is extremely large, clearly not all data can be

validated in a prespeci�ed amount of time. Thus, from a theoretical point of view, it is

appropriate to look at the data mining process as an ongoing, incremental one.



Incremental Concept Learning for Bounded Data Mining 3

In the present theoretical study, then, we focus on important re�nements or restrictions

of Gold's [18] model of learning in the limit grammars for concepts from positive instances.

1

Gold's [18] model itself makes the unrealistic assumption that the learner has access to sam-

ples of increasingly growing size. Therefore, we investigate re�nements that considerably

restrict the accessibility of input data. In particular, we deal with so-called iterative learning,

bounded example-memory inference, and feedback identi�cation (cf. De�nitions 3, 4, and 5,

respectively). Each of these models formalizes a kind of incremental learning. In each of

these models we imagine a stream of positive data coming in about a concept and that

the data that arrived in the past sit in a database which can get very very large. Intu-

itively, with iterative learning, the learning machine, in making a conjecture, has access to

its previous conjecture and the latest data item coming in | period. In bounded example-

memory inference, the learning machine, in making a conjecture, has access to its previous

conjecture, its memory of up to k data items it has seen, and a new data item. Hence, a

bounded example-memory machine wanting to memorize a new data item it's just seen, if

it's already remembering k previous data items, must forget one of the previous k items

in its memory to make room for the new one! In the case of feedback identi�cation, the

learning machine, in making a conjecture, has access to its previous conjecture, the latest

data item coming in, and, on the basis of this information, it can compute k items and query

the database of previous data to �nd out, for each of the k items, whether or not it is in the

database. For some extremely large databases, a query about whether an item is in there can

be very expensive, so, in such cases, feedback identi�cation is interesting when the bound k

is small.

Of course the k = 0 cases of bounded example-memory inference and feedback identi�ca-

tion are just iterative learning.

Next we summarize informally our main results.

Theorems 2 and 3 imply that, for each k, there are concept classes of in�nite r.e. languages

which can be learned by some feedback machine using no more than k > 0 queries of the

database, but no feedback machine can learn these classes if it's restricted to no more than

k � 1 queries.

2

Hence, each additional, possibly expensive dip into the database buys more

concept learning power. Theorem 2 is a consequence of Theorem 3, and the proof of the latter

is non-trivial. However, the feedback hierarchy collapses to its �rst level if only indexable

classes of in�nite concepts are to be learned (cf. Theorem 4).

A bounded example-memory machine can remember its choice of k items from the data,

and it can choose to forget some old items so as to remember some new ones. On the

other hand, at each point, the feedback machine can query the database about its choice

of k things each being or not being in the database. A bounded example-memory machine

chooses which k items to memorize as being in the database, and the feedback machine

can decide which k items to lookup to see if they are in the database. There are apparent

1

The sub-focus on learning grammars, or, equivalently, recognizers (cf. Hopcroft and Ullman [19]), for

concepts from positive instances nicely models the situation where the database 
ags or contains examples

of the concept to be learned and doesn't 
ag or contain the non-examples.

2

That the concepts in the concept classes witnessing this hierarchy are all in�nite languages is also

interesting and for two reasons: 1. It is arguable that all natural languages are in�nite, and 2. many language

learning unsolvability results depend strongly on including the �nite languages (cf. Gold [18]; Case [11]). Ditto

for other results below, namely, Theorems 6 and 7, which are witnessed by concept classes containing only

in�nite concepts.
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similarities between these two kinds of learning machines, yet Theorems 6 and 7 show that in

very strong senses, for each of these two models, there are concept class domains where that

model is competent and the other is not! Both proofs are non-trivial, and that of Theorem 7

is the most di�cult for the present paper.

Theorem 8 shows that, even in fairly concrete contexts, with iterative learning, redundancy

in the hypothesis space increases learning power.

Angluin's [1] pattern languages are learnable from positive data, and they (and �nite

unions thereof) have been extensively studied and applied to molecular biology and to the

learning of interesting special classes of logic programs (see the references in Section 3.4

below). Theorem 9 implies that, for each k > 0, the concept class consisting of all unions of

at most k pattern languages is learnable (from positive data) by an iterative machine!

2. Preliminaries

Unspeci�ed notation follows Rogers [33]. In addition to or in contrast with Rogers [33]

we use the following. By IN = f0; 1; 2; : : :g we denote the set of all natural numbers. We

set IN

+

= IN n f0g. The cardinality of a set S is denoted by jSj. Let ;; 2; �; �, �, and

�, denote the empty set, element of, proper subset, subset, proper superset, and superset,

respectively. Let S

1

; S

2

be any sets; then we write S

1

4S

2

to denote the symmetric di�erence

of S

1

and S

2

, i.e., S

1

4 S

2

= (S

1

n S

2

) [ (S

2

n S

1

). Additionally, for any sets S

1

and S

2

and

a 2 IN [ f�g we write S

1

=

a

S

2

provided jS

1

4 S

2

j � a, where a = � means that the

symmetric di�erence is �nite. By maxS and minS we denote the maximum and minimum

of a set S, respectively, where, by convention, max ; = 0 and min ; =1.

The quanti�ers `

1

8

,' `

1

9

,' and `9!' are interpreted as `for all but �nitely many,' `there exists

in�nitely many,' and `there exists a unique,' respectively (cf. [5]).

By h�; �i: IN� IN! IN we denote Cantor's pairing function.

3

Moreover, we let �

1

and �

2

denote the corresponding projection functions over IN to the �rst and second components,

respectively. That is, �

1

(hx; yi) = x and �

2

(hx; yi) = y for all x; y 2 IN.

Let '

0

; '

1

; '

2

; : : : denote any �xed acceptable programming system for all (and only)

the partial recursive functions over IN (cf. [33]), and let �

0

; �

1

; �

2

; : : : be any associated

complexity measure (cf. Blum [5]). Then '

k

is the partial recursive function computed by

program k. Furthermore, let k; x 2 IN; if '

k

(x) is de�ned (abbr. '

k

(x)#) then we also say

that '

k

(x) converges; otherwise '

k

(x) diverges.

Any recursively enumerable set X is called a learning domain. By }(X ) we denote the

power set of X . Let C � }(X ), and let c 2 C; then we refer to C and c as a concept class and

a concept, respectively. Let c be a concept, and let T = x

0

; x

1

; x

2

; : : : an in�nite sequence of

elements x

i

2 c [ f#g such that range(T ) =

df

fx

k

x

k

6= #; k 2 INg = c. Then T is said to

be a positive presentation or, synonymously, a text for c. By text(c) we denote the set of all

positive presentations for c. Moreover, let T be a positive presentation, and let y be a number.

Then, T

y

denotes the initial segment of T of length y+1, and T

+

y

=

df

fx

k

x

k

6= #; k � yg.

We refer to T

+

y

as the content of T

y

. Intuitively, the #'s represent pauses in the positive

presentation of the data of a concept c. Furthermore, let � = x

0

; : : : ; x

n�1

be any �nite

sequence. Then we use j�j to denote the length n of �. Additionally, let T be a text and

3

This function is easily computable, 1-1, and onto (cf. Rogers [33]).
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let � be a �nite sequence; then we use � � T and � � � to denote the sequence obtained by

concatenating � onto the front of T and � , respectively. By SEQ we denote the set of all

�nite sequences of elements from X [ f#g.

As a special case, we often consider the scenario X = IN, and C = E , where E denotes the

collection of all recursively enumerable sets W

i

, i 2 IN, of natural numbers. These sets W

i

can be described as W

i

= domain('

i

). Thus, we also say that W

i

is accepted, recognized

(or, equivalently, generated) by the '-program i. Hence, we also refer to the index i of W

i

as a grammar for W

i

.

Furthermore, we sometimes consider the scenario that indexed families of recursive lan-

guages have to be learned (cf. Angluin [2]). Let � be any �nite alphabet of symbols, and

let X be the free monoid over �, i.e., X = �

�

. As usual, we refer to subsets L � X as

to languages. A class of non-empty recursive languages L is said to be an indexed family

provided there are an e�ective enumeration L

0

; L

1

; L

2

; : : : of all and only the languages in L

and a recursive function f such that for all j 2 IN and all strings x 2 X we have

f(j; x) =

�

1; if x 2 L

j

;

0; otherwise:

Since the paper of Angluin [2] learning of indexed families of languages has attracted

much attention (cf., e.g., Zeugmann and Lange [46]). Mainly, this seems due to the fact that

most of the established language families such as regular languages, context-free languages,

context-sensitive languages, and pattern languages are indexed families.

Essentially from Gold [18] we de�ne an inductive inference machine (abbr. IIM), or simply

a learning machine, to be an algorithmic mapping from SEQ to IN [ f?g. Intuitively, we

interpret the output of a learning machine with respect to a suitably chosen hypothesis

space H. The output \?" is uniformly interpreted as \no conjecture." We always take as a

hypothesis space a recursively enumerable family H = (h

j

)

j2IN

of concepts (construed as sets

or languages), where the j in h

j

is thought of a numerical name for some �nite description

or computer program for h

j

. Moreover, let c be a concept, let h

j

be a hypothesis, and let

a 2 IN [ f�g; then we write c =

a

h

j

i� jc4 h

j

j � a. That is, if a 2 IN, then h

j

describes c

up to at most a anomalies. The � is used to express any �nite number of anomalies. We let

M, with or without decorations, range over learning machines.

Let T be a positive presentation, and let y 2 IN. The sequence (M(T

y

))

y2IN

is said to

converge to the number j i� in (M(T

y

))

y2IN

all but �nitely many terms are equal to j.

Now we de�ne some models of learning. We start with Gold's [18] unrestricted learning

in the limit (and some variants). Then we will present the de�nitions of the models which

more usefully restrict access to the database.

Definition 1 (Gold [18]). Let C be a concept class, let c be a concept, let H = (h

j

)

j2IN

be

a hypothesis space, and let a 2 IN[f�g. An IIM M TxtEx

a

H

-infers c i�, for every T 2 text(c),

there exists a j 2 IN such that the sequence (M (T

y

))

y2IN

converges to j and c =

a

h

j

.

M TxtEx

a

H

-infers C i� M TxtEx

a

H

-infers c, for each c 2 C.

Let TxtEx

a

H

denote the collection of all concept classes C for which there is an IIM M

such that M TxtEx

a

H

-infers C.

TxtEx

a

denotes the collection of all concept classes C for which there are an IIM M and

a hypothesis space H such that M TxtEx

a

H

-infers C.
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The a represents the number of mistakes or anomalies allowed in the �nal conjectures

(cf. Case and Smith [12]), with a = 0 being Gold's [18] original case where no mistakes are

allowed. If a = 0, we usually omit the upper index, e.g., we write TxtEx instead of TxtEx

0

.

We adopt this convention in the de�nitions of the learning types below.

Since, by the de�nition of convergence, only �nitely many data about c were seen by the

IIM up to the (unknown) point of convergence, whenever an IIM infers the concept c, some

form of learning must have taken place. For this reason, hereinafter the terms infer , learn,

and identify are used interchangeably.

For TxtEx

a

H

-inference, a learner has to converge to a single description for the target to

be inferred. However, it is imaginable that humans do not converge to a single grammar

when learning their mother tongue. Instead, we may learn a small number of equivalent

grammars each of which is easier to apply than the others in quite di�erent situations. This

speculation directly suggests the following de�nition.

Definition 2 (Case and Smith [12]). Let C be a concept class, let c be a concept, let

H = (h

j

)

j2IN

be a hypothesis space, and let a 2 IN [ f�g. An IIM M TxtFex

a

H

-infers c i�,

for every T 2 text(c), there exists a nonempty �nite set D such that c =

a

h

j

, for all j 2 D

and M(T

y

) 2 D, for all but �nitely many y.

M TxtFex

a

H

-infers C i� M TxtFex

a

H

-infers c, for each c 2 C.

Let TxtFex

a

H

denote the collection of all concept classes C for which there is an IIM M

such that M TxtFex

a

H

-infers C.

TxtFex

a

denotes the collection of all concept classes C for which there are an IIM M and

a hypothesis space H such that M TxtFex

a

H

-infers C.

The following theorem clari�es the relation between Gold's [18] classical learning in the

limit and TxtFex -inference. The assertion remains true even if the learner is only allowed to

vacillate between up to 2 descriptions, i.e., in the case jDj � 2 (cf. Case [9, 11]).

Theorem 1 (Osherson et al. [31]; Case [9, 11]). TxtEx

a

� TxtFex

a

, for all a 2 IN[f�g.

Looking at the above de�nitions, we see that an IIM M has always access to the whole

history of the learning process, i.e., in order to compute its actual guessM is fed all examples

seen so far. In contrast to that, next we de�ne iterative IIMs and a natural generalization of

them called bounded example-memory IIMs. An iterative IIM is only allowed to use its last

guess and the next element in the positive presentation of the target concept for computing

its actual guess. Conceptionally, an iterative IIM M de�nes a sequence (M

n

)

n2N

of machines

each of which takes as its input the output of its predecessor.

Definition 3 (Wiehagen [42]). Let C be a concept class, let c be a concept, let H =

(h

j

)

j2IN

be a hypothesis space, and let a 2 IN [ f�g. An IIM M TxtItEx

a

H

{infers c i� for

every T = (x

j

)

j2IN

2 text(c) the following conditions are satis�ed:

(1) for all n 2 IN, M

n

(T ) is de�ned, where M

0

(T ) =

df

M(x

0

) and for all n � 0:

M

n+1

(T ) =

df

M(M

n

(T ); x

n+1

),

(2) the sequence (M

n

(T ))

n2IN

converges to a number j such that c =

a

h

j

.

Finally, M TxtItEx

a

H

{infers C i�, for each c 2 C, M TxtItEx

a

H

{infers c.

The resulting learning types TxtItEx

a

H

and TxtItEx

a

are analogously de�ned as above.

In the latter de�nitionM

n

(T ) denotes the (n+1)th hypothesis output by M when succes-

sively fed the positive presentation T . Thus, it is justi�ed to make the following convention.
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Let � = x

0

; : : : ; x

n

be any �nite sequence of elements over the relevant learning domain.

Moreover, let C be any concept class over X , and let M be any IIM that iteratively learns C.

Then we denote by M

y

(�) the (y + 1)th hypothesis output by M when successively fed �

provided y � n, and there exists a concept c 2 C with �

+

� c. We adopt this convention to

the learning types de�ned below.

Within the following de�nition we consider a natural relaxation of iterative learning which

we call bounded example-memory inference.

4

Now, an IIM M is allowed to memorize an a

priori bounded number of the examples it already has had access to during the learning

process. Again, M de�nes a sequence (M

n

)

n2IN

of machines each of which takes as input the

output of its predecessor. Consequently, a bounded example-memory IIM has to output a

hypothesis as well as a subset of the set of examples seen so far.

Definition 4 (Lange and Zeugmann [25]). Let k 2 IN, let C be a concept class, let c be a

concept, letH = (h

j

)

j2IN

be a hypothesis space, and let a 2 IN[f�g. An IIM M TxtBem

k

Ex

a

H

{

infers c i� for every T = (x

j

)

j2IN

2 text(c) the following conditions are satis�ed:

(1) for all n 2 IN, M

n

(T ) is de�ned, where M

0

(T ) =

df

M (x

0

) = hj

0

; S

0

i such that S

0

� T

+

0

and jS

0

j � k, and for all n � 0: M

n+1

(T ) =

df

M (M

n

(T ); x

n+1

) = hj

n+1

; S

n+1

i such

that S

n+1

� S

n

[ fx

n+1

g and jS

n+1

j � k,

(2) the j

n

in the sequence (hj

n

; S

n

i)

n2IN

of M 's guesses converges to a j 2 IN with c =

a

h

j

.

Finally, M TxtBem

k

Ex

a

H

{infers C i�, for each c 2 C, M TxtBem

k

Ex

a

H

{infers c.

For every k 2 IN, the resulting learning types TxtBem

k

Ex

a

H

and TxtBem

k

Ex

a

are analo-

gously de�ned as above. Clearly, by de�nition, TxtItEx

a

= TxtBem

0

Ex

a

, for all a 2 IN[f�g.

Finally, we de�ne learning by feedback IIMs. The idea of feedback learning goes back to

Wiehagen [42] who considered it in the setting of inductive inference of recursive functions.

Lange and Zeugmann [25] adapted the concept of feedback learning to inference from positive

data. Here, we generalize this de�nition. Informally, a feedback IIM M is an iterative IIM

that is additionally allowed to make a bounded number of a particular type of query. In

each learning Stage n + 1, M has access to the actual input x

n+1

, and its previous guess

j

n

. However, M is additionally allowed to compute queries from x

n+1

and j

n

. Each query

concerns the history of the learning process. Let k 2 IN; then a k-feedback learner computes

a k-tuple of elements (y

1

; : : : ; y

k

) 2 X

k

and gets a k-tuple of \YES/NO" answers such that

the ith component of the answer is 1, if y

i

2 T

+

n

and it's 0, otherwise. Hence, M can just ask

whether or not k particular strings have already been presented in previous learning stages.

Definition 5. Let k 2 IN, let C be a concept class, let c be a concept, let H = (h

j

)

j2IN

be a

hypothesis space, and let a 2 IN[f�g. Moreover, let Q

k

: IN�X ! X

k

, be a computable total

mapping. An IIM M TxtFb

k

Ex

a

H

{infers c i� for every positive presentation T = (x

j

)

j2IN

2

text(c) the following conditions are satis�ed: below A

n

k

:X

k

! f0; 1g

k

denotes the answer to

the queries (based on whether the corresponding queried elements appear in T

n

or not).

(1) for all n 2 IN, M

n

(T ) is de�ned, where M

0

(T ) =

df

M (x

0

) and for all n � 0:

M

n+1

(T ) =

df

M (M

n

(T ); A

n

k

(Q

k

(M

n

(T ); x

n+1

)); x

n+1

),

(2) the sequence (M

n

(T ))

n2IN

converges to a number j such that c =

a

h

j

provided that

A

n

k

truthfully answers the questions computed by Q

k

(i.e. the j-th component of

A

n

k

(Q

k

(M

n

(T ); x

n+1

)) is 1 i� the j-th component of Q

k

(M

n

(T ); x

n+1

) appears in T

n

.)

4

Our de�nition is a variant of one found in Osherson, Stob and Weinstein [31] and Fulk et al. [17] which

will be discussed later.
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Finally, M TxtFb

k

Ex

a

H

{infers C i� there is computable mapping Q

k

as described above such

that, for each c 2 C, M TxtFb

k

Ex

a

H

{identi�es c.

The resulting learning types TxtFb

k

Ex

a

H

and TxtFb

k

Ex

a

are de�ned analogously as above.

Finally, we extend De�nitions 3 through 5 to the Fex case analogously to the generalization

of TxtEx

a

H

to TxtFex

a

H

(cf. De�nition 1 and 2). The resulting learning types are denoted

by TxtItFex

a

H

, TxtBem

k

Fex

a

H

, and TxtFbEx

a

H

. Moreover, for the sake of notation, we shall

use the following convention for learning machines corresponding to De�nitions 3 through 5

as well as to TxtItFex

a

H

, TxtBem

k

Fex

a

H

, and TxtFbEx

a

H

. Let � be any �nite sequence; then

we let M

�

(�) denote M

j� j�1

(�).

3. Results

In this section we present our results. In the next subsection, we deal with feedback learn-

ing. Our aim is twofold. On the one hand, we investigate the learning power of feedback

inference in dependence on k, i.e., the number of strings that may be simultaneously queried.

On the other hand, we compare feedback identi�cation with the other learning models intro-

duced, varying the error parameter too (cf. Subsection 3.2). In subsequent subsections we

study iterative learning: in Subsection 3.3, the e�cacy of redundant hypotheses for iterative

learning and, in Subsection 3.4, the iterative learning of �nite unions of pattern languages.

3.1. Feedback Inference

The next theorem establishes a new in�nite hierarchy of successively more powerful feed-

back learners in dependence on the number k of database queries allowed to be asked

simultaneously.

5

Theorem 2. TxtFb

k�1

Ex � TxtFb

k

Ex for all k 2 IN

+

.

Theorem 3 below not only provides the hierarchy of Theorem 2, but it says that, for

suitable concept domains, the feedback learning power of k + 1 queries of the data base,

where a single, correct grammar is found in the limit, beats the feedback learning power of

k queries, even when �nitely many grammars each with �nitely many anomalies are allowed

in the limit.

Theorem 3. TxtFb

k+1

Ex n TxtFb

k

Fex

�

6= ;, for all k 2 IN. Moreover this separation

can be witnessed by a class consisting of only in�nite languages.

Proof. For every w 2 IN, we de�ne X

w

= fhj; w; ii 1 � j � k + 2; i 2 INg, and

X

0

w

= fhj; w; 0i 1 � j � k + 2g.

A number e is said to be nice i�

(a) fx 2 IN h0; x; 0i 2 W

e

g = feg; and

(b) :(9w)[X

0

w

�W

e

].

5

It follows from Fulk et al. [17] and Lange and Zeugmann [25] that there is an in�nite hierarchy of

successively more powerful bounded example-memory learners in dependence on the number k of items that

can be memorized.
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Finally, we de�ne the desired concept class as follows.

Let L = fL (9 nice e)[jLj =1 ^ [L = W

e

_ (9!w)[L =W

e

[X

w

]]]g.

Claim 1. L 2 TxtFb

k+1

Ex .

The idea behind the following proof can be easily explained. Intuitively, from a text for

L 2 L, a learner can iteratively determine the unique e such that h0; e; 0i 2 L, and it can

remember e in its output using padding. To determine the unique w, if any, such that

L =W

e

[X

w

, Property (b) in the de�nition of nice as well as X

0

w

� X

w

are exploited. That

is, the learner tries to verify X

0

w

� L whenever receiving an element of the form hj; w; 0i

with 1 � j � k + 2 by just asking whether the other k + 1 elements in X

0

w

n fhj; w; 0ig have

already appeared in the text. Now, if L = W

e

, then Property (b) above ensures that the

answer is always `NO,' and the learner just repeats its previous guess. On the other hand,

if the answer is `YES,' then the learner has veri�ed X

0

w

� L, and applying Property (b) as

well as X

0

w

� X

w

, it may conclude L =W

e

[X

w

. Thus, it remembers w in its output using

padding. Moreover, e and w, if any, can be easily used to form a grammar for L along with

the relevant padding. We now formally de�ne M behaving as above.

Let pad be a 1{1 recursive function such that, for all i; j, W

pad(0;j)

= ;, W

pad(i+1;0)

= W

i

,

and W

pad(i+1;j+1)

= W

i

[X

j

. M , and its associated query asking function Q

k+1

, witnessing

that L 2 TxtFb

k+1

Ex is de�ned as follows. M 's output will be of the form, pad(e

0

; w

0

).

Furthermore, e

0

and w

0

are used for \memory" by M . Intuitively, if the input seen so far

contains h0; e; 0i then e

0

= e+ 1; if the input contains X

0

w

then w

0

= w + 1.

Let T = s

0

; s

1

; : : : be a text for some L 2 L. Suppose s

0

= hj; z; ii. If i = j = 0, then let

M (s

0

) = pad(z + 1; 0). Otherwise let M (s

0

) = pad(0; 0).

Q

k+1

(q; s

m+1

) is computed as follows. Suppose s

m+1

= hj; z; ii. If i = 0 and 1 � j � k+2,

then let y

1

; y

2

; : : : ; y

k+1

be such that fy

1

; y

2

; : : : ; y

k+1

g = fhj

0

; z; 0i 1 � j

0

� k + 2; j

0

6= jg.

If i 6= 0, then let y

1

= y

2

= : : : = y

k+1

= 0 (we do not need any query in this case).

We now de�ne M (q; A

k+1

(Q

k+1

(q; s

m+1

)); s

m+1

) as follows.

M (q; A

k+1

(Q

k+1

(q; s

m+1

)); s

m+1

)

1. Suppose s

m+1

= hj; z; ii, and q = pad(e

0

; w

0

).

2. If i = 0, 1 � j � k + 2 and A

k+1

(Q

k+1

(q; s

m+1

)) = (1; 1; : : : ; 1), then let w

0

= z + 1.

3. If i = 0; j = 0, then let e

0

= z + 1.

4. Output pad(e

0

; w

0

).

End

It is easy to verify that M TxtFb

k+1

Ex -infers every language in L. This proves Claim 1.

Claim 2. L 62 TxtFb

k

Fex

�

.

Suppose the converse, i.e., that there are an IIM M and an associated query asking

function Q

k

such that M witnesses L 2 TxtFb

k

Fex

�

. Then by implicit use of the Recursion

Theorem (cf. [33]) there exists an e such that W

e

may be described as follows. Note that e

will be nice.

For any �nite sequence � = x

0

; x

1

; : : : ; x

`

, let M

0

(�) = M (x

0

); and for i < `, let M

i+1

(�) =

M (M

i

(�); A

i

k

(Q

k

(M

i

(�); x

i+1

)); x

i+1

), where A

i

k

answers questions based on whether the cor-

responding elements appear in fx

j

j � ig. Let ProgSet(M ; �) = fM

�

(�) � � �g.
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Initialization. Enumerate h0; e; 0i in W

e

. Let �

0

be such that content(�

0

) = fh0; e; 0ig.

Let W

s

e

denote W

e

enumerated before Stage s. Go to Stage 0.

Stage s.

(* Intuitively, in Stage s we try to search for a suitable sequence �

s+1

such that the

condition ProgSet(M ; �

s+1

) 6= ProgSet(M ; �

s

) holds. Thus, if there are in�nitely many

stages, then M does not TxtFb

k

Fex

�

-identify

S

s

�

s

, which will be a text for W

e

. In

case some stage starts but does not end, we will have that a suitable W

e

[X

w

is not

TxtFb

k

Fex

�

-identi�ed by M . *)

1. Let S

s

= ProgSet(M ; �

s

).

2. Let S

0

= S

s

.

3. Let Pos = content(�

s

); Neg = ;. Y = ;; � = �

s

4. While M

�

(�) 2 S

0

Do

(* We will have the following invariant at the beginning of every iteration of the

while loop:

If for some suitable �

0

extending � , M

�

(�

0

) 62 S

0

, then there exists a suitable 


extending �

0

such that M

�

(
) 62 ProgSet(M ; �

s

), where by suitable above

for �

0

and 
 we mean:

(a) content(�

0

) \ Neg = ;,

(b) Pos � content(�

0

),

(c) (8w)[X

0

w

6� content(�

0

) [ Y ],

(d) fx h0; x; 0i 2 (content(�

0

) [ Y )g = feg,

(e) Pos [ Y � content(
),

(f) (8w)[X

0

w

6� content(
)], and

(g) fx h0; x; 0i 2 content(
)g = feg.

Moreover, S

0

becomes smaller with each iteration of the while loop. *)

4.1. Search for p 2 S

0

, y 2 IN and �nite sets Pos

0

;Neg

0

such that

y 62 Neg,

Pos � Pos

0

,

Neg � Neg

0

,

Pos

0

\ Neg

0

= ;,

(8w)[X

0

w

6� Pos

0

[ fyg [ Y ],

fx h0; x; 0i 2 (Pos

0

[ fyg [ Y )g = feg, and

M (p;A

k

(Q

k

(p; y)); y)# 62 S

0

, where all the questions asked by Q

k

belong to

Pos

0

[ Neg

0

, and A

k

answers the question z positively if z 2 Pos

0

, and

negatively if z 2 Neg

0

.

4.2. If and when such p; y;Pos

0

;Neg

0

are found,

Let S

0

= S

0

� fp)g,

Neg = Neg

0

,

Pos = Pos

0

,

Y = Y [ fyg.

Enumerate Pos in W

e

.

Let � be an extension of �

s

such that content(�) = Pos

(* Note that y may or may not be in Pos or Neg. *)

Endwhile

5. Let �

s+1

extending � be such that
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Pos [ Y [ fhk + 3; s; 0ig � content(�

s+1

).

(8w)[X

0

w

6� content(�

s+1

)],

fx h0; x; 0i 2 content(�

s+1

)g = feg, and

ProgSet(M ; �

s+1

) 6= ProgSet(M ; �

s

).

Note that by the invariant above, there exists such a �

s+1

.

Enumerate content(�

s+1

) in W

e

, and go to Stage s+ 1.

End Stage s

Note that the invariant can be easily proved by induction on the number of times the

while loop is executed. We now consider two cases.

Case 1. All stages terminate.

In this case clearly, W

e

is in�nite and e is nice. Thus, we conclude W

e

2 L. Also,

T =

S

s

�

s

is a text for W

e

. However, M on T outputs in�nitely many di�erent programs.

Case 2. Stage s starts but does not terminate.

By construction, if Stage s is not left, then W

e

is �nite and e is again nice. We show that

there is a set X

w

such that W

e

[X

w

2 L but W

e

[X

w

is not TxtFb

k

Fex

�

-inferred by M .

Now, let S

0

; Pos; Neg, and � be as in the last iteration of the while loop that is executed

in Step 4 of Stage s. Furthermore, let w be such that

(i) (8p 2 S

0

)[X

w

\W

p

= ; _ (

1

9

w

0

)[X

w

0

\W

p

6= ;]]

(ii) X

w

\ (Pos [ Neg) = ;.

Note that there exists such a w, since S

0

; Pos, and Neg are all �nite.

Clearly, W

e

[ X

w

2 L. We now claim that M (with query asking function Q

k

) cannot

TxtFb

k

Fex

�

-infer W

e

[ X

w

. Note that, by construction, W

e

[ X

w

does not contain any

element of Neg. Moreover, none of the programs in S

0

is a program for a �nite variant of

W

e

[ X

w

. For all p 2 S

0

, either X

w

\W

p

= ; or W

p

intersects in�nitely many X

w

0

. Note

that W

e

is �nite and X

w

\X

w

0

= ;, for w 6= w

0

.

We claim that for all �

0

�y extending � such that content(�

0

�y) �W

e

[X

w

, M

�

(�

0

�y) 2 S

0

.

Suppose by way of contradiction the converse. Let �

0

�y be the smallest sequence that violates

this condition. Then M

�

(�

0

) 2 S

0

. Let P be the set of questions answered positively, and S

be the set of questions answered negatively for the queries Q

k

(M

�

(�

0

); y). Then p = M

�

(�

0

),

y, Pos

0

= Pos [ P and Neg

0

= Neg [ S, witness that the search in Step 4.1 will succeed (a

contradiction).

Thus we can conclude that M (with associated question asking function Q

k

) does not

TxtFb

k

Fex

�

-identify (W

e

[X

w

) 2 L.

From the above claims, the theorem follows.

Theorem 3 above nicely contrasts with the following result actually stating that the feed-

back hierarchy collapses to its �rst level provided only indexed families of in�nite languages

are considered.

Theorem 4. Let L be any indexed family consisting of only in�nite languages. Then,

L 2 TxtFex implies L 2 TxtFb

1

Ex.

Proof. Throughout this proof, let H = (h

j

)

j2IN

with or without decorations range over
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indexed families.

The proof is done in three major steps. First, we show that every TxtFex -inferable indexed

family is TxtEx -learnable, too (cf. Lemma 1). Note that this result also nicely contrasts

Theorem 1. Next, we point out another peculiarity of indexed families consisting of in�nite

languages only. That is, we prove them to be TxtEx -identi�able by an IIM that never

overgeneralizes provided the hypothesis space is appropriately chosen (cf. Lemma 2). Finally,

we demonstrate the assertion stated in the theorem.

Lemma 1. Let L be an indexed family and let H = (h

j

)

j2IN

be a hypothesis space for L.

Then L 2 TxtFex

H

implies L 2 TxtEx

H

.

Proof. First, we consider the hypothesis space

~

H obtained from H by canonically enu-

merating all �nite intersections of hypotheses from H. Now, let M be any IIM witnessing

L 2 TxtFex

H

. An IIM

~

M that TxtEx

~

H

-infers L can be easily de�ned as follows. Let

L 2 range(L), let T 2 text(L), and x 2 IN.

IIM

~

M: \On input T

x

do the following: Compute successively j

y

= M(T

y

) for all y =

0; : : : ; x. For every j

y

6= ? test whether or not T

+

x

� h

j

y

. Let Cons be the set of all

hypotheses passing this test.

If Cons = ;, output ?. Otherwise, output the canonical index in

~

H for

T

Cons."

We leave it to the reader to verify that

~

M witnesses L 2 TxtEx

~

H

. Finally, the TxtEx

H

-

inferability of L directly follows from Proposition 1 in Lange and Zeugmann [24], and thus

Lemma 1 is proved.

Lemma 2. Let L be an indexed family exclusively containing in�nite languages such that

L 2 TxtEx. Then there are a hypothesis space H = (h

j

)

j2IN

and an IIM M such that

(1) M TxtEx

H

-infers L,

(2) for all L 2 range(L), all T 2 text(L) and all y; z 2 IN, if ? 6= M (T

y

) 6= M (T

y+z

) then

T

+

y+z

6� h

M (T

y

)

.

(3) for all L 2 range(L), all T 2 text(L) and all y; z 2 IN, if ? 6= M (T

y

) then M (T

y+z

) 6= ?.

Proof. Let L 2 TxtEx . Without loss of generality, we may assume that there is an IIM

M witnessing L 2 TxtEx

L

(cf. [24]). By Angluin's [2] characterization of TxtEx , there is a

uniformly recursively generable family (T

y

j

)

j;y2IN

of �nite telltale sets such that

(�) for all j; y 2 IN, T

y

j

� T

y+1

j

� L

j

,

(�) for all j 2 IN, T

j

= lim

y!1

(T

y

j

) exists,

(
) for all j; k 2 IN, T

j

� L

k

implies L

k

6� L

j

.

Using this family (T

y

j

)

j;y2IN

, we de�ne the desired hypothesis space H = (h

hj;yi

)

j;y2IN

as

follows. We specify the languages enumerated in H via their characteristic functions f

h

hj;yi

.

Let s

0

; s

1

; s

2

; : : : be the lexicographically ordered enumeration of all and only the strings

from �

�

. For all j; y 2 IN, and all s

z

2 �

�

we set:

f

h

hj;yi

(s

z

) =

8

<

:

1; z � y; s

z

2 L

j

;

1; z > y; s

z

2 L

j

; T

z

j

= T

y

j

;

0; otherwise:
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Since (T

y

j

)

j;y2IN

is a uniformly recursively generable family of �nite sets and since L is an

indexed family, H is also an indexed family. Furthermore, by construction we directly obtain

that for all j; y 2 IN, h

hj;yi

is either a �nite language or h

hj;yi

= L

j

. Moreover, h

hj;yi

is �nite

i� the telltale set T

y

j

6= T

j

.

Next, we de�ne the desired IIM M . Let L 2 range(L), T 2 text(L), and x 2 IN.

IIM M: \On input T

x

proceed as follows:

If x = 0 or M(T

x�1

) = ? then set h = ?, and execute Instruction (B); else, goto (A).

(A) Let hj; yi = M(T

x�1

). Check whether or not T

+

x

� h

hj;yi

. In case it is, output

hj; yi. Otherwise, set h = M(T

x�1

), and goto (B).

(B) For all pairs hj; yi � x, (ordered by their Cantor numbers) test whether or not

T

y

j

� T

+

x

� h

hj;yi

until the �rst such pair is found; then output it.

If all pairs hj; yi � x failed, then output h."

By de�nition, M is recursive and ful�lls Assertions (2) and (3). It remains to show that

M witnesses L 2 TxtEx

H

. Let L 2 range(L) and let T 2 text(L).

Claim 1. M converges when fed T .

Let j

0

= min fj j 2 IN; L = L

j

g, and let y

0

= min fy y 2 IN; T

j

0

= T

y

j

0

g. Since

T 2 text(L), there must be an x � hj

0

; y

0

i such that T

j

0

� T

+

x

is ful�lled. Thus past point x,

M never outputs ?, and, in Step (B), it never outputs a hypothesis hj; yi > hj

0

; y

0

i. Moreover,

if a guess hj; yi has been output and is abandoned later, say on T

z

then T

+

z

6� h

hj;yi

. Thus,

it will never be repeated in any subsequent learning step. Finally, at least hj

0

; y

0

i can never

be rejected, and thus M has to converge.

Claim 2. If M converges, say to hj; yi, then h

hj;yi

= L.

Suppose the converse, i.e., M converges to hj; yi but h

hj;yi

6= L. Obviously, h

hj;yi

cannot

be a �nite languages, since L is in�nite, and thus T

+

x

� h

hj;yi

is eventually contradicted.

Consequently, h

hj;yi

describes an in�nite language, and hence, by construction of H we know

that h

hj;yi

= L

j

. Now, sinceM has converged, it must have veri�ed T

j

� T

+

x

� L, too. Thus,

Condition (
) immediately implies L 6� L

j

= h

hj;yi

. Taking L 6= h

hj;yi

into account we have

L n h

hj;yi

6= ;, contradicting T

+

x

� h

hj;yi

for all x. Hence, Lemma 2 is proved.

Now, we are ready to prove the theorem, i.e., TxtFex � TxtFb

1

Ex when restricted to

indexed families containing only in�nite languages.

Let L 2 TxtFex , and therefore, by Lemmata 1 and 2, we know that there are an IIM and

a hypothesis space H = (h

j

)

j2IN

such that M ful�lls (1) through (3) of Lemma 2.

The desired simulation is based on the following idea. The feedback learner M

0

aims to

simulate the machine M . This is done by successively computing a candidate for an initial

segment of the lexicographically ordered text of the target language L. If such a candidate

has been found, it is fed to the IIM M . If M computes a hypothesis j (referred to as

ordinary hypothesis), the feedback learner outputs it together with the initial segment used

to compute it. Then,M

0

switches to the so-called test mode, i.e., it maintains this hypothesis

as long as it is not contradicted by the data received. Otherwise, the whole process has to

be iterated. Now, there are two di�culties we have to overcome. First, we must avoid M

0

uses the same candidate for an initial segment more then once. This is done by memorizing

the misclassi�ed string as well as the old candidate for an initial segment in an auxiliary
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hypothesis. Additionally, since M

0

is only allowed to query one string at a time, auxiliary

hypotheses are also used to re
ect the results of the queries made until a new su�ciently

large initial segment is found. Second, the test phase cannot be exclusively realized by

using the actual strings received, since then �nitely many strings maybe overlooked. Thus,

during the test phase M

0

has to query one string at a time, too. Obviously, M

0

cannot use

its actual ordinary hypothesis j for computing all the queries needed. Instead, each actual

string received is used for computing a query s. If s has been already provided, it is tested

whether or not s 2 h

j

. But what if s 2 L but did not yet appear in the data provided so

far? Clearly, we cannot check s =2 h

j

, since this would eventually force M

0

to reject a correct

hypothesis, too. Instead, we have to ensure that at least all strings s that are negatively

answered are queried again.

The feedback learner M

0

uses the hypothesis space

^

H = (

^

h

r

)

r2IN

de�ned as follows. Let

s

0

; s

1

; s

2

; : : : denote the lexicographically ordered enumeration of all strings in �

�

. Let

F

0

; F

1

; F

2

; : : : be any e�ective enumeration of all non-empty �nite subsets of �

�

. For every

` 2 IN, let rf (F

`

) be the repetition free enumeration of all the elements of F

`

in lexicographical

order. Let

^

h

2hj;`i

= h

j

for all j; ` 2 IN, i.e., even indices encode ordinary hypotheses. The

underlying semantics is as follows: The ordinary hypothesis 2hj; `i represents the fact that

the simulated IIM M is outputting the guess j when fed rf (F

`

). Odd indices are used for

auxiliary hypotheses. For all `; y; z 2 IN, we set

^

h

2h`;y;zi+1

= F

`

. The �rst component `

encodes that all strings belonging to F

`

have been already presented. Both y and z are

counters that M

0

uses to compute its queries. For the sake of readability, we introduce the

following conventions. When M

0

outputs an ordinary hypothesis, say 2hj; `i, we instead say

that M

0

is guessing the pair (j; F

`

). Similarly, if M

0

is outputting an auxiliary hypothesis,

say 2h`; y; zi+ 1, we say that M

0

is guessing the triple (F

`

; y; z).

Assume any recursive function g : �

�

! IN such that for each L 2 range(L) and for each

` 2 IN, there exist in�nitely many w 2 L such that g(w) = `.

Now, we de�ne the desired feedback learner M

0

. Let L 2 range(L), T = (w

n

)

n2IN

2

text(L), and n 2 IN. We de�ne M

0

in stages, where Stage n conceptually describes M

0

n

.

Stage 0. On input w

0

do the following. Output the triple (fw

0

g; 0; 0), and goto Stage 1.

Stage n; n � 1. M

0

receives as input j

n�1

and the (n+ 1)st element w

n

of T .

Case A. j

n�1

is an ordinary hypothesis, say the pair (j; F ).

Test whether or not w

n

2 h

j

. If not, goto (�3). Otherwise, query `s

g(w

n

)

.' If the answer

is `NO,' then goto (�1). If the answer is `YES,' test whether or not s

g(w

n

)

2 h

j

. If it

is, execute (�1). Else, goto (�2).

(�1) Output the ordinary hypothesis (j; F ).

(�2) Set F := F [ fs

g(w

n

)

g, and z = jF j. Output the auxiliary hypothesis (F; z; z).

(�3) Set F := F [ fw

n

g, and z = jF j. Output the auxiliary hypothesis (F; z; z).

Case B. j

n�1

is an auxiliary hypothesis, say the triple (F; y; z).

Set F := F [ fw

n

g and check whether or not y � 0. In case it is, goto (�1). Else,

execute (�2).

(�1) Query `s

z�y

.' If the answer is `YES,' then set F := F [ fs

z�y

g. Output the

auxiliary hypothesis (F; y � 1; z).
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(�2) Compute M(rf (F )) and test whether or not M(rf (F )) 6= ?. In case it is, let

j =M(rf (F )) and output the ordinary hypothesis (j; F ).

Otherwise, let z := z + 1 and query `s

z

.' If the answer is `YES,' then set F :=

F [ fs

z

g. Output the auxiliary hypothesis (F;�1; z).

By de�nition, M

0

is a feedback learner. By construction, ifM

0

rejects an ordinary hypothesis

then an inconsistency with the data presented has been detected. Moreover, every ordinary

hypothesis rejected once by M

0

will never be output again. It remains to show that M

0

witnesses L 2 TxtFb

1

Ex

^

H

. Let L 2 range(L), and T 2 text(L).

Claim 1. Let (F

0

;�1; z

0

) be an auxiliary hypothesis output by M

0

, say in Stage z. Then,

for all ` � z

0

, s

`

2 T

+

z

implies s

`

2 F

0

.

Recall that, by construction, M

0

outputs in all the Stages z�z

0

, z� z

0

+1, : : :, z auxiliary

hypotheses, too, and queries s

0

, s

1

, : : :, s

z

0

, respectively (cf. Case B). Thus, for all ` � z

0

, if

s

`

2 T

+

z�z

0

+`

the answer to the query must be `YES', and therefore s

`

2 F

0

(cf. Case B). On

the other hand, if s

`

2 T

+

z

nT

+

z�z

0

+`

, then s

`

is presented after the query has made for it, and

thus it is memorized, too (cf. (�1)). This proves Claim 1.

Furthermore, since two successively output auxiliary hypotheses are de�nitely di�erent,

M

0

cannot converge to an auxiliary hypothesis.

Claim 2. If M

0

converges, say to the pair (j; F ), then h

j

= L.

By construction, j = M(rf (F )), and thus it su�ces to prove that L = h

j

. Suppose the

converse, i.e., L 6= h

j

. Let y

0

be the least y such that M

0

outputs the ordinary hypothesis

(j; F ) in Stage y. Obviously, F � L by construction. By Lemma 2, Assertion (2), we

know L 6� h

j

. Thus, L n h

j

6= ;, and hence there must be a string s

`

2 L n h

j

. Since

T = (w

n

)

n2IN

2 text(L), there exists a z 2 IN with w

z

= s

`

. If z > y

0

, then s

`

=2 h

j

is veri�ed

in Stage z (cf. Case A), a contradiction. Now, suppose z � y

0

. Taking into account that

jT

+

j = 1 and that g(v) = ` for in�nitely many v 2 T

+

= L, there must be an r 2 IN such

that g(w

y

0

+r

) = `. Thus, the query `s

`

' is made in Stage y

0

+ r. But s

`

2 T

+

y

0

� T

+

y

0

+r

, and

hence the answer to it is `YES,' and s

`

2 h

j

is tested, too (cf. Case A). Therefore, M

0

must

execute (�2), and cannot converge to (j; F ). This proves Claim 2.

Claim 3. M

0

outputs an ordinary hypothesis in in�nitely many stages.

Suppose the converse, i.e., there is a least z 2 IN such thatM

0

outputs in every Stage z+n,

n 2 IN, an auxiliary hypothesis. By Lemma 2, Assertion (1), M learns L from all its texts.

Let T

L

be L's lexicographically ordered text. Let y be the least � such that M(T

L

�

) = j and

L = h

j

. Hence, Assertion (2) of Lemma 2 implies M(T

L

y

� �) = j for all �nite sequences �

satisfying �

+

� L. Let m

0

= max fk k 2 IN; s

k

2 T

L;+

y

g, and let x

0

be the least x with

T

L;+

y

� T

+

x

.

By construction, there is an r > max fz; x

0

; m

0

g such that M

0

in Stage r must output an

auxiliary hypothesis of the form (F

0

;�1; z

0

) with z

0

� m

0

. Hence, fs

`

s

`

2 T

+

r

; ` � z

0

g � F

0

by Claim 1. Moreover, T

L;+

y

� T

+

r

because of r � x

0

and T

L;+

y

� T

+

x

0

, and hence T

L;+

y

� F

0

,

since m

0

� z

0

and T

L;+

y

= fs

`

` � m

0

; s

`

2 Lg. Therefore, M

0

simulates M on input

rf (F

0

) in Stage r + 1 (cf. Case B, Instruction (�2)). By the choice of T

L

y

, and since T

L

y

is an initial segment of rf (F

0

) we know that M(rf (F

0

)) = j, and thus M

0

must output an

ordinary hypothesis, a contradiction. Thus, Claim 3 follows.

Claim 4. M

0

converges.
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Suppose, M

0

diverges. Then, M

0

must output in�nitely many ordinary hypotheses, since

otherwise Claim 3 is contradicted. Let y; m

0

; x

0

be as in the proof of Claim 3. Consider

the the minimal r > x

0

such that M

0

, when successively fed T

r

, has already output its

m

0

-th ordinary hypothesis, say (j

0

; F ). Thus, jF j � m

0

in accordance with the de�nition

of M

0

. Since M

0

diverges, the guess (j

0

; F ) is abandoned in some subsequent stage, say in

Stage %, % > r. Thus in Stage %, M

0

outputs an auxiliary hypothesis, say (F

0

; jF

0

j; jF

0

j).

Note that F � F

0

(cf. Case A, Instructions (�2) and (�3)). In all the Stages % + 1, % +

2, : : :, % + m

0

, : : :, and % + jF

0

j + 1, M

0

outputs auxiliary hypotheses, too (cf. Case B,

Instruction (�1)). Moreover, in Stage % + jF

0

j + 1, M

0

outputs an auxiliary hypothesis

having the form (F

00

;�1; jF

0

j). Applying mutatis mutandis the same argumentation as in

Claim 3, we obtain T

L

y

� F

00

. Therefore in the next stage, M

0

simulates M when fed a

�nite sequence � having the initial segment T

L

y

(cf. Case B, Instruction (�2)). Again, by

Lemma 2, Assertion (2), M(�) = j follows, and thus M

0

outputs the ordinary hypothesis

(j; F

00

). But h

j

= L implies that the hypothesis (j; F

00

) cannot be abandoned, since otherwise

an inconsistency to T would be detected. Hence, M

0

converges, a contradiction. This proves

Claim 4.

Hence, in the case of indexed families of in�nite languages, the hierarchy of Theorem 2

collapses for k � 2; furthermore, again, for indexed families of in�nite languages, the expan-

sion of Gold's [18] model, which not only has unrestricted access to the data base, but which

also allows �nitely many correct grammars output in the limit, achieves no more learning

power than feedback identi�cation with only one query of the database. Moreover, our proof

shows actually a bit more. That is, for indexed families of in�nite languages conservative

learning does not constitute a restriction provided the hypothesis space is appropriately cho-

sen (cf. Lemma 2). As a matter of fact, this result is nicely inherited by our feedback learner

de�ned in the proof above. It also never overgeneralizes; thus what we have actually proved

is the equality of TxtFex and conservative feedback inference with only one query per time.

Next, we compare feedback inference and TxtFex

a

-identi�cation in dependence on the

number of anomalies allowed.

Theorem 5. TxtFb

0

Ex

a+1

n TxtFex

a

6= ;, for all a 2 IN.

Hence, for some concept domains, the model of iterative learning, where we tolerate a+1

anomalies in the single �nal grammar, is competent, but the expanded Gold [18] model,

where we allow unlimited access to the database and �nitely many grammars in the limit

each with no more than a anomalies, is not. A little extra anomaly tolerance nicely buys, in

such cases, no need to remember any past database history or to query it!

Proof. Let L = fL (9!x)[h0; xi 2 L] ^ [h0; xi 2 L, W

x

=

a+1

L]g. It is easy to see that

L 2 TxtFb

0

Ex

a+1

0

. However, an easy modi�cation of the proof of Ex

a+1

nEx

a

6= ; from [12]

shows that L 62 TxtFex

a

.

3.2. Feedback Inference versus Bounded Example-Memory Learning

As promised in the introductory section, the next two theorems show that, for each of

these two models of bounded example-memory inference and feedback identi�cation, there

are concept class domains where that model is competent and the other is not! Theorem 6

below says that, for suitable concept domains, the feedback learning power of one query of the
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data base, where a single, correct grammar is found in the limit, beats the bounded example-

memory learning power of memorizing k database items, even where �nitely many grammars

each with �nitely many anomalies are allowed in the limit.

We start with a technical lemma pointing to combinatorial limitations of bounded example-

memory learning.

Lemma 3. Suppose M is an k-memory bounded learning machine. Let P be a �nite set,

let � be a sequence, and let Z be a set such that 2

jZj

> jP j � (jZj+ k)

k

. Then, either

(a) there exists a �

0

such that content(�

0

) � Z and �

1

(M

�

(� � �

0

)) 62 P , or

(b) there exist �

0

; �

00

and j 2 Z, such that content(�

0

) = Z n fjg, content(�

00

) = Z and

M

�

(� � �

0

) = M

�

(� � �

00

).

Proof. Suppose (a) does not hold. Thus, by the pigeonhole principle, there exist �

0

, �

00

such that

(a) content(�

0

) [ content(�

00

) � Z,

(b) content(�

00

) 6= content(�

0

), and

(c) M

�

(� � �

0

) = M

�

(� � �

00

).

This is so since there are 2

jZj

possibilities for content(�), but at most jP j � (jZj + k)

k

,

possibilities for M

�

(� � �). Let �

0

; �

00

be such that (a) through (c) are satis�ed. Suppose

j 2 content(�

00

) n content(�

0

). Now let �

000

be such that content(�

000

) = Z n fjg. Taking

�

0

= �

0

� �

000

and �

00

= �

00

� �

000

proves the lemma.

Now, we are ready to prove the �rst of the two theorems announced.

Theorem 6. TxtFb

1

Ex n TxtBem

k

Fex

�

6= ;, for all k 2 IN. Moreover this separation

can be witnessed by a class consisting of only in�nite languages.

Proof. For any language L, let C

i

L

= fx hi; xi 2 Lg. Intuitively, C

i

L

is the i-th cylinder of

L. We say that e is nice i�

(a) C

0

W

e

= feg, and

(b) C

1

W

e

\ C

2

W

e

= ;.

The desired class L is de�ned as follows. Let L

1

= fL jLj =1 ^ (9 nice e)[L = W

e

]g,

and let L

2

= fL jLj =1 ^ (9e

0

)[C

1

L

\ C

2

L

= fe

0

g ^ L =W

e

0

]g. We set L = L

1

[ L

2

.

It is easy to verify that L 2 TxtFb

1

Ex . We omit the details.

Next, we show that L 62 TxtBem

k

Fex

�

. Suppose the converse, i.e., there is an IIM M

that TxtBem

k

Fex

�

-identi�es L. For a sequence � = x

0

; x

1

; : : : ; x

`

, let M

0

(�) = M (x

0

), and

for i < `, let M

i+1

(�) = M (M

i

(�); x

i+1

).

For any �nite sequence � , let ProgSet(M ; �) = f�

1

(M

�

(�)) � � �g, and we de�ne for any

text T the set ProgSet(M ; T ) similarly.

Then by implicit use of the Operator Recursion Theorem (cf. [8, 10]) there exists a re-

cursive 1{1 increasing function p, such that W

p(�)

may be de�ned as follows (p(0) will be

nice).

Enumerate h0; p(0)i in W

p(0)

. Let �

0

be such that content(�

0

) = fh0; p(0)ig. Let W

s

p(0)

denote W

p(0)

enumerated before Stage s. Let avail

0

= 1. Intuitively, avail

s

denotes a number
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such that for all j � avail

s

, p(j) is available for use in the diagonalization at the beginning

of Stage s. Go to Stage 0.

Stage s.

(* Intuitively, if in�nitely many stages are there, i.e. Step 2 succeeds in�nitely often,

then W

p(0)

2 L

1

witnesses the diagonalization. If Stage s starts but does not �nish,

then each of W

p(j

i

)

, 1 � i � k, as de�ned in Steps 3 and 4, is in L

2

, and one of them

witnesses the diagonalization. *)

1. Let P

s

= ProgSet(M ; �

s

).

Dovetail Steps 2 and 3{4, until Step 2 succeeds. If Step 2 succeeds, then go to Step 5.

2. Search for a � extending �

s

such that

(a) C

0

content(�)

= fp(0)g,

(b) C

1

content(�)

\ C

2

content(�)

= ;,

(c) ProgSet(M ; �) 6= P

s

.

3. Let m

0

= avail

s

.

Let k = jP

s

j+ 1, �

0

= �

s

.

Search for m

1

;m

2

; : : : ; m

k

, j

1

; j

2

; : : : ; j

k

, �

1

; �

2

; : : : ; �

k

, �

0

1

; �

0

2

; : : : ; �

0

k

, such that,

(a) For 1 � i � k, m

i�1

< j

i

< m

i

,

(b) For 1 � i � k, content(�

i

) = fh1; p(j)i m

i�1

� j < m

i

^ j 6= j

i

g.

(c) For 1 � i � k, content(�

0

i

) = fh1; p(j)i m

i�1

� j < m

i

g.

(d) For 1 � i � k, M

�

(�

0

� �

1

� : : : �

i�1

� �

i

) = M

�

(�

0

� �

1

� : : : �

i�1

� �

0

i

)

(e) For 1 � i � k, �

1

(M

�

(�

0

� �

1

� : : : �

i�1

� �

i

)) 2 P

s

.

4. Let m

1

;m

2

; : : : ;m

k

, j

1

; j

2

; : : : ; j

k

, �

1

; �

2

; : : : ; �

k

, �

0

1

; �

0

2

; : : : ; �

0

k

, be as found in Step 3.

Let Y = content(�

s

) [ fh1; p(j)i m

0

� j � m

k

g n fh1; p(j

i

)i 1 � i � kg.

For 1 � i � k, enumerate Y [ fh1; p(j

i

)i; h2; p(j

i

)ig in W

p(j

i

)

.

For x = 0 to 1 do

For 1 � i � k, enumerate h3 + i; xi in W

p(j

i

)

.

Endfor

5. Enumerate content(�) [ fh3; sig in W

p(0)

.

Let �

s+1

be an extension of � such that content(�

s+1

) = content(�) [ fh3; sig.

Let z = m

k

, if Step 3 succeeded; otherwise z = 0.

Let avail

s+1

= 1 + avail

s

+ z +max fj p(j) 2 C

1

content(�

s+1

)

[ C

2

content(�

s+1

)

g.

End Stage s.

We now consider two cases.

Case 1. All stages terminate.

In this case clearly, W

e

is nice and in�nite, and thus in L

1

. Also, T =

S

s

�

s

is a text for

W

e

. However, M on T outputs in�nitely many programs.

Case 2. Stage s starts but does not terminate.

In this case we �rst claim that Step 3, must have succeeded. This follows directly from

repeated use of Lemma 3. Let k;m

i

; j

i

; �

i

; �

0

i

be as in Step 4. Now, for 1 � i � k, W

p(j

i

)

2 L

2

and W

p(j

i

)

are pairwise in�nitely di�erent. Thus, by the pigeonhole principle, there exists
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an i, 1 � i � k, such that ProgSet(M ; �

s

) does not contain a grammar for a �nite variant of

W

p(j

i

)

. Fix one such i.

Let T

i

be a text for W

p(j

i

)

n fh1; p(j

i

)ig. Furthermore, let

T

0

i

= �

0

� �

1

� : : : � �

i�1

� �

0

i

� �

i+1

� : : : � �

k

� T

i

T

00

i

= �

0

� �

1

� : : : � �

i�1

� �

i

� �

i+1

� : : : � �

k

� T

i

Note that T

0

i

is a text for W

p(j

i

)

. However, we have ProgSet(M ; T

0

i

) = ProgSet(M ; T

00

i

) =

ProgSet(M ; �

s

) (the �rst equality follows from the de�nition of memory bounded and the

choice of �

i

; �

0

i

in Step 3; the second equality holds since Step 2 did not succeed in Stage s).

Thus, M does not TxtFex

�

-identify W

p(j

i

)

.

From the above cases we have that L 62 TxtBem

k

Fex

�

.

Next we show the second theorem announced above. Theorem 7 below says that, for

suitable concept domains, the bounded example-memory learning power of memorizing one

item from the data base history beats the feedback learning power of k queries of the database,

even where the �nal grammar is allowed to have �nitely many anomalies. It is currently open

whether or not TxtFb

k

Ex

�

in Theorem 7 can be replaced by TxtFb

k

Fex

�

.

Theorem 7. TxtBem

1

Ex nTxtFb

k

Ex

�

6= ;, for all k 2 IN. Moreover this separation can

be witnessed by a class consisting of only in�nite languages.

Proof. For a query asking function Q

k

, we denote by Questions(Q

k

; q; x) the questions

asked by Q

k

(q; x). For all L, let C

i

L

denote the set fx hi; xi 2 Lg. We say that e is nice i�

C

0

W

e

= feg, and C

1

W

e

= ;.

Let L

1

= fL jLj = 1 ^ (9 nice e)[L = W

e

]g. Furthermore, let L

2

= fL jLj = 1 ^

(9 nice e)(9w;m)[C

1

L

= fwg ^ maxC

2

L

= m < w ^ (L = W

e

[ fh1; wig)]g, and let

L

3

= fL jLj = 1 ^ (9w;m)[C

1

L

= fwg ^ maxC

2

L

= m � w ^ L = W

m

]g. Finally, we

set L = L

1

[ L

2

[ L

3

.

It is easy to show that L 2 TxtBem

1

Ex . The machine just needs to remember maxC

2

L

;

C

0

L

, C

1

L

can be padded onto the output program. From C

0

L

, C

1

L

, maxC

2

L

, one can easily �nd

a grammar for L. We omit the details.

Next, we show L =2 TxtFb

k

Ex

�

. The intuitive idea behind the formal proof below is that

no feedback learner can memorize what the maximal m with m = h2; xi 2 L is. Suppose

by way of contradiction that M (with associated query asking function Q

k

) is a k-feedback

machine which TxtFb

k

Ex

�

-identi�es L. For � = x

0

; x

1

; : : : ; x

`

, let M

0

(�) = M (x

0

) and for

i < ` let M

i+1

(�) = M (M

i

(�); A

i

k

(Q

k

(M

i

(�); x

i+1

)); x

i+1

), where A

i

k

answers the questions

based on whether the corresponding elements appear in fx

j

j � ig. By the Operator

Recursion Theorem [8, 10] there exists a recursive 1{1 increasing function p such that W

p(�)

may be de�ned as follows. Initially enumerate h0; p(0)i in W

p(0)

. Let �

0

be such that

content(�

0

) = fh0; p(0)ig. Let avail = 1. Intuitively, avail denotes a number such that, for

all j � avail, p(j) is available for use in the diagonalization. Go to Stage 0.

Stage s.

(* Intuitively, if in�nitely many stages are there, (i.e. Step 2 succeeds in�nitely often)

then W

p(0)

2 L

1

witnesses the diagonalization. If Stage s starts but does not �nish,
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then let ` be as in Step 3 of Stage s. If there are in�nitely many substages in Stage s

(i.e. Step 3.2 succeeds in�nitely often in Stage s), then (W

p(0)

[fh1; `ig) 2 L

2

witnesses

the diagonalization. Otherwise, one of W

p(j

i

)

;W

p(j

0

i

)

, i � k, will be in L

3

, and witness

the diagonalization. *)

1. Dovetail Steps 2 and 3. If and when Step 2 succeeds, go to Step 4.

2. Search for a � extending �

s

such that

C

0

content(�)

= fp(0)g,

C

1

content(�)

= ;, and

M

�

(�) 6= M

�

(�

s

).

3. Let ` = 1 +maxC

2

content(�

s

)

.

Let �

0

be such that content(�

0

) = fh1; `ig.

Go to Substage 0.

Substage t.

3.1 Dovetail Steps 3.2, 3.3, and 3.4 until Step 3.2 succeeds. If and when

Step 3.2 succeeds, then go to Step 3.5.

3.2 Search for a � such that

content(�) � fh3; xi x 2 INg, and

M

�

(�

s

� �

t

� �) 6= M

�

(�

s

� �

t

).

3.3 Let q = M

�

(�

s

� �

t

).

Let Ques =

S


�y��

t

Questions(Q

k

;M

�

(�

s

� 
); y).

Set avail = 1 + avail + `+max fx h2; p(x)i 2 Quesg

(* Note that this implies p(avail) > ` and any p(j) such that a question

of the form h2; p(j)i was asked by M (using Q

k

) on � such that �

s

�

� � �

s

� �

t

. *)

For i � k, let j

i

= avail + i.

For i � k, let j

0

i

= avail + k + 1 + i.

Let avail = avail + 2 � (k + 1).

For i � k, letO

i

= fh3; xi (8B B � C

3

IN

)[M (q; A

k

(Q

k

(q; h3; xi)); h3; xi)#,

where A

k

answers queries by Q

k

based on whether the correspond-

ing elements appear in content(�

s

� �

t

) [B and fh2; p(j

i

)i; h2; p(j

0

i

)ig \

Questions(Q

k

; q; h3; xi) = ;]g.

For i � k, let x

0

i

; x

1

i

; : : :, denote a 1{1 enumeration of elements of O

i

.

For i � k, let W

p(j

i

)

= content(�

s

� �

t

) [ fh2; p(j

i

)ig [ fx

2r

i

jO

i

j > 2rg.

For i � k, letW

p(j

0

i

)

= content(�

s

��

t

)[fh2; p(j

0

i

)ig[fx

2r+1

i

jO

i

j > 2r+1g.

3.4 For x = 0 to 1 do

enumerate h3; xi in W

p(0)

.

EndFor

3.5 If and when Step 3.2 succeeds, let � be as found in Step 3.2.

Enumerate content(�) [ fh3; tig in W

p(0)

.

Let S = ([W

p(0)

enumerated until now ] \ fh3; xi x 2 INg) [ fh1; `ig.

Let �

t+1

be an extension of �

t

� � such that content(�

t+1

) = S.

Go to Substage t + 1.

End Substage t.

4. If and when Step 2 succeeds, let � be as found in Step 2.

Enumerate content(�) [ fh3; sig in W

p(0)

.

Let S = W

p(0)

enumerated until now.
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Let �

s+1

be an extension of � such that content(�

s+1

) = S.

Go to Stage s+ 1.

End Stage s.

We now consider the following cases.

Case 1. All stages terminate.

In this case clearly, L = W

p(0)

2 L

1

. However, on T =

S

s

�

s

, a text for L, M does not

converge.

Case 2. Stage s starts but does not terminate.

Let ` be de�ned in Step 3 of Stage s.

Case 2.1. All substages in Stage s terminate.

In this case clearly, L = (W

p(0)

[ fh1; `ig) 2 L

2

. However, on T =

S

t

�

s

� �

t

, a text for L,

M does not converge.

Case 2.2. Substage t in Stage s starts but does not terminate.

In this case let q, j

i

, j

0

i

, O

i

, (for i � k) be as de�ned in Step 3.3 of Stage s, Substage t.

Now, for all all � such that content(�) � C

3

IN

, M

�

(�

s

� �

t

� �) = M

�

(�

s

� �

t

) = q. Thus

(8B B � C

3

IN

)[M (q; A

k

(Q

k

(q; h3; xi)); h3; xi)#], where A

k

answers queries from Q

k

based on

whether the corresponding elements appear in content(�

s

� �

t

) [ B. Moreover, taking into

account that

S

B�C

3

IN

Questions(Q

k

; q; h3; xi) can have at most k elements, we have that at

least one of O

i

's must be in�nite. Let i be such that O

i

is in�nite. It follows that W

p(j

i

)

and

W

p(j

0

i

)

are both in�nite and in�nitely di�erent from each other. Now,

(a) M

�

(�

s

� h2; p(j

i

)i) = M

�

(�

s

� h2; p(j

0

i

)i) = M (�

s

),

(b) h2; p(j

i

)i and h2; p(j

0

i

)i are not in content(�

s

� �

t

),

(c) for all B � O

i

, for all texts T for B, M

�

(�

s

� �

t

� T ) = q and

(d) for all B � C

3

IN

, for all texts T for B, for any �; y such that �

s

� � � y � �

s

� �

t

� T ,

Q

k

(M

�

(�); y) does not ask a question about h2; p(j

i

)i or h2; p(j

0

i

)i.

Thus, for w 2 fj

i

; j

0

i

g, for any text T for W

p(w)

n content(�

s

� h2; p(w)i � �

t

), we have M

�

(�

s

�

h2; p(w)i � �

t

� T ) = q. Thus, M fails to TxtEx

�

-identify at least one of W

p(j

i

)

and W

p(j

0

i

)

,

both of which are in L

3

.

From the above cases we have that L 62 TxtFb

k

Ex

�

.

3.3. Iterative Learning

We start this subsection by showing that redundancy in the hypothesis space may con-

siderably increase the learning power of iterative learners. Interestingly, it turns out that,

redundancy may serve as a tool exploited by the iterative learner allowing it to overgener-

alize in learning stages before convergence. Here, overgeneralization refers to the situation
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in which the learner outputs a description for a proper superset of the target concept. Fur-

thermore, this phenomenon can be already observed at the fairly concrete level of indexed

families.

Theorem 8. There are an indexed family L and a redundant hypothesis space H for it

such that L 2 TxtItEx

H

n TxtItEx

L

Proof. The basic idea of the following proof consists in reducing the halting problem to

a suitably chosen learning task. The desired indexed family L = (L

hk;ji

)

k;j2IN

is de�ned as

follows. Without loss of generality, for all k 2 IN, assume �

k

(k) > 1. For all k 2 IN, we set

L

hk;0i

= fa

k+1

g [ fb

n

n 2 IN

+

g. For all j � 1, we distinguish the following cases.

Case 1. : �

k

(k) � j

We set L

hk;ji

= fa

k+1

g.

Case 2. �

k

(k) = x � j

Then, we set L

hk;ji

= fa

k+1

g [ fb

m

1 � m � xg.

Obviously, L is an indexed family. The non-learnability of L in the sense of TxtItEx

is due to the following facts. For every k 2 IN, there is exactly one index for the in�nite

language L

hk;0i

. Moreover, no IIM infers L iteratively without overgeneralizing at least once

with respect to the hypothesis space L. Therefore, it has sometimes to shrink its guess to a

�nite language. But afterwards, it might receive data forcing it to output the corresponding

number of the relevant in�nite language. Now, every iterative IIM TxtItEx

L

-inferring L is

in serious trouble, since the only available hypothesis does not su�ce to memorize the fact

that the shrunk guess has been provably rejected. We continue with the formal proof.

Claim 1. L 62 TxtItEx

L

.

Suppose that there exists any IIMM which TxtItEx

L

-identi�es L. Let us considerM 's be-

havior when fed the text T = a

k+1

; b; b

2

; : : : for the language L

hk;0i

. Since L cannot be learned

without outputting at least once an overgeneralization (cf. Lange and Zeugmann [24]), there

have to be indices k; x 2 IN such that '

k

(k) is de�ned such that �

k

(k) > x and M outputs

the hypothesis hk; 0i after processing T

x

. Obviously, T

x

serves as an initial segment of a text

for L

hk;�

k

(k)i

, too. Thus, there has to be a string s 2 L

hk;�

k

(k)i

such that M(hk; 0i; s) = hk; yi

for some y � �

k

(k). (Note that L

hk;yi

= L

hk;�

k

(k)i

, if y � �

k

(k).) On the other hand,

M has, in particular, to infer the in�nite language L

hk;0i

from its text

^

T = T

x

; s; b; s; b

2

; : : :

Since the string s appears in�nitely many times, M outputs in�nitely many times the wrong

hypothesis hk; yi. Thus, M fails to converge to a correct guess on

^

T , a contradiction.

Claim 2. There is a redundant hypothesis space H such that L 2 TxtItEx

H

.

We sketch the underlying idea, only. Now, assume the following hypothesis space H =

(h

hk;ni

)

k;n2IN

that satis�es h

hk;0i

= L

hk;0i

and h

hk;n+1i

= L

hk;ni

for all k; n 2 IN. Hence, there

are two di�erent indices for the in�nite language L

hk;0i

, namely j

k

= hk; 0i and |̂

k

= hk; 1i.

Applying this a priori knowledge about the underlying hypothesis space, an iterative IIM

M is able to handle overgeneralization. Thereby, M may use each of both semantically

equivalent hypotheses to represent di�erent stages. Clearly, as long as M is exclusively fed

a

k+1

, it outputs a canonical number of that singleton language. Now we describe how M

uses the semantical equivalent hypotheses. The index j

k

may be used to encode that M 's

last guess L

hk;0i

is a possibly overgeneralized hypothesis which may be changed in some

subsequent step. M outputs this hypothesis as long as it has no knowledge whether or not
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�

k

(k) is de�ned, i.e., as long as it has exclusively seen strings b

z

such that :�

k

(k) � z. On

the other hand, if M has been fed a string b

z

satisfying �

k

(k) � z then it knows for sure

that �

k

(k) is de�ned. After having gained this knowledge, it never outputs j

k

. Instead, it

either output an index for the corresponding �nite language or, in case enough evidence has

been presented, the index |̂

k

for L

hk;0i

. We omit the details.

3.4. The Pattern Languages

The pattern languages (de�ned two paragraphs below) were formally introduced by An-

gluin [1] and have been widely investigated (cf., e.g., Salomaa [34, 35], and Shinohara and

Arikawa [39] for an overview). Moreover, Angluin [1] proved that the class of all pattern

languages is learnable in the limit from positive data. Subsequently, Nix [30] as well as Shi-

nohara and Arikawa [39] outlined interesting applications of pattern inference algorithms.

For example, pattern language learning algorithms have been successfully applied for solving

problems in molecular biology (cf., e.g. Shimozono et al. [36], Shinohara and Arikawa [39]).

Pattern languages and �nite unions of pattern languages turn out to be subclasses of

Smullyan's [41]) elementary formal systems (EFS). Arikawa et al. [3] have shown that EFS

can also be treated as a logic programming language over strings. Recently, the techniques

for learning �nite unions of pattern languages have been extended to show the learnability of

various subclasses of EFS (cf. Shinohara [38]). From a theoretical point of view, investigations

of the learnability of subclasses of EFS are important because they yield corresponding

results about the learnability of subclasses of logic programs. Arimura and Shinohara [4]

have used the insight gained from the learnability of EFS subclasses to show that a class

of linearly covering logic programs with local variables is identi�able in the limit from only

positive data. More recently, using similar techniques, Krishna-Rao [32] has established the

learnability from only positive data of an even larger class of logic programs. These results

have consequences for Inductive Logic Programming.

6

Patterns and pattern languages are de�ned as follows (cf. Angluin [1]). Let A = f0; 1; : : :g

be any non-empty �nite alphabet containing at least two elements. By A

�

we denote the

free monoid over A (cf. Hopcroft and Ullman [19]). The set of all �nite non-null strings of

symbols from A is denoted by A

+

, i.e., A

+

= A

�

n f"g, where " denotes the empty string.

By jAj we denote the cardinality of A. Furthermore, let X = fx

i

i 2 INg be an in�nite

set of variables such that A \ X = ;. Patterns are non-empty strings over A [ X, e.g.,

01; 0x

0

111; 1x

0

x

0

0x

1

x

2

x

0

are patterns. A pattern � is in canonical form provided that if

k is the number of di�erent variables in � then the variables occurring in � are precisely

x

0

; : : : ; x

k�1

. Moreover, for every j with 0 � j < k � 1, the leftmost occurrence of x

j

in �

is left to the leftmost occurrence of x

j+1

in �. The examples given above are patterns in

canonical form. In the sequel we assume, without loss of generality, that all patterns are in

canonical form. By Pat we denote the set of all patterns in canonical form.

The length of a string s 2 A

�

and of a pattern � is denoted by jsj and j�j, respectively.

By #var(�) we denote the number of di�erent variables occurring in �, and by #

x

i

(�) we

denote the number of occurrences of variable x

i

in �. If #var(�) = k, then we refer to �

as a k-variable pattern. Let k 2 IN, by Pat

k

we denote the set of all k-variable patterns.

6

We are grateful to Arun Sharma for bringing to our fuller attention these potential applications to ILP

of learning special cases of pattern languages and �nite unions of pattern languages.
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Furthermore, if #

x

i

(�) = 1 for all variables occurring in pattern �, then we call � a regular

pattern.

Now let � 2 Pat

k

, and let u

0

; : : : ; u

k�1

2 A

+

. We denote by �[u

0

=x

0

; : : : ; u

k�1

=x

k�1

] the

string s 2 A

+

obtained by substituting u

j

for each occurrence of x

j

, j = 0; : : : ; k� 1, in the

pattern �. The tuple (u

0

; : : : ; u

k�1

) is called substitution. For every � 2 Pat

k

we de�ne the

language generated by pattern � by L(�) = f�[u

0

=x

0

; : : : ; u

k�1

=x

k�1

] u

0

; : : : ; u

k�1

2 A

+

g.

7

By PAT

k

we denote the set of all k-variable pattern languages. Finally, PAT =

S

k2IN

PAT

k

denotes the set of all pattern languages over A.

Furthermore, we let Q range over �nite sets of patterns and de�ne L(Q) =

S

�2Q

L(�),

i.e., the union of all pattern languages generated by patterns from Q. Moreover, we use

Pat(k) and PAT (k) to denote the family of all unions of at most k canonical patterns and

the family of all unions of at most k pattern languages, respectively. That is, Pat(k) =

fQ Q � Pat ; jQj � kg and PAT (k) = fL (9Q 2 Pat(k))[L = L(Q)]g. Finally, let L � A

+

be a language, and let k 2 IN

+

; we de�ne Club(L; k) = fQ jQj � k; L � L(Q); 8Q

0

[Q

0

�

Q! L 6� L(Q

0

)]g. Club stands for consistent least upper bounds.

As already mentioned above, the class PAT is TxtEx

Pat

-learnable from positive data

(cf. Angluin [1]). Subsequently, Lange and Wiehagen [23] showed PAT to be TxtItEx

Pat

-

inferable. As for unions, the �rst result goes back to Shinohara [37] who proved the class

of all unions of at most two pattern languages to be in TxtEx

Pat(2 )

. Wright [44] extended

this result to PAT (k) 2 TxtEx

Pat(k)

for all k � 1. Moreover, Theorem 4.2 in Shinohara and

Arimura's [40] together with a lemma from Blum and Blum's [7] shows that

S

k2IN

PAT (k)

is not TxtEx

H

-inferable for every hypothesis space H. However, nothing was known pre-

vious to the present paper concerning the incremental learnability of PAT (k). We resolve

this problem by showing the strongest possible result (Theorem 9 below): each PAT (k) is

iteratively learnable!

Proposition 1.

(1) For all L � A

+

; k 2 IN

+

, Club(L; k) is �nite.

(2) If L 2 PAT (k), then Club(L; k) is nonempty and contains Q, such that L(Q) = L.

Proof. Part (2) is obvious. Part (1) is easy for �nite L. For in�nite L, it follows from the

lemma below.

Lemma 4. Let k 2 IN

+

, and let L � A

+

be any language. Suppose T = s

0

; s

1

; : : : is a

text for L. Let L

n

below denote fs

i

i � ng. Then,

(1) Club(L

0

; k) can be e�ectively obtained from s

0

, and Club(L

n+1

; k) can be e�ectively

obtained from Club(L

n

; k) and s

n+1

(* note the iterative nature *).

(2) The sequence Club(L

0

; k); Club(L

1

; k); : : : converges to Club(L; k).

Proof. (1): Fix k � 1, and suppose T = s

0

; s

1

: : : ; s

n

; s

n+1

; : : : is a text for L. Furthermore,

let S

0

= ff�g s

0

2 L(�)g. We proceed inductively; for n � 0, we de�ne S

0

n+1

= fQ 2

S

n

s

n+1

2 L(Q)g [ fQ [ f�g Q 2 S

n

^ s

n+1

62 L(Q) ^ jQj < k ^ s

n+1

2 L(�)g, and

then S

n+1

= fQ 2 S

0

n+1

(8Q

0

2 S

0

n+1

)[Q

0

6� Q]g.

7

We study so-called non-erasing substitutions. It is also possible to consider erasing substitutions where

variables may be replaced by empty strings, leading to a di�erent class of languages (cf. Fil�e [15]).
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Note that S

0

can be e�ectively obtained from s

0

, since every pattern � with s

0

2 L(�) must

satisfy j�j � js

0

j. Thus, there are only �nitely many candidate patterns � with s

0

2 L(�)

which can be e�ectively constructed. Since membership is uniformly decidable, we are done.

Furthermore, using the same argument, S

n+1

can be e�ectively obtained from S

n

and s

n+1

,

too. Also it is easy to verify, by induction on n, that S

n

= Club(L

n

; k). Thus, (1) is satis�ed.

(2): Consider a tree T formed mimicking the above construction of S

n

as follows. The

nodes of T will be labeled either \empty" or by a pattern. The root is labeled \empty". The

children of any node in the tree (and their labels) are de�ned as follows. Suppose the node,

v, is at distance n from the root. Let Q denote the set of patterns formed by collecting the

labels on the path from root to v (ignoring the \empty" labels). Children of v are de�ned

as follows:

(a) If s

n

2 L(Q), then v has only one child with label \empty."

(b) If s

n

62 L(Q), and jQj = k, then v has no children.

(c) If s

n

62 L(Q), and jQj < k, then v has children with labels �, where s

n

2 L(�) (the

number of children is equal to the number of patterns � such that s

n

2 L(�)). Suppose

U

n

= fQ (9v at a distance n + 1 from root )[Q = the set of patterns formed by collecting

the labels on the path from root to v (ignoring the \empty" labels) ]g. Then it is easy to

verify using induction that S

n

= fQ 2 U

n

(8Q

0

2 U

n

)[Q

0

6� Q]g.

Since the number of non-empty labels on any path of the tree is bounded by k, us-

ing K�oning's Lemma we have that the number of nodes with non empty label must be

�nite. Thus the sequence U

0

;U

1

; : : : converges. Hence the sequence S

0

= Club(L

0

; k);S

1

=

Club(L

1

; k); : : : converges, to say S. Now, for all Q 2 S, for all n, L

n

� L(Q). Thus, for all

Q 2 S, L � L(Q). Also, for all Q 2 S and Q

0

� Q, for all but �nitely many n, L

n

6� L(Q

0

).

Thus for all Q 2 S and Q

0

� Q, L 6� L(Q

0

). It follows that S = Club(L; k). Part (2) of

Lemma follows.

Theorem 9. For all k � 1, PAT (k) 2 TxtItEx .

Proof. Let can(�), be some computable bijection from �nite classes of �nite sets of patterns

onto IN. Let pad be a 1{1 padding function such that, for all x; y, W

pad(x;y)

= W

x

. For a

�nite class S of sets of patterns, let g(S) denote a grammar obtained, e�ectively from S, for

T

Q2S

L(Q).

Let L 2 PAT (k), and let T = s

0

; s

1

; : : : be a text for L. The desired IIM M is de�ned as

follows. We setM

0

(T ) = M (s

0

) = pad(g(Club(fs

0

g; k)); can(Club(fs

0

g; k))), andM

n+1

(T ) =

M (M

n

(T ); s

n+1

) = pad(g(Club(fs

0

; s

1

; : : : ; s

n

g; k)); can(Club(fs

0

; s

1

; : : : ; s

n

g; k))) for all

n > 0. Using Lemma 4 it is easy to verify that M

n+1

(T ) = M (M

n

(T ); s

n+1

) can be obtained

e�ectively from M

n

(T ) and s

n+1

. Thus, M TxtItEx -identi�es PAT (k).

3.5. Further Comparisons

Finally, we turn our attention to the di�erences and similarities between De�nition 4 and a

variant of bounded example-memory inference that has been considered in the literature. The

following learning type, called k-memory bounded inference, goes back to Fulk et al. [17] and

is a slight modi�cation of k-memory limited learning de�ned in Osherson et al. [31], where the

learner could just memorize the latest k data items received. It has been thoroughly studied
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by Fulk et al. [17]. The main di�erences to De�nition 4 are easily explained. In De�nition 4

the bounded example-memory learner is exclusively allowed to use its last conjecture, the

new data item coming in, and up to k data items its has already seen for computing the

new hypothesis and the possibly new data item to be memorized. In contrast, De�nition 7

below allows using the whole initial segment provided so far to decide whether or not it will

store the latest data item received. Moreover, the actual hypothesis computed is allowed

to depend on the previous conjecture, the new data item coming in and the newly stored

elements.

We continue with the formal de�nition. Subsequently, let % denote the empty sequence.

Definition 6 (Fulk et al. [17]). Let X be a learning domain, an let k 2 IN; then

(a) mem:SEQ ! SEQ is a k-memory function i�, mem(%) = %, and, for all sequences

� 2 SEQ and all x 2 X , content(mem(� � x)) � content(� � x), jmem(� � x)j = k and

content(mem(� � x)) � content(mem(�)) [ fxg.

(b) An IIM M is said to be k-memory bounded i� there is a recursive k-memory function

mem such that, (8�; �)(8x 2 X )[[M

j�j

(�) = M

j� j

(�) ^ mem(� � x) = mem(� � x)])

[M

j�j+1

(� � x) = M

j� j+1

(� � x)]].

Definition 7 (Fulk et al. [17]). Let k 2 IN; then we set TxtMb

k

Ex = fC � }(X ) (9k-

memory bounded machine M TxtEx-inferring C)g.

Our next theorem shows that, for every k, 1-memory bounded inference may outperform

k bounded example-memory identi�cation.

Theorem 10. TxtMb

1

Ex n TxtBem

k

Ex 6= ; for all k 2 IN.

Proof. Assume any k 2 IN. Let L

1

= fhi; xi x 2 IN; i � kg and for all m

0

; : : : ;m

k

2 IN

let L

m

0

;:::;m

k

k

= fh0; xi x < m

0

g[ � � �[fhk; xi x < m

k

g[fhk+1; xi x 2 INg. Furthermore,

let L

k

be the collection of L

1

and all L

m

0

;:::;m

k

k

, m

0

; : : : ; m

k

2 IN. Now, one easily shows that

L

k

=2 TxtBem

k

Ex using the same ideas as in [17].

On the other hand, L

k

2 TxtMb

1

Ex . The crucial point here is that the 1-memory function

mem can be applied to encode, if necessary, the appropriatem

0

; : : : ; m

k

by using the elements

from fhk + 1; xi x 2 INg that appear in the text.

We proceed formally. Let pad be a 1{1 recursive function such that, for all m

0

; : : : ;m

k

,

W

pad(0;:::;0)

= L

1

and W

pad(m

0

+1;m

1

;:::;m

k

)

= L

m

0

;:::;m

k

k

. Furthermore, assume any recursive

function g that satis�es, for all m

0

; : : : ;m

k

, g(x) = hm

0

; : : : ; m

k

i for in�nitely many x.

M , and its associated memory function mem, witnessing that L 2 TxtMb

1

Ex is de�ned

as follows. M 's output will be of the form, pad(m

0

0

; : : : ;m

0

k

). Let L 2 L, let T = (s

j

)

j2IN

2

text(L), and let z 2 IN.

On input T

z

, mem is computed as follows. We set mem(T

0

) = s

0

, and proceed inductively

for all z > 0. Let y = mem(T

z�1

); if y = hk+1; xi for some x and g(x) = hm

0

; : : : ;m

k

i with

m

i

= max fm

0

hi;m

0

i 2 T

+

z

g for all i � k then mem(T

z

) = y. Otherwise, let mem(T

z

) = s

z

.

Next, we formally de�ne the desired 1-memory bounded learner M . Suppose s

0

= hj; xi.

If j 6= k + 1, then let M (s

0

) = pad(0; : : : ; 0). Otherwise, let M (s

0

) = pad(1; 0; : : : ; 0).

For z > 0 we de�ne M

�

(T

z

) as follows. Let q = M

�

(T

z�1

), then we set:
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M

�

(T

z

)

1. Suppose s

z

= hj; xi, and q = pad(m

0

0

; : : : ; m

0

k

).

2. If m

0

0

= 0 and j 6= k + 1, then let m

0

0

= � � � = m

0

k

= 0.

3. Otherwise, let hj

0

; x

0

i = mem(T

z

) and g(x

0

) = hm

0

; : : : ;m

k

i. Set m

0

0

= m

0

+1, m

0

1

= m

1

,

: : : , and m

0

k

= m

k

.

4. Output pad(m

0

0

; : : : ;m

0

k

).

End

Clearly, if the target language L equals L

1

, M always outputs a correct hypothesis. Oth-

erwise, L equals L

m

0

;:::;m

k

k

for some m

0

; : : : ; m

k

. Since jL \ fhi; xi i � k; x 2 INgj < 1,

and by the choice of g, M must receive an element hk + 1; xi with g(x) = hm

0

; : : : ;m

k

i

after all k + 1 elements hi;m

i

i, i � k, appeared in the text T . By de�nition, M outputs a

correct guess in this and every subsequent learning step, and thus M TxtMb

1

Ex -infers every

language in L.

The latter theorem immediately allows the following corollary.

Corollary 11. TxtBem

k

Ex � TxtMb

k

Ex for all k 2 IN.

Proof. TxtBem

k

Ex � TxtMb

k

Ex for all k 2 IN, since the memory bounded learner may

easily simulate the bounded example memory machine while computing the actual mem(T

x

)

for every text T and x 2 IN. Thus, the corollary follows by Theorem 10.

But there is more. The following theorem nicely contrasts Theorem 7 and puts the con-

dition to use mem(T

z

) in computing M

�

(T

z

) in memory bounded identi�cation as de�ned

in [17] into the right perspective.

Theorem 12. TxtFb

1

Ex � TxtMb

1

Ex.

Proof. It su�ces to show that TxtFb

1

Ex � TxtMb

1

Ex , since TxtMb

1

Ex nTxtFb

1

Ex 6= ;

follows immediately from Theorems 7 and 10.

Let M together with the query asking function Q be witnessing C 2 TxtFb

1

Ex . The

desired IIM M

0

, and its associated memory function mem, witnessing that C 2 TxtMb

1

Ex

are de�ned as follows. Let c 2 C, let T = (s

j

)

j2IN

2 text(c), and let z 2 IN.

On input T

z

, mem is computed as follows. We set mem(T

0

) = s

0

, and proceed inductively

for all z > 0. Let q = M(T

z�1

). If Q(q; s

z

) 2 content(T

z

), then mem(T

z

) = s

z

. Otherwise,

mem(T

z

) = %. Recall that % stands for the empty sequence.

Next, we formally de�ne the desired 1-memory bounded learner M . For z = 0, let

M

0

(s

0

) = M (s

0

).

For z > 0 we de�ne M

0

(T

z

) as follows. Let q = M

0

(T

z�1

); we set:

M (T

z

)

1. If mem(T

z

) = s

z

then output M (q; 1; s

z

).

2. Otherwise, output M (q; 0; s

z

).

End
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Now, one immediately sees thatM

0

, when fed T , outputs the same sequences of hypotheses

as the feedback learner M would do. Hence, M

0

learns every c 2 C as required.

Though k-memory bounded inference is more powerful than k-bounded example-memory

inference, it has the serious disadvantage that all data are needed for computing the sequence

to be memorized. This is somehow counterintuitive to the idea of incremental learning. It

may be, however, an option provided the computation of the memory function mem(T

z

)

can be done in roughly the same time as the computation of M on input M(T

z�1

), s

z

, and

mem(T

z�1

).

A further variation is obtained by modifying De�nition 6 as follows. Instead of allowing

mem to depend on the whole initial segment T

z

, it is only allowed to depend on mem(T

z�1

),

s

z

, and M(T

z�1

). Then the only remaining di�erence to De�nition 4 is that one can still

memorize the order of particular elements in accordance with their presentation. On the

one hand, it is currently open whether or not this information may increase the resulting

learning power. On the other hand, all relevant theorems remain valid if TxtBem

k

Ex

a

and

TxtBem

k

Fex

a

are replaced by the new resulting learning type.

4. Conclusions and Future Directions

We studied re�nements of concept learning in the limit from positive data that are con-

siderably restricting the accessibility of input data. Our research derived its motivation

from the rapidly emerging �eld of data mining. Here, huge data sets are around, and any

practical learning system has to deal with the limitations of space available. Given this, a

systematic study of incremental learning is important for gaining a better understanding of

how di�erent restrictions to the accessibility of input data do a�ect the resulting inference

capabilities of the corresponding learning models. The study undertaken extends previous

work done by Osherson et al. [31], Fulk et al. [17] and Lange and Zeugmann [25] in various

directions.

First, the class of all unions of at most k pattern languages has been shown to be itera-

tively learnable. Moreover, we proved redundancy in the hypothesis space to be a resource

extending the learning power of iterative learners in fairly concrete contexts. As a matter of

fact, the hypothesis space used in showing Theorem 9 is highly redundant, too. Moreover, we

strongly conjecture this redundancy to be necessary, i.e., no iterative learner can identify all

unions of at most k pattern languages with repsect to a 1{1 hypothesis space. Clearly, once

the principal learnability has been established, complexity becomes a central issue. Thus,

further research should address the problem of designing time e�cient iterative learners for

PAT (k). This problem is even unsolved for k = 1. On the one hand, Lange and Wieha-

gen [23] designed an iterative pattern learner having polynomial update time. Nevertheless,

the expected total learning time, i.e., the overall time needed until convergence is exponential

in the number of di�erent variables occurring in the target pattern for inputs drawn with

respect to the uniform distribution (cf. Zeugmann [45]).

Second, we considerably generalized the model of feedback inference introduced in [25] by

allowing the feedback learner to ask simultaneously k queries. Though at �rst glance it may

seem that asking simultaneously for k elements and memorizing k carefully selected data

items may be traded one to another, we rigorously proved the resulting learning types to be

advantageous in very di�erent scenarios (cf. Theorem 6 and 7). Consequently, there is no
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unique way to design superior incremental learning algorithms. Therefore, the comparison

of k-feedback learning and k-bounded example-memory inference deserves special interest,

and future research should address the problem under what circumstances which model is

preferable. Characterizations may serve as suitable tool for accomplishing this goal (cf.,

e.g., [2, 7, 47]).

Additionally, feed-back identi�cation and bounded example-memory inference have been

considered in the general context of classes of recursively enumerable concepts rather than

uniformly recursives ones as done in [25]. As our Theorem 4 shows, there are subtle di�er-

ences. Furthermore, a closer look at the proof of Theorem 4 directly yields the interesting

problem whether or not allowing a learner to ask simultaneously k questions instead of

querying one data item per time may speed-up the learning process.

A further generalization can be obtained by allowing a k-feedback learner to ask its queries

sequentially, i.e., the next query is additionally allowed to depend on the answers to its

previous questions. Interstingly, our theorems hold in this case, too. It is, however, currently

open whether or not sequentially querying the database does has any advantage at all.

Next, we discuss possible extensions of the incremental learning models considered. A

natural relaxation of the constraint to �x k a priori can be obtained by using the notion

of constructive ordinals as done by Freivalds and Smith [16] for mind changes. Intuitively,

the paramenter k is now speci�ed to be a constructive ordinal, and the bounded example-

memory learner as well as a feedback machine can change their mind of how many data

items to store and to ask for, respectively, in dependence on k. Furthermore, future research

should examine a hybrid model which permits both memorizing k

1

items from the database

and k

2

queries of the database, where again, k

1

and k

2

may be speci�ed as constructive

ordinals.

Moreover, it would also be interesting to extend this and the topics of the present paper to

probabilistic learning machines. This branch of learning theory has recently seen as variety

of surprising results (cf., e.g., [20, 28, 29]), and thus, one may expect further interesting

insight into the power of probabilism by combining it with incremental learning.

Finally, while the research presented in the present paper clari�ed what are the strength

and limitations of incremental learning, further investigations are necessary dealing with the

impact of incremental inference to the complexity of the resulting learner. First results along

this line are established in Wiehagen and Zeugmann [43], and we shall see what the future

brings concerning this interesting topic.
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