
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Automatic Generation of Deep Web Wrappers based
on Discovery of Repetition

Nakatoh, Tetsuya
Computing and Communications Center, Kyushu University

Yamada, Yasuhiro
Department of Informatics, Kyushu University

Hirokawa, Sachio
Computing and Communications Center, Kyushu University

https://hdl.handle.net/2324/2985

出版情報：Proceeding of the First Asia Information Retrieval Symposium (AIRS2004). (AIRS2004),
pp.269-272, 2004-10. AIRS2004 Secretariat
バージョン：
権利関係：

Automatic Generation of Deep Web Wrappers
based on Discovery of Repetition

Tetsuya Nakatoh
Computing and

Communications Center,
Kyushu University

Hakozaki 6-10-1, Fukuoka,
812-8581, JAPAN

nakatoh@cc.kyushu-
u.ac.jp

Yasuhiro Yamada
Department of Informatics,

Kyushu University
Hakozaki 6-10-1, Fukuoka,

812-8581, JAPAN

yshiro@matu.cc.kyushu-
u.ac.jp

Sachio Hirokawa
Computing and

Communications Center,
Kyushu University

Hakozaki 6-10-1, Fukuoka,
812-8581, JAPAN

hirokawa@cc.kyushu-
u.ac.jp

ABSTRACT
A Deep Web wrapper is a program that extracts contents
from search results. We propose a new automatic wrapper
generation algorithm which discovers a repetitive pattern
from search results. The repetitive pattern is expressed by
token sequences which consist of HTML tags, plain texts and
wild-cards. The algorithm applies a string matching with
mismatches to unify the variation from the template and
uses FFT(fast Fourier transformation) to attain efficiency.
We show an empirical evaluation of the algorithm for 51
Web databases.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Retrieval models, Search process

General Terms
Algorithm, Experimentation

Keywords
Deep Web, Wrapper, Web Minig, Search Engine, Meta Search,
String Matching with Mismatches, FFT

1. INTRODUCTION
A huge number of text data exist on the Web and they
are growing exponentially. These Web pages have a lot of
variety in types, purposes, and qualities and are written
in many different languages. Moreover, they have no rigid
structures as relational database systems do. These features
are the main problems in aggregating data on the Web into
databases. Therefore, information integration of heteroge-
neous sites is one of the significant research themes of Web
mining.

Meta search engines [4, 8] are practical approach for infor-
mation integration. They integrate search result pages gen-
erated from search sites. The key problem of information
integration is to construct a program which extracts con-
tents from Web pages. Such a program is referred to as a
Web wrapper. It is a costly and mistakable work to code a
wrapper manually, due to huge quantities of Web pages and
a large variety of contents. Thus the semi-automatic and

fully automatic construction of a Web wrapper is of spe-
cial importance. This area of research has drawn a lot of
attention recently.

Most of semi-automatic wrapper generation algorithms, e.g.,
Muslea et al. [6], Kushmerick et al. [5] and Cohen et al. [2],
use supervised machine learning techniques. However, we
need many appropriate examples which should be prepared
manually. Constructing such examples is as costly as to code
a wrapper manually.

Our wrapper generation algorithm is based on the discov-
ery of repetitive pattern. Therefore we do not need manu-
ally prepared examples. A similar idea was used to detect
record-boundary in a HTML file in Embley et al. [3]. How-
ever they consider the number of characters between the tags
and used standard deviation. Our method is more robust to
the change in the contents. Chang et al. [1] have extracted
the regularity of tags using Patricia tree. This method also
does not need examples. However, all plain texts are re-
garded as the same token. Therefore, the tags determine
the structure. In our method, the structure is determined
by tags and repetitive plain texts. That helps distinguish-
ing similar patterns of heterogeneous lists, and excludes the
accidental coincidence of patterns.

Such an exhaustive search of repetitive sequence requires
O(n2) time for the input text size n and is not efficient. We
apply a string matching algorithm with mismatches [7] to
discover repetitive sequence of tokens in the search results,
thus the wrapper generation algorithm runs in O(kn log n)
time where k is the number of samples in randomized algo-
rithm.

We conducted an empirical evaluation of the algorithm by
applying the method to 51 Web databases, which are avail-
able as a testbed for information extraction [9].

2. DISCOVERY OF REPETITION WITH
MISMATCH

We generate the candidate patterns in three steps. In the
first step, we translate an HTML file into a sequence of
tokens of tags, plain texts and wild-cards. This process of
transformation is described in Section 3. We consider these

tokens as symbols in the sequel of this section and use the
word “pattern” to refer a repetitive sequence of tokens.

In the second step, we evaluate a likelihood of a length ` as a
repetitive pattern. If the input string s contains successive
occurrences of the same substring w of length `, the k-th
occurrence of w appears exactly in the distance of ` after
(k−1)-th occurrence. As an evaluation measure of the length
`, we use the number c` of matches between s = s1, . . . , sn−`

and t = shift(s, `), i.e., t = s`+1s`+2 . . . sn. It is defined as

c` =
Pn−`

i=1 δ(si, si+`), where δ is the Kronecker function.

Naive computation of c1, . . . , cn requires O(n2). But we can
obtain them in O(kn log n) applying FFT. This sequence
c1, . . . cn is referred as score vector of the input string.

In the third step, we choose one pattern for each candidate
length `. We choose the pattern according to the number
of occurrences of the pattern in the string s. However, it
is not always the case that a frequent pattern represents
snippets in the search result. The pattern should appear
consecutively as well as frequent. Consider the case of s =
abcdabcdabcd for ` = 3, where the repetitive pattern we have
in mind is abcd of length 4. We see three occurrences of abc.
But there are separated by d and are not consecutive.

3. REPETITIVE PATTERN IN SEARCH
RESULT

Input of our algorithm is five HTML files obtained from the
same search site as search results. Output is a pattern that
describes the snippets of search results. The basic struc-
ture of the algorithms as follows. Details are explained in
subsections.

1. Translate HTML files into token sequences.

2. Guess the length of the pattern.

(a) Compute the score vector of each sequence by the
algorithm described in Section 2.

(b) Sum up the score vectors of all sequences.

(c) Return top 5 lengths of highest score.

3. Output pattern candidates with ranking.

(a) Extract all the patterns for each length.

(b) Evaluate the patterns by the length and the fre-
quency and make a ranking.

(c) Output top 3 patterns.

3.1 Token Sequence
In most of search results, records appear continuously and
repetitively. We apply the method shown in the previous
section to identifying the repetitive pattern in a search re-
sult. We do not consider an HTML document as a sequence
of characters. We recognize it as a sequence of texts which
are divided in the boundary of the HTML-tags. Namely, we
consider an HTML documents as a sequence of tokens which
consists of tags and plain texts.

Each token is considered as a symbol of the string matching
algorithm, and the repetition discovery algorithm is applied

to these token sequences. Fig. 1 shows the capture of a
search result page, its HTML source code and the token
sequence.

Figure 1: Token Sequence of Search Result

Remember that, in the third step of the algorithm of pattern
discovery, we generate pattern candidates and evaluate ac-
cording to their score ranking. Considering texts as tokens
increases the ranking of the pattern which uses plain texts
as the structural description. Some texts are considered as
contents to be extracted and others are considered as a part
of pattern. The pattern texts should be matched strictly,
but the contents texts should be matched with a wild-card.
This is one of the reason we introduced “mismatch”.

Fig.2 is an example of search result page and the extracted
patterns from the page. We notice that some strings express
the structure of repetitive pattern and that some kinds of
tags have nothing to do with the repetitive pattern. Inline
element tags, e.g.,
,<i> and , are generally used for
visual effect, while block tags, e.g., , and <table>

are used to describe the logical structure of the documents.
However, in practice, it depends on the site whether a tag
is used to represent the structure or not. If
 is used to
separate one search result from the next one, this tag should
be considered as a component of the pattern.

We consider three types of pattern and hence three types
of wrapper. The difference is the set of tags the wrapper
recognizes as structural description.

A wrapper of type a (all) recognizes all of tags as tokens.A
wrapper of type b (no-inline) recognizes all of tags except

The first 2 snippets in a search result :

<dt>1. <a>1994-95 In Review<dd><small>Size: 38 kb; Last updated 19 Jan 2004</small>
1994-95..

<dt>2. <a>1992-94 In Review<dd><small>Size: 28 kb; Last updated 19 Jan 2004</small>
1992-94..

a pattern described by tags :

<dt>.<a>.<dd><small>....</small>
.

a pattern by our method :

<dt>.<a>.<dd><small>Size: .; Last updated .</small>
.

Figure 2: String as Structure

for inline tags as tokens. A wrapper of type c (block) con-
siders only the block-level tags as tokens. A tag which is not
regarded a token is removed.

3.2 Selecting Pattern
An HTML document of search result usually contains many
repetitions. Besides a listing of search results, which is an
object of an extraction, many repetitions are contained in
the advertising list, the link to the other contents, the ca-
sual repetition and so on. Therefore, the pattern detection
algorithm yields many candidates of repetitive patterns. It
is necessary to select the pattern which corresponds to the
target of the extraction.

We adopted the minimality principle for pattern selection.
When a pattern p appears repetitively, the doubled pattern
pp appears as well. We choose only p as a minimal pattern.
Besides, we demand the following constraints as search re-
sult patterns. (1) An anchor tag should appear. (2) If an
open tag appears, then the corresponding close should ap-
pear. Anchor tags are necessary to all search results. When
a continuous and repetitive pattern is extracted, a starting
position of the pattern sometimes becomes ambiguous by
the tags before and after that. The requirement to open
tag and close tag is necessary to dissolve that ambiguity.
We do not adopt the pattern which fails conform to these
conditions.

We adapt the measurement E(p) = C(p) ·L(p) as a ranking
of the candidate patterns, where p is a pattern, C(p) is a
frequency of occurrence of p and L(p) is the length of tags in
p. This measurement realizes the following two heuristics.
(1) An appropriate pattern appears many times. (2) An
appropriate pattern is long enough.

4. EMPIRICAL EVALUATION
We use the testbed [9] to evaluate the accuracy of the pat-
terns. It covers 51 databases randomly chosen from 114,540
Web pages with search forms. For each site of 51 databases,
it provides 5 pages of search results with 5 keywords, and
for each page of search results it provides the first snippet
in the page and the list of result URLs. We evaluate the
accuracy of a pattern by the number of first snippets that
matches the pattern. So, the accuracy is in the range of 0
to 5.

In accordance with the process of the last section, we ex-
tracted repetitive patterns in each search site of the testbed.
We introduced three types of tag sets, and extracted 5 pat-

terns with high ranking. Therefore, 15 patterns are ex-
tracted for each search site, and we remove some of them
by the constraints.

The extracted patterns and their accuracies are shown in
the Table 1 for sites #7 and #21. Only 4 in 15 extracted
patterns are left in both search sites by applying the con-
straints. In the site #7, three in four patterns correspond
to the first snippet. The three patterns represent the same
tag sequence. In the site #21, only one pattern with highest
ranking corresponds to the first snippet.

The result of all sites is shown in Table 2.

Table 2: Evaluation of Patterns

ranking of
number of sites ratepattern candidates

1 18 0.35
≤ 2 28 0.55
≤ 3 30 0.59

We analyzed the reasons where the patterns do not match.
The first reason is incorrect HTML sources. Most of such
HTML can be viewed with many HTML browsers without
problem. However, such sources cause failure of pattern
extraction. Most of these problems can be avoided using the
tool that fix a mistake of HTML source. The above problem
can be avoided by pre-processing HTML source with such a
tool. There is also a problem about the omission of the tags.
For example, it is allowed to omit </p>, </tr> and </td>.
This problem can also be avoided with the above tool.

The second reason is a problem of the range of the pat-
tern. There might be different patterns which can extract
the same snippet. For example, “<table>...</table>” and
“<p><table>... </table></p>”. The score would be 0 if
the extracted pattern did not correspond perfectly to the
first snippet, even though the pattern matches the second
and the other snippets. The site #2 was such a case.

The third reason is in the ranking score. We used a simple
evaluation function in this experiment. The ranking score
E(p) = C(p) · L(p) is favorable to type a, because all tags
are counted in L(p). There are nine sites which failed by
this reason. We need some improvement in scoring function
E(p). To use the length of the pattern before removing non-
tokens would be an improvement.

Table 1: Pattern Candidates and accuracy

Site accuracy tag token tag length frequency ranking
token sequence p

No. score type length L(p) C(p) score E(p)

7 5 all 27 17 17 289 <tr>.<td>.</td>.<td>.

<a>.

..
.</td>.</tr>.

7 5 no-inline 12 7 17 119 <tr>.<td>.</td>.<td>.</td>.</tr>.

7 5 block 12 7 17 119 <tr>.<td>.</td>.<td>.</td>.</tr>.

7 0 no-inline 4 3 5 15 .</form></body>.

21 5 all 17 13 500 6500 .
.<a>

.
<i>.</i>.

21 0 block 58 8 10 80 <td><a></td>.<td>...............

..............<tr>.<td>.............

<td>......

21 0 block 6 2 25 50 .</div>....

21 0 no-inline 16 9 5 45 <tbody>.<tr>.<td>.<div><a>.

</div></td></tr></tbody>....

5. CONCLUSION
We proposed an automatic generation algorithm of Deep
Web Wrappers based on the discovery of repetitive patterns.
To discover a repetitive pattern, we used a string matching
with mismatches and FFT. We showed that repetitive pat-
terns can be extracted for 60% of target sites. Moreover, we
showed that the extracted repetitive pattern functioned as
a Deep Web Wrapper.

Many improvements will be possible for the ranking score.
The testbed [9] provides other information which we can use
for more strict evaluation.

6. REFERENCES
[1] Chang, C.-H., and Lui, S.-C. IEPAD: Information

Extraction Based on Pattern Discovery. Proceedings of
the 10th International Conference of World Wide Web,
pp. 4–15, 2001.

[2] Cohen, W. W., Hurst, M., and Jensen, L. S. A Flexible
Learning System for Wrapping Tables and Lists in
HTML Documents. Proceedings of the 11th
International Conference on World Wide Web,
pp. 232–241, 2002.

[3] Embley, D. W., Jiang, Y. S., and Ng, Y.-K.
Record-boundary discovery in Web documents.
Proceedings of 1999 ACM SIGMOD International
Conference on Management of Data, pp. 467-478, 1999.

[4] Hamilton, N. The Mechanics of a Deep Net Metasearch
Engine. Proceedings of the 12th International World
Wide Web Conference, 2003.

[5] Kushmerick, N. Wrapper induction: Efficiency and
expressiveness. Artificial Intelligence, Vol.118, No.1-2,
pp .15-68, 2000.

[6] Muslea, I., Minton, S., and Knoblock, C. Active
Learning for Hierarchical Wrapper Induction.
Proceedings of 16th National Conference On Articial
Intelligence (AAAI-99), 1999.

[7] Nakatoh, T., Baba, K., Ikeda, D., Yamada, Y., and
Hirokawa, S. An Efficient Mapping for Score of String
Matching. Proceedings of the Prague Stringology
Conference ’03, pp.127-136, 2003.

[8] Taguchi, T., Koga, Y., and Hirokawa, S. Integration of
Search Sites of the World Wide Web. Proceedings of
Intern. Forum cum Conf. on Information Technology
and Communication, Vol. 2, (2000) pp.25–32.

[9] Yamada, Y., Craswell, N., Nakatoh, T., and
Hirokawa, S. Testbed for Information Extraction from
Deep Web. Proceedings of the 13th International World
Wide Web Conference, Alternate Track Papers and
Posters, pp.346-347, 2004.

