
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

PATTERN DISCOVERY OF GENOME SEQUENCES BY
SUBSTRING AMPLIFICATION

Ikeda, Daisuke
Computing and Communications Center,Kyushu University

Hirokawa, Sachio
Computing and Communications Center,Kyushu University

Yamada, Yasuhiro
Department of Informatics,Kyushu University

https://hdl.handle.net/2324/2967

出版情報：Proceedings of International Symposium on Information Science and Electrical
Engineering. 2003, pp.637-640, 2003-11
バージョン：
権利関係：

PATTERN DISCOVERY OF GENOME SEQUENCES BY SUBSTRING AMPLIFICATION

Daisuke Ikeda, Sachio Hirokawa

Computing and Communications Center,
Kyushu University

Yasuhiro Yamada

Department of Informatics,
Kyushu University

ABSTRACT
In this paper, we study a problem which is, given a set

of genome sequences, to find common subsequences. We
assume that the sequences are generated by some fixed but
unknown pattern. The authors developed a method, called
“substring amplification,” to find the template part of a pat-
tern from semi-structured documents, such as HTML files,
generated by the pattern. Substring amplification exploits
the disparity of frequency distributions between the tem-
plate and background parts, and so requires only positive
data. In HTML files, many characters are used and the
length of a successive part of a template is enough long
compared to genome sequences. In this paper, we exam-
ine the applicability of the method to genome sequences in
which a constant sequence is embedded. By a series of ex-
periments in which the length and alphabet size of the em-
bedded sequences are varied, we show the effectiveness and
limit of our method to genome sequences.

1. INTRODUCTION

It has been a basic and important problem in computer sci-
ence to find a pattern common to given strings. One of
such problems is the longest common subsequence prob-
lem. Other similar problems are considered in many fields:
the longest common substring problem and maximal repeti-
tions in stringology [1], frozen phrase and named entity ex-
traction in natural language processing [2], pattern language
learning [3, 4, 5], contents extraction by template discovery
in Web mining [6, 7], and so on. Another related problem
is finding frequent patterns and it has been well studied in
data/text mining [8, 9, 10]. Cache and compression algo-
rithms also find frequent segments of an input stream in an
online manner.

Another research field in which finding common or fre-
quent patterns is important is genome informatics. Target
data in this field are huge amount of sequences which con-
sist of small number of alphabets. In biologic evolution, se-
quences have been changed (nearly) randomly. On the other
hand, it is assumed that important biologic functions are
preserved among invariant segments of sequences. There-
fore, the problem is important in this field.

It has been well studied to find common parts among in-
put sequences using various approach and techniques in this
field: machine learning, Bayesian networks, EM algorithm,
sampling, hidden Markov model, Fourier transform, and so
on. In general, it takes too many computational resources to
find common patterns.

Complexity required to find common patterns heavily
depends on the format of patterns. For example, the longest
common substring is solved linearly but the longest com-
mon subsequence problem (or multiple alignment with no
gap penalty) is NP-complete [11]. In this paper, we consider
a set of substrings as a pattern. Note that a pattern is not a
sequence of substrings, which is known as a subsequence
pattern. In other words, the considered problem is to find
local alignment from multiple sequence iteratively without
knowledge about the length of common subsequences. This
is a part of motif discovery. Thus, this is important in spite
of the simplicity of the pattern’s format.

We formally defined the template discovery problem as
follows [12]: An input of the problem is a set of strings
generated by some fixed but unknown pattern in the con-
text of the pattern language [3]. The problem is to find
the constant part of an unknown pattern from a finite set
of positive strings. But we do no consider correspondence
of variables. This is same as the machine learning of regu-
lar languages [5]. The learnability of the pattern language
is difficult if the pattern is restricted to be regular. Instead
that such restrictions on variable occurrence, we assume that
substituted strings are generated by some natural distribu-
tion. By the natural distribution, we mean that (*) a distri-
bution which gives a small possibility for a long string. On
the other hand, the constant part is obviously common to all
input strings. The key idea is that there exists a clear dis-
parity between frequency distributions of substrings in the
constant part and the one in the substituted string part. We
call our approach “substring amplification.”

We experimentally showed that if any constant string
has some adequate length, we can find such a string by sub-
string amplification [12, 13], and HTML files generated by
some template meet the condition (*) because (1) a tem-
plate for HTML files is enough long, (2) many characters
are used in HTML files and (3) it is rarely happened that the

1

same long substrings occur many times in contents (variable
parts). On the other hand, the alphabet size of genome se-
quences are quite small and the length of motif or common
parts considered in the literature are relatively short. There-
fore, we study applicability of our approach to genome se-
quences.

2. PATTERN LANGUAGES

Let Σ be an finite alphabet andV = {x1, x2, . . . , } be an
infinite set ofvariable. A pattern is a string overΣ ∪ V .
A pattern isregular if each variable in the pattern appears
at most once. In the sequel, we assume that all patterns are
regular.

A word generated by a pattern is one obtained by replac-
ing all variables by some strings overΣ. A set of all words
generated by some patternp is denoted byL(p).

A finite setS ⊂ Σ∗ is called asample. Given a sam-
ple S, a patternp is descriptivewith respect toS if S ⊆
L(p) and there dose not existp′ 6= p such thatL(p′) ⊂
L(p).

Angluin introduced the pattern language and studied its
learnability [3]. The problem is, given a sampleS, to find a
descriptive pattern with respect toS.

3. SUBSTRING AMPLIFICATION

Many learning algorithms consider patterns in which occur-
rence of variables is restricted [3, 4, 5] since the problem
for general patterns is intractable. However, our interest is
not to find variable parts but to find the template part, that
is, identifying constant substrings of a given pattern. There-
fore, we consider another restriction on the pattern.

Consider a patternp = w1x1 · · ·wmxm such thatwi ∈
Σ∗ and xi ∈ V for each1 ≤ i ≤ m. The template
of p is (w1, . . . , wm) and denoted byt(p). The width of
the template is denoted by|t(p)| and defined as follows:
|t(p)| = min{|wi| | wi ∈ t(p)}.

Our goal is to find substrings common to given strings.
In other words, we want to find the template. This is the
same as the goal of the machine learning of regular pattern
language [5] because if a regular pattern is found then we
can extract the template from the pattern, and conversely, if
a template is found then we can construct a regular pattern
by inserting variables.

The learnability of the pattern language is difficult if the
pattern is restricted to be regular. Therefore, we developed
another approach using frequency distributions [12, 13]. We
defined formally the problem as follows [12]:

Definition 1 Given a sampleS which is generated by un-
known patternp = w1x1 · · ·wmxm with widthk according
to some natural distributionD(x1, . . . , xm), the template

discovery problemis to find the templatet = (w1, . . . , wm)
of p which is descriptive with respect toS.

Note that the probabilistic distributionD is unknown.
Non-template parts (background) of strings inS do not

have regularity because some natural distributions are as-
sumed. Therefore, any substring in the background does not
appear frequently. On the other hand, any substrings of the
template must appear frequently because many of the sam-
ple S contains the template even if noise data are included.
This is the key idea of substring amplification.

Given a sampleS, the proposed method just counts all
substrings inS. Then, for each frequencyf , it outputs
pairs (f, V (f)), where the numberV (f) of different sub-
strings whose frequency are exactlyf . In other words, there
are V (f) substrings which appear exactlyf times in S.
V (f) is known as thefrequency of frequencyof Zipf’s law.
Finally, it draws a graph, called afrequency graph, which
showsF (f)(= V (f) ∗ f) for all f in log scale. We call
F (f) theamplified frequency.

When a natural text such as a novel is given,F (f) is
drastically and smoothly decreasing asf is increasing (see
Fig. 2). This phenomena is famous as the Zipf’s law.

But, whenm strings are given and they share a template,
there must be clear peaks in the frequency graph. This is
because common substrings in the template appear at least
m times (if the template completely appears in all input
strings) and soF (f) is at mostn2 ∗m for f = m, wheren
is the length of the template andn2 is maximal number of
substrings in the template. ThisF (f) is a relatively higher
since the frequency distribution for the variable part is nat-
ural and it is rarely for an adequately long substring to ap-
pear frequently in the variable part due to the assumption
(*). So, we can extract substrings which constitute peaks as
common patterns.

Substring amplification utilizes the frequency distribu-
tion. There are many other algorithms to do in a similar
way. In most of such algorithms, the lengthn to count sub-
strings is fixed. In fact, bigram (n = 2) or trigram (n = 3)
is usually used in natural language processing. On the other
hand, the proposed algorithm does not fix the length. More-
over the algorithm sums up frequencies for alln (in our im-
plementation the maximaln is fixed by some constant). We
call this approach “substring amplification” which makes
the difference among the distributions clear.

Substring amplification receives only positive strings.
This contrasts to many other existing algorithms using both
positive and negative (or background) strings [14, 15]. Our
approach is supported by the fact that it works well for
HTML files generated for some template in our previous
experiments [12]. Fig. 1 is a frequency graph for Sankei
Shimbun. whereS is a set of 50 HTML files collected from
Sankei Shimbun1. We can see a clear peak atf = 50, which

1http://www.sankei.co.jp/

f=50

f=100

Fig. 1. frequency graph for Sankei Shimbun

is the number of the files. This shows many substrings in the
template appear once in all files. But, there is another peak
at f = 100. This shows some substrings in the template
appear twice. Therefore, we can extract substrings which
constitute the template of the input files with high probabil-
ity.

4. EXPERIMENTS

In this section, we show experiments on genome sequences.
Compared to HTML files, DNA and amino acid sequences
have only little amount of characters and short common
substrings. This seems to be undesirable features for sub-
string amplification because short common substrings with
few letters do not contain many substrings in them and so
they do not constitute sharp peaks in frequency graphs even
by substring amplification.

Our purpose of the experiments is to examine the effect
of the alphabet size and template width for substring am-
plification. Therefore, we use both DNA and amino acid
sequences in which some constant subsequence with differ-
ent length are embedded.

The key idea of substring amplification is to use the
difference of frequency distributions between template and
non-template (background) part. So, we have to use real
data for background part when the template part is embed-
ded intensionally. As real data, we used DNA regions of
proteins and amino acid subsequences of proteins in the
complete genome of Escherichia coli K12 (NC000913).
Therefore, distribution of strings in the background part is
natural.

Escherichia coli K12 has 4279 proteins. For each pro-
tein, we add some constant sequences and we examine our
method can extract the added sequences.

First, we add a constant sequence with length 20 to DNA
regions of proteins. Fig. 2 is a frequency graph for these se-
quences. Although the template with length 20 is embedded
in these sequences, we can see no clear peaks because the
alphabet size (|Σ| = 4) is too small and there does not ex-

0

50

100

150

200

250

300

350

100 1000 10000 100000 1e+06

Fig. 2. frequency graph graph for DNA sequences (f ≥
100)

ist many different substrings in the embedded sequence. To
see a sharp peak, we need a constant sequence with length
about 40.

Next, we add to amino acid sequences. Fig. 3 is a fre-
quency graph for the sequences. In these sequences, the

0

10

20

30

40

50

60

100 1000 10000 100000

Fig. 3. frequency graph for amino acid sequences (f ≥ 100)

template with length 8 is embedded. We see that a sharp
peek atf = 4279, which is the number of proteins. We also
see such sharp peaks at the same frequency when the tem-
plate length is 7 and 6. If the length 5, we can hardly see
sharp peaks.

5. CONCLUSION

We examined the applicability of substring amplification,
which is an algorithm to the template discovery problem,
to genome sequences. Substring amplification utilizes the
string frequency distributions. For substring amplification,
it is good that there are many different substrings in non-
template (background) parts and that input sequences have
the long template part. However, genome sequences con-
sist of few characters and seems to have short common sub-
strings.

Our experiments showed that when|Σ| = 4, a frequency
graph does not show sharp peaks even if long template is

embedded. On the other hand, if the alphabet size is large
(|Σ| = 20), we can find a peak when the template width is
6.

Substring amplification can extract a template as a set
of substrings which constitute sharp peaks in a frequency
graph. So, it is challenging future work to extend the “for-
mat” of the pattern so that some ambiguity is allowed, such
as[AC] .

Counting time for all experiments in Section 4 are about
500 seconds (the data size is about 4.3MB). Currently, our
implementation just counts all substrings sequentially. It
is another important future work to incorporate some good
data structure, such as the suffix array, to the implementa-
tion.

6. REFERENCES

[1] Dan Gusfield, Algorithms on Strings, Trees and Se-
quence, Cambridge University Press, New York,
1997.

[2] Makoto Nagao and Shinsuke Mori, “A New Method
of N -gram Statistics for Large Number ofn and Au-
tomatic Extraction of Words and Phrases from Large
Text Data of Japanese,” inProceedings of the 15th In-
ternational Conference on Computational Linguistics,
1994, pp. 611–615.

[3] Dana Angluin, “Finding Patterns Common to a Set of
Strings,” Journal of Computer and System Sciences,
vol. 21, pp. 46–62, 1980.

[4] Michael Kearns and Leonard Pitt, “A Polynomial-
Time Algorithm for Learningk-variable Pattern Lan-
guages from Examples,” inProceedings of the 2nd
Annual Workshop on Computational Learning Theory,
1989, pp. 57–71.

[5] Takeshi Shinohara, “Polynomial Time Inference of
Extended Regular Pattern Languages,” inRIMS Sym-
posium on Software Science and Engineering (1982).
1983, Lecture Notes in Computer Science 147, pp.
115–127, Splinger-Verlag.

[6] Nicolas Kushmerick, “Wrapper Induction: Efficiency
and Expressiveness,”Artificial Intelligence, vol. 118,
pp. 15–68, 2000.

[7] Yasuhiro Yamada, Daisuke Ikeda, and Sachio Hi-
rokawa, “Automatic Wrapper Generation for Multi-
lingual Web resources,” inProceedings of the 5th In-
ternational Conference on Discovery Science. 2002,
Lecture Notes in Computer Science 2534, pp. 332–
339, Splinger-Verlag.

[8] Rakesh Agrawal and Ramakrishnan Srikant, “Fast
Algorithms for Mining Association Rules in Large
Databases,” inProceedings of the 20th Interna-
tional Conference on Very Large Data Bases (VLDB),
September 1994, pp. 487–499.

[9] Hiroki Arimura and Shinichi Shimozono, “Maximiz-
ing Agreement with a Classification by Bounded or
Unbounded Number of Associated Words,” inPro-
ceedings of the 9th International Symposium on Algo-
rithms and Computation. 1998, Lecture Notes in Arti-
ficial Intelligence 1533, pp. 39–48, Springer-Verlag.

[10] Tatsuya Asai, Hiroki Arimura, Takeaki Uno, and
Shinichi Nakano, “Discovering Frequent Substruc-
tures in Large Unordered Trees,” inProceedings of the
6th International Conference on Discovery Science (to
appear), 2003.

[11] David Maier, “The Complexity of Some Problems on
Subsequences and Supersequences,”Journal of the
ACM, vol. 25, pp. 322–336, 1978.

[12] Daisuke Ikeda, Yasuhiro Yamada, and Sachio Hi-
rokawa, “Pattern Discovery from Distributions of
String Frequency (to appear),” inProceedings of the
72th IPSJ SIG FI, September 2003, (in Japanese).

[13] Yasuhiro Yamada, Daisuke Ikeda, and Sachio Hi-
rokawa, “Frequency Analysis of Semi-structured Doc-
uments with Structural Similarity,” inProceedings of
the 2nd Forum on Information Technology (FIT2003),
2003, pp. 59–60, (in Japanese).

[14] Erika Tateishi, Osamu Maruyama, and Satoru Miyano,
“Extracting Best Consensus Motifs from Positive and
Negative Examples,” inProceedings of the 13th An-
nual Symposium on Theoretical Aspects of Computer
Science. February 1996, Lecture Notes in Computer
Science 1046, pp. 219–230, Springer-Verlag.

[15] Hideo Bannai, Shunsuke Inenaga, Ayumi Shinohara,
Masayuki Takeda, and Satoru Miyano, “A String Pat-
tern Regression Algorithm and Its Application to Pat-
tern Discovery in Long Introns,” inGenome Informat-
ics (GIW2002), 2002, vol. 13, pp. 3–11.

