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Abstract

The resolvent problem of the linearized compressible Navier-Stokes
equation around a given constant state is considered in an infinite
layer Rn−1 × (0, a), n ≥ 2, under the no slip boundary condition for
the momentum. It is proved that the linearized operator is sectorial
in W 1,p × Lp for 1 < p < ∞. The Lp estimates for the resolvent are
established for all 1 ≤ p ≤ ∞. The estimates for the high frequency
part of the resolvent are also derived, which lead to the exponential
decay of the corresponding part of the semigroup.

1. Introduction

This paper studies the following resolvent problem

(1.1) (λ + L)u = f

in an infinite layer Ω = Rn−1 × (0, a), n ≥ 2, where λ ∈ C is a parameter,

f = f(x) is a given function with values in Rn+1, u =

(
φ
m

)
is the unknown

function with φ = φ(x) ∈ R and m = T (m1(x), · · · , mn(x)) ∈ Rn, and L is
an operator defined by

L =

 0 γdiv

γ∇ −ν∆In − ν̃∇div


with positive constants ν and γ and a nonnegative constant ν̃. Here x =(

x′

xn

)
∈ Ω with x′ ∈ Rn−1, xn ∈ (0, a); the superscript T · stands for the

transposition; In is the n × n identity matrix; and div, ∇ and ∆ are the
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usual divergence, gradient and Laplacian with respect to x. We consider
(1.1) under the boundary condition

(1.2) m|∂Ω = 0.

Problem (1.1)–(1.2) is the resolvent problem associated with the linearization
of the compressible Navier-Stokes equation around a motionless state with a
positive constant density, where φ and m are the Laplace transform of the
perturbation of the density and the momentum, respectively.

In this paper we establish the Lp estimates for the solution of (1.1)–(1.2)
for all 1 ≤ p ≤ ∞. The estimates show that −L generates an analytic
semigroup in W 1,p × Lp for 1 < p < ∞. We also establish the estimates
for the high frequency part of the resolvent, which lead to the exponential
decay of the corresponding part of the semigroup. The low frequency part is
investigated in [5]. The precise statement of the main results of this paper
will be given in section 2.

The resolvent problem in an infinite layer was studied in [1, 2, 3] in the
case of the incompressible Stokes equation. They established the Lp estimates
of the resolvent for 1 < p < ∞, which yields the exponential decay of the
Stokes semigroup in Lp norms. To analyze the resolvent, they considered
the Fourier transform in x′ ∈ Rn−1 and derived solution formulae for the
resolvent problem. The Lp estimates were then obtained by applying the
Fourier multiplier theorem.

In this paper we will also consider the Fourier transform (λ+L̂ξ′)
−1 of the

resolvent in x′ ∈ Rn−1, where ξ′ ∈ Rn−1 denotes the phase space variable. In
section 3 we derive an integral representation of (λ+L̂ξ′)

−1. In the derivation
we make use of the invariance of (1.1) under the orthogonal group and Green’s
formula for (1.1), which naturally leads to a decomposition of the solution
into the two parts; one is the solution under the slip boundary condition; and
the other is the term arising from the viscous friction stress due to the no
slip boundary condition (1.2). (Cf. the solution formula for the half-space
problem given in [6, 7].) In section 4 we investigate the resolvent problem
based on the integral representation. The Lp estimates for 1 < p < ∞
are obtained by applying the Fourier multiplier theorem as in [1, 2, 3]. We
obtain the Lp estimates for p = 1,∞ based on the Riemann-Lebesgue lemma
as in the analysis of the Cauchy problem for (1.1) given in [8]. We also
establish the estimates for the high frequency part |ξ′| >> 1. In contrast to
the incompressible Stokes problem, L̂ξ′ has different characters between the
cases |ξ′| >> 1 and |ξ′| << 1. The spectral analysis near the origin is given
in [5]. It is shown in [5] that the continuous spectrum reaches the origin
λ = 0.
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2. Main Results

We first introduce some notation which will be used throughout the paper.
For a domain D and 1 ≤ p ≤ ∞ we denote by Lp(D) the usual Lebesgue
space on D and its norm is denoted by ‖ · ‖Lp(D). Let � be a nonnegative
integer. The symbol W �,p(D) denotes the � th order Lp Sobolev space on
D with norm ‖ · ‖W �,p(D). When p = 2, the space W �,2(D) is denoted by
H�(D) and its norm is denoted by ‖ · ‖H�(D). C�

0(D) stands for the set of

all C� functions which have compact support in D. We denote by W 1,p
0 (D)

the completion of C1
0(D) in W 1,p(D). In particular, W 1,2

0 (D) is denoted by
H1

0 (D).
We simply denote by Lp(D) (resp., W �,p(D), H�(D)) the set of all vector

fields m = T (m1, · · · , mn) on D with mj ∈ Lp(D) (resp., W �,p(D), H�(D)),
j = 1, · · · , n, and its norm is also denoted by ‖ · ‖Lp(D) (resp., ‖ · ‖W �,p(D),

‖ · ‖H�(D)). For u =

(
φ
m

)
with φ ∈ W k,p(D) and m = T (m1, · · · , mn) ∈

W �,q(D), we define ‖u‖Wk,p(D)×W �,q(D) by ‖u‖Wk,p(D)×W �,q(D) = ‖φ‖Wk,p(D) +
‖m‖W �,q(D). When k = � and p = q, we simply write ‖u‖Wk,p(D)×Wk,p(D) =
‖u‖Wk,p(D).

In case D = Ω we abbreviate Lp(Ω) (resp., W �,p(Ω), H�(Ω)) as Lp (resp.,
W �,p, H�). In particular, the norm ‖ · ‖Lp(Ω) = ‖ · ‖Lp is denoted by ‖ · ‖p.

In case D = (0, a) we denote the norm of Lp(0, a) by | · |p. The inner
product of L2(0, a) is denoted by

(f, g) =
∫ a

0
f(xn)g(xn) dxn, f, g ∈ L2(0, a).

Here g denotes the complex conjugate of g. We will also denote the bilinear
pairing f and g by

((f, g)) =
∫ a

0
f(xn)g(xn) dxn.

The norms of W �,p(0, a) and H�(0, a) are denoted by | · |W �,p and | · |H�,
respectively.

We often write x ∈ Ω as x =

(
x′

xn

)
, x′ = T (x1, · · · , xn−1) ∈ Rn−1.

Partial derivatives of a function u in x, x′, xn and t are denoted by ∂xu, ∂x′u,
∂xnu and ∂tu, respectively. We also write higher order partial derivatives of
u in x as ∂k

xu = (∂α
x u; |α| = k).

We denote the k×k identity matrix by Ik. In particular, when k = n+1,
we simply write I for In+1. We also define (n+1)× (n+1) diagonal matrices
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Q0, Q̃, Q′ and Qn by

Q0 = diag (1, 0, · · · , 0, 0), Q̃ = diag (0, 1 · · · , 1, 1),

Q′ = diag (0, 1, · · · , 1, 0), Qn = diag (0, 0, · · · , 0, 1).

For u =

(
φ
m

)
∈ Rn+1 with m =

(
m′

mn

)
∈ Rn, we have

Q0u =

(
φ
0

)
, Q̃u =

(
0
m

)
, Q′u =

 0
m′

0

 , Qnu =

 0
0

mn

 .

We next introduce some notation about integral operators. For a function
f = f(z) (z ∈ Rk), we denote its Fourier transform by F zf :

(F zf)(ζ) =
∫
Rk

f(z)e−iζ·z dz

In particular, when k = n − 1 (x′ ∈ Rn−1), we denote F x′f by f̂ ,

f̂ = (F x′f)(ξ′) =
∫
Rn−1

f(x′)e−iξ′·x′
dx′.

The inverse Fourier transform is denoted by F −1
ζ :

(F −1
ζ f)(z) = (2π)−k

∫
Rk

f(ζ)eiζ·z dζ.

For a function K(xn, yn) on (0, a) × (0, a) we will denote by Kf the inte-
gral operator

∫ a
0 K(xn, yn)f(yn) dyn. Similarly, for a function K(x′, xn, yn) on

Rn−1×(0, a)×(0, a) we will denote by Kf the integral operator
∫
Rn−1

∫ a
0 K(x′−

y′, xn, yn)f(yn) dy′dyn.
We denote the resolvent set of a closed operator A by ρ(A) and the

spectrum of A by σ(A). For Λ ∈ R and θ ∈ (π
2
, π) we will denote the set

{λ ∈ C; |arg (λ − Λ)| ≤ θ} by Σ(Λ, θ):

Σ(Λ, θ) = {λ ∈ C; |arg (λ − Λ)| ≤ θ}.

We now state the main results of this paper.

Theorem 2.1. Let 1 < p < ∞. There exists a number θ ∈ (π
2
, π) such

that for any η > 0 problem (1.1)–(1.2) has a unique solution u ∈ W 1,p ×
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(
W 2,p ∩ W 1,p

0

)
for any f ∈ W 1,p × Lp, provided that λ ∈ Σ(η, θ). Fur-

thermore, u = (λ + L)−1f satisfies the following estimates uniformly in
λ ∈ Σ(η, θ):

‖∂k
x(λ + L)−1f‖p ≤ C

{
‖Q0f‖Wk,p

|λ| + 1
+

‖Q̃f‖p

(|λ| + 1)1−
k
2

}
, k = 0, 1,

and
‖∂2

xQ̃(λ + L)−1f‖2 ≤ C‖f‖W 1,p×Lp .

Furthermore, if Q̃f
∣∣∣
xn=0,a

= 0, then there holds

‖∂xQ̃(λ + L)−1f‖p ≤ C

|λ| + 1
‖f‖W 1,p .

In the application to the nonlinear problem we will also use the following
Hs → L∞ estimates of the resolvent.

Theorem 2.2. Let θ be the number given in Theorem 2.1 and let η be a
positive number. Then the following estimates hold uniformly in λ ∈ Σ(η, θ):

‖∂k
xQ0(λ + L)−1f‖∞ ≤ C

‖Q0f‖H [ n
2 ]+1+k

|λ| + 1
+

‖Q̃f‖
H [ n

2 ]+k

(|λ| + 1)
3
4

 , k = 0, 1,

and

‖∂k
xQ̃(λ + L)−1f‖∞ ≤ C

‖Q0f‖H [ n
2

]+k

(|λ| + 1)
3
4

+
‖Q̃f‖

H [n
2

]−1+k

(|λ| + 1)
ε
4

 , k = 0, 1.

Here ε is some number satisfying 0 < ε < 1
3
.

As for the Lp estimates for p = 1,∞, we have the following result.

Theorem 2.3. Let θ be the number given in Theorem 2.1 and let η be a
positive number. Then the following estimates hold uniformly in λ ∈ Σ(η, θ):
for p = 1,∞,

‖∂k
xQ0(λ + L)−1f‖p ≤ C

|λ| + 1
‖f‖Wk+1,p×Wk,p , k = 0, 1,

and

‖∂k
xQ̃(λ + L)−1f‖p ≤ C

{
‖Q0f‖Wk,p

|λ| + 1
+

‖Q̃f‖p

(|λ| + 1)1−
k
2

}
, k = 0, 1.
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Furthermore, if Q̃f
∣∣∣
xn=0,a

= 0, then, there hold, for p = 1,∞,

‖∂xQ̃(λ + L)−1f‖p ≤ C

|λ| + 1
‖f‖W 1,p .

We see from Theorem 2.1 that −L generates the analytic semigroup U (t)
in W 1,p×Lp for 1 < p < ∞. Based on Theorems 2.1–2.3 we have the following
estimates of U (t) for 0 < t ≤ 1.

Corollary 2.4. Let � = 0, 1. Then there hold the estimates

‖∂�
xU (t)u0‖p ≤ Ct−

�
2‖u0‖W �,p×Lp , 1 < p < ∞,

‖∂�
xU (t)u0‖∞ ≤ Ct−(1−ε)‖u0‖H [n

2 ]+1+�×H[n
2 ]+�

and
‖∂�

xU (t)u0‖p ≤ Ct−
�
2‖u0‖W �+1,p×W �,p , p = 1,∞,

for 0 < t ≤ 1 with some constant 0 < ε < 1, provided that u0 belongs to
the Sobolev spaces indicated on the right-hand side of each inequality above.
Furthermore, if Q̃u0|xn=0,a = 0, then

‖∂xU (t)u0‖1 ≤ C‖u0‖W 2,1×W1,1

holds for 0 ≤ t ≤ 1.

To investigate problem (1.1)–(1.2) we consider the Fourier transform in
x′ ∈ Rn−1. Applying the Fourier transform, we have the following boundary
value problem for functions φ(xn) and m(xn) on the interval (0, a):

(2.1) λu + L̂ξ′u = f,

where u =

 φ(xn)
m′(xn)
mn(xn)

, f =

 f0(xn)
f ′(xn)
fn(xn)

 and L̂ξ′ is a closed operator on

H1(0, a) × L2(0, a) defined by L̂ξ′ = Âξ′ + B̂ξ′ with domain of definition
D(L̂ξ′) = H1(0, a) × (H2(0, a) ∩ H1

0 (0, a)). Here

Âξ′ =


0 0 0

0 ν(|ξ′|2 − ∂2
xn

)In−1 + ν̃ξ′T ξ′ −iν̃ξ′∂xn

0 −iν̃T ξ′∂xn ν(|ξ′|2 − ∂2
xn

) − ν̃∂2
xn
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and

B̂ξ′ =


0 iγT ξ′ γ∂xn

iγξ′ 0 0

γ∂xn 0 0

 .

In the analysis of the semigroup generated by −L, it is convenient to
decompose the phase space {ξ′ ∈ Rn−1} into the parts |ξ′| << 1 and |ξ′| >>
1, since L̂ξ′ has different characters between the cases |ξ′| << 1 and |ξ′| >> 1.
Motivated by this we introduce the following decomposition. Let r be a
positive number. We take a function χ(ξ′) ∈ C∞(Rn−1) satisfying 0 ≤ χ ≤ 1
on Rn−1，χ(ξ′) = 0 for |ξ′| ≤ r

2
and χ(ξ′) = 1 for |ξ′| ≥ r. We define the

operator R(1)(λ) by

R(1)(λ)f = F −1
ξ′
[
χ(ξ′)(λ + L̂ξ′)

−1f̂
]
.

The estimates in Theorems 2.1–2.3 hold for a negative η with (λ + L)−1

replaced by R(1)(λ).

Theorem 2.5. Let r be a positive number.
(i) There exist positive numbers η̃ and θ̃ with θ̃ ∈ (π

2
, π) such that Σ(−η̃, θ̃) ⊂

ρ(−L̂ξ′) for |ξ′| ≥ r.

(ii) Let 1 < p < ∞ and define R(1)(λ) as above. Then the following
estimates hold uniformly in λ ∈ Σ(−η̃, θ̃):

‖∂k
xR(1)(λ)f‖p ≤

{
‖Q0f‖Wk,p

|λ| + 1
+

‖Q̃f‖p

(|λ| + 1)1−
k
2

}
, k = 0, 1,

and
‖∂2

xQ̃R(1)(λ)f‖2 ≤ C‖f‖W 1,p×Lp .

Theorem 2.6 Let η̃ and θ̃ be the numbers as in Theorem 2.5. Then the
following estimates hold uniformly in λ ∈ Σ(−η̃, θ̃):

‖∂k
xQ0R

(1)(λ)f‖∞ ≤ C

‖Q0f‖H [ n
2 ]+1+k

|λ| + 1
+

‖Q̃f‖
H [ n

2 ]+k

(|λ| + 1)
3
4

 , k = 0, 1,

and

‖∂k
xQ̃R(1)(λ)f‖∞ ≤ C

‖Q0f‖H [ n
2 ]+k

(|λ| + 1)
3
4

+
‖Q̃f‖

H [n
2 ]−1+k

(|λ| + 1)
ε
4

 , k = 0, 1.
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Here ε is some number satisfying 0 < ε < 1
3
.

Theorem 2.7. Let p = 1,∞. Let η̃ and θ̃ be the numbers as in Theorem
2.5. Then the following estimates hold uniformly in λ ∈ Σ(−η̃, θ̃):

‖∂k
xQ0R

(1)(λ)f‖p ≤ C

|λ| + 1
‖f‖Wk+1,p×Wk,p , k = 0, 1,

and

‖∂k
xQ̃R(1)(λ)f‖p ≤ C

{
‖Q0f‖Wk,p

|λ| + 1
+

‖Q̃f‖p

(|λ| + 1)1−
k
2

}
, k = 0, 1.

3. An integral representation of the resolvent

In this section we derive an integral representation of the resolvent. For
this purpose we take the Fourier transform of (1.1)–(1.2) in x′ ∈ Rn−1 and
consider the boundary value problem (2.1).

We begin with the following observation on the resolvent of −L̂ξ′. If
λ 
= 0, then, by the first row of equation (2.1), φ is written as

(3.1) φ =
1

λ

{
f0 − iγξ′ · m′ − γ∂xnmn

}
.

Substituting (3.1) into the second and third rows of (2.1), we obtain

(3.2) L(λ, ξ′)m = F,

where L(λ, ξ′) = A(λ, ξ′) + B(λ, ξ′) with domain of definition D(L̃(λ, ξ′)) =

H2(0, a) ∩ H1
0 (0, a) and F = λ

 f ′

fn

− γ

 iξ′

∂xn

 f0. Here

A(λ, ξ′) =

 {λ2 + νλ(|ξ′|2 − ∂2
xn

)}In−1 0

0 λ2 + νλ(|ξ′|2 − ∂2
xn

)

 ,

B(λ, ξ′) = (ν̃λ + γ2)

 ξ′T ξ′ −iξ′∂xn

−iT ξ′∂xn −∂2
xn

 .

We thus deduce that (2.1) is equivalent to (3.1) and (3.2) if λ 
= 0. We also
write (3.2) as

(3.3) L̃(λ, ξ′)m = F̃ ,
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where
L̃(λ, ξ′) = −∂2

xn
In + Ã(λ, ξ′) + B̃(λ, ξ′)∂xn

with domain of definition D(L̃(λ, ξ′)) = H2(0, a)∩H1
0 (0, a) and F̃ =

 1
νλ

F ′

1
ν1λ+γ2 F

n

 .

Here

Ã(λ, ξ′) =


1
ν
(λ + ν|ξ′|2)In−1 + 1

νλ
(ν̃λ + γ2)ξ′T ξ′ 0

0 λ(λ+ν|ξ′|2)
ν1λ+γ2


and

B̃(λ, ξ′) =

 0 −i ν̃λ+γ2

νλ
ξ′

−i ν̃λ+γ2

ν1λ+γ2
T ξ′ 0

 .

Here and in what follows we write ν1 for ν + ν̃:

ν1 = ν + ν̃.

Lemma 3.1. Assume that λ 
= 0 and ν1λ + γ2 
= 0. Then λ ∈ ρ(−L̂ξ′) if
and only if KerL(λ, ξ′) = {0}.

Proof. Suppose that λ ∈ ρ(−L̂ξ′). Let m ∈ H2(0, a) ∩ H1
0 (0, a) satisfy

L(λ, ξ′)m = 0, namely, L̃(λ, ξ′)m = 0. We define φ as in (3.1) with f0 = 0

and set u =

(
φ
m

)
. It then follows that (λ + L̂ξ′)u = 0. Since λ ∈ ρ(−L̂ξ′),

we see that u = 0, in particular, m = 0. This shows that KerL(λ, ξ′) = {0}.
Conversely, suppose that KerL(λ, ξ′) = {0}, namely, Ker L̃(λ, ξ′) = {0}. We
define F̃ as in (3.3). Since (2.1) is equivalent to (3.1) and (3.3), it suffices

to show the unique existence of the solution u =

(
φ
m

)
of (3.1) and (3.3)

satisfying |u|H1×H2 ≤ C|f |H1×L2 with some C > 0. Since Ker L̃(λ, ξ′) = {0},
the standard theory of elliptic equations shows that there exists a unique
solution m ∈ H2(0, a) ∩ H1

0 (0, a) of (3.3) and m satisfies

|m|H2 ≤ C(λ, ξ′)
∣∣∣F̃ ∣∣∣

2
≤ C(λ, ξ′)|f |H1×L2 .

It then follows from (3.1) that φ ∈ H1(0, a) and |φ|H1 ≤ C(λ, ξ′)|f |H1×L2 .
We thus conclude that λ ∈ ρ(−L̂ξ′). This completes the proof.

We next give a fundamental set of solutions of the ordinary differential
equation (3.2) with F = 0. For this purpose we introduce some notation.
We set

λ1,0 = −ν|ξ′|2

9



and

λ±,0 = −ν1

2
|ξ′|2 ± 1

2

√
ν2

1 |ξ′|4 − 4γ2|ξ′|2,

and define

µ1 = µ1(λ, |ξ′|2) =

√
λ + ν|ξ′|2

ν
and

µ2 = µ2(λ, |ξ′|2) =

√
λ2 + ν1|ξ′|2λ + γ2|ξ′|2

ν1λ + γ2
.

Remark 3.2. We observe that µ1 =
√

λ−λ1,0

ν
and µ2 =

√
(λ−λ+,0)(λ−λ−,0)

(ν1λ+γ2)
.

Furthermore, λ−,0 = λ+,0 with Imλ+,0 = γ|ξ′|
√

1 − ν2
1

4γ2 |ξ′|2 when |ξ′| < 2γ/ν1

and λ±,0 ∈ R when |ξ′| > 2γ/ν1, and it holds that

λ±,0 = −ν1

2
|ξ′|2 ± i|ξ′| + O(|ξ′|3)

as |ξ′| → 0, and

λ+,0 = −γ2

ν1

+ O(|ξ′|−2), λ−,0 = −ν1|ξ′|2 + O(1)

as |ξ′| → ∞.

Proposition 3.3. Assume that λ 
= 0, ν̃λ + γ2 
= 0, ν1λ + γ2 
= 0, λ 
= λ1,0

and λ 
= λ±,0. Then the following functions v1, · · · , v2n form a fundamental
set of solutions of the ordinary differential equation in (3.2) with F = 0:

vj(xn) =

 e′
j cosh µ1xn

−i
ξj

µ1
sinhµ1xn

 , vn(xn) =

 i ξ′
µ2

sinhµ2xn

cosh µ2xn

 ,

vn+j(xn) =

 e′
jµ1 sinhµ1xn

−iξj cosh µ1xn

 , v2n(xn) =

 iξ′ coshµ2xn

µ2 sinhµ2xn

 ,

where j = 1, · · · , n − 1 and e′
j = T

j

(0, · · · , 1, · · · , 0)∈ Rn−1.

Remark. We note that v1, · · · , v2n are analytic in λ and |ξ′|2.

Proof. Setting w = T (w1, · · · , w2n) with wj = mj, wn+j = ∂xnmj, j =
1, · · · , n, we see that the ordinary differential equation in (3.2) with F = 0 is
equivalent to

(3.4)
dw

dxn
= M(λ, ξ′)w,
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where

M(λ, ξ′) =

(
0 In

Ã(λ, ξ′) B̃(λ, ξ′)

)
with Ã(λ, ξ′) and B̃(λ, ξ′) defined in (3.3).

To obtain a fundamental set of solutions of (3.4) we first consider the
characteristic equation of M(λ, ξ′). Let T ′ be an (n−1)× (n−1) orthogonal
matrix and set

T =


T ′ 0 0 0
0 1 0 0
0 0 T ′ 0
0 0 0 1

 .

It then follows that M(λ, ξ′) = T −1M(λ, T ′ξ′)T .
We take T ′ in such a way that T ′ξ′ = |ξ′|e′

n−1. With this T ′ we find that

det (µI2n −M(λ, ξ′)) = det (µI2n −M(λ, T ′ξ′))

= det (µ2In − µB̃(λ, T ′ξ′) − Ã(λ, T ′ξ′))

= (µ2 − µ2
1)

n−1(µ2 − µ2
2).

Therefore, the eigenvalues of M(λ, ξ′) are given by ±µ1 and ±µ2. Note that
µ1 
= ±µ2 since λ 
= 0 and ν̃λ + γ2 
= 0. Furthermore, µj 
= 0, j=1,2, since
λ 
= λ1,0 and λ 
= λ±,0.

We next look for eigenvectors associated with ±µj. To obtain eigenvectors
for µ1 we consider the problem

M(λ, ξ′)

(
X
Y

)
= µ1

(
X
Y

)
,

where X,Y ∈ Cn. This is equivalent to

(Ã(λ, ξ′) + µ1B̃(λ, ξ′) − µ2
1In)X = 0.

We write X =

(
X ′

Xn

)
. Since ν̃λ + γ2 
= 0, we have ξ′ · X ′ − iµ1Xn = 0.

This implies that Xj,+ =

(
µ1e

′
j

−iξj

)
, j = 1, · · · , n − 1, are eigenvectors for

µ1. Similarly, one can see that Xj,− =

(
−µ1e

′
j

−iξj

)
, j = 1, · · · , n − 1, are

eigenvectors for −µ1.
We next look for eigenvector for µ2. As in the case of µ1, it suffices to

find a nontrivial solution X ∈ Cn of

(Ã(λ, ξ′) + µ2B̃(λ, ξ′) − µ2
2In)X = 0.
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Since ν̃λ + γ2 
= 0, it follows that
λ

ν1λ+γ2 Xj + 1
λ
(ξ′ · X ′)ξj − iµ2

ξj

λ
Xn = 0, j = 1, · · · , n − 1,

−iµ2(ξ
′ · X ′) − |ξ′|2Xn = 0.

This implies that Xn,+ =

(
ξ′

−iµ2

)
is an eigenvector for µ2. Similarly, we

can find that Xn,− =

(
ξ′

iµ2

)
is an eigenvector for −µ2.

Since µ1 
= ±µ2 and µj 
= 0, j = 1, 2, we have a fundamental set of
solutions of the ordinary differential equation in (3.2) with F = 0: uj,± =
Xj,±e±µ1xn (j = 1, · · · , n − 1), un,± = Xn,±e±µ2xn. One can now obtain
the basis v1, · · · , v2n by setting vj = 1

2µ1
(uj,+ − uj,−), vn+j = 1

2
(uj,+ + uj,−)

(j = 1, · · · , n − 1), vn = i
2µ2

(un,+ − un,−) and v2n = i
2
(un,+ + un,−). This

completes the proof.

We next give a characterization of the resolvent set ρ(−L̂ξ′). We define
complex valued functions bj (j = 1, 2, 3) by

b1(λ, ξ′, xn) = b1(λ, |ξ′|2, xn) = coshµ1xn − cosh µ2xn,

b2(λ, ξ′, xn) = b2(λ, |ξ′|2, xn) = µ1 sinhµ1xn − |ξ′|2
µ2

sinh µ2xn,

b3(λ, ξ′, xn) = b3(λ, |ξ′|2, xn) = µ2 sinhµ2xn − |ξ′|2
µ1

sinh µ1xn,

with µj = µj(λ, ξ′), j = 1, 2. We set

D(λ, ξ′) = D(λ, |ξ|2) = b3(λ, ξ′, a)b2(λ, ξ′, a) + |ξ′|2b1(λ, ξ′, a)2.

In the following we will frequently abbreviate bj(λ, ξ′, xn) to bj(xn). Note
that bj (j = 1, 2, 3) are analytic in λ and |ξ′|2, and hence, so is D. We also
set

λ1,k = −ν|ξ(k)|2

for ξ′ ∈ Rn−1 and k = 1, 2, · · ·, where

|ξ(k)|2 = |ξ′|2 + a2
k, ak =

kπ

a
.

Lemma 3.4. Assume that λ 
= 0, ν̃λ + γ2 
= 0, ν1λ + γ2 
= 0, λ 
= λ±,0

and λ 
= λ1,k for any k = 0, 1, 2, · · ·. Then λ ∈ ρ(−L̂ξ′) if and only if
D(λ, ξ′) 
= 0.
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Proof. By Proposition 3.3 the solution of the equation in (3.2) with F = 0
is written as

m = c1v1 + · · · + c2nv2n

for some cj ∈ C, j = 1, · · · , 2n. This m satisfies the boundary condition
m|xn=0,a = 0 if and only if

(3.5) A


c1
...

c2n

 = 0 with A =

 A1(0) A2(0)

A1(a) A2(a)

 ,

where A1(xn) = (v1(xn), · · · , vn(xn)) and A2(xn) = (vn+1(xn), · · · , v2n(xn)).
Note that A1(0) = In. In view of Lemma 3.1, λ ∈ ρ(−L̂ξ′) if and only if (3.5)
has only the trivial solution cj = 0, j = 1, · · · , 2n, namely, det A 
= 0.

Let us compute det A. Since A1(0) = In, by a well known formula, we
have

det A = det (A2(a) − A1(a)A2(0)).

A direct calculation gives

A2(a) − A1(a)A2(0)

=

 µ1 sinhµ1aIn−1 − ξ′T ξ′
µ2

sinhµ2a −iξ′b1(a)

−iT ξ′b1(a) b3(a)

 .

Let T ′ be the (n − 1) × (n − 1) orthogonal matrix given in the proof of
Proposition 3.3 such as T ′ξ′ = |ξ′|e′

n−1 and set

T =

 T ′ 0

0 1

 .

Then
T (A2(a) − A1(a)A2(0))T−1

=


µ1 sinh µ1aIn−2 0 0

0 b2(a) −i|ξ′|b1(a)

0 −i|ξ′|b1(a) b3(a)

 .

It follows that

(3.6)
det A = det (T (A2(a) − A1(a)A2(0))T−1)

= {µ1 sinhµ1a}n−2D(λ, ξ′).
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Therefore, we see that λ ∈ ρ(−L̂′
ξ) if and only if D(λ, ξ′) 
= 0. This completes

the proof.

To obtain a solution formula for (2.1) we next consider the Fourier series

expansion of the solution u =

(
φ
m

)
of (2.1). We expand φ and m into the

Fourier series as

φ =
1

2
φ0 +

∞∑
k=1

φk cos akxn, m′ =
1

2
m′

0 +
∞∑

k=1

m′
k cos akxn

and

mn =
1

2
mn

0 +
∞∑

k=1

mn
k sin akxn,

where ak = kπ/a; and mn
0 = 0,

φk =
2

a

∫ a

0
φ(xn) cos akxn dxn, m′

k =
2

a

∫ a

0
m′(xn) cos akxn dxn

and

mn
k =

2

a

∫ a

0
mn(xn) sin akxn dxn.

Similarly, we expand f =

 f0

f ′

fn

 as

f0 =
1

2
f0

0 +
∞∑

k=1

f0
k cos akxn, f ′ =

1

2
f ′

0 +
∞∑

k=1

f ′
k cos akxn

and

fn =
1

2
fn

0 +
∞∑

k=1

fn
k sin akxn,

where the Fourier coefficients are defined as above.
Similarly to λ1,k, we also introduce λ±,k by

λ±,k = −ν1

2
|ξ(k)|2 ± 1

2

√
ν2

1 |ξ(k)|4 − 4γ2|ξ(k)|2,

for ξ′ ∈ Rn−1 and k = 1, 2, · · ·. Here, as above, |ξ(k)|2 = |ξ′|2 + a2
k.

Remark 3.5. We note that λ±,k have properties similar to those of λ±,0,
namely, λ±,k are the two roots of λ2 + ν1|ξ(k)|2λ + γ2|ξ(k)|2 = 0; λ−,k = λ+,k
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with Im λ+,k = γ|ξ(k)|
√

1 − ν2
1

4γ2 |ξ(k)|2 when |ξ(k)| < 2γ/ν1 and λ±,k ∈ R when

|ξ(k)| > 2γ/ν1; and

λ+,k = −γ2

ν1
+ O(|ξ(k)|−2), λ−,k = −ν1|ξ(k)|2 + O(1)

as |ξ(k)| → ∞. In contrast to the case k = 0, we find that there exists a
positive number η0 such that

λ1,k, λ±,k /∈ {λ; Re λ ≥ −η0}

for all k ≥ 1 and ξ′ ∈ Rn−1.

The Fourier expansions described above are based on the reflection sym-
metry of equation (1.1), but they do not fit in the boundary condition (1.2).
This leads to a decomposition of the Fourier coefficients φk, m′

k and mn
k into

two parts, one of which involves the boundary values of the xn derivative of
m′ at xn = 0, a.

Proposition 3.6. Let ξ′ 
= 0. Assume that λ 
= 0, ν̃λ+γ2 
= 0, ν1λ+γ2 
= 0,
λ 
= λ1,k and λ 
= λ±,k for any k = 0, 1, 2, · · ·. Then the Fourier coefficients

uk =

(
φk

mk

)
, k = 0, 1, 2, · · ·, are given by

uk = L̂k(λ, ξ′)
−1

fk + L̂k(λ, ξ′)
−1

Yk.

Here

L̂k(λ, ξ′)
−1

= 1
λ−λ1,k

 0 0

0 P0,k



+ 1
(λ−λ+,k)(λ−λ−,k)


λ + ν1|ξ(k)|2 −iγT ξ′ −γak

−iγξ′ λ ξ′T ξ′
|ξ(k)|2 −iλ akξ′

|ξ(k)|2

γak iλ ak
T ξ′

|ξ(k)|2 λ
a2

k

|ξ(k)|2


where P0,k is an n × n matrix defined by

P0,k = In −


ξ′T ξ′
|ξ(k)|2 −i akξ′

|ξ(k)|2

i ak
T ξ′

|ξ(k)|2
a2

k

|ξ(k)|2
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and Yk is given by

Yk =


0

2ν
a
{(−1)k∂xnm′(a) − ∂xnm′(0)}

0

 .

Proof. Since

2

a

∫ a

0
∂xnw(xn) cos akxn dxn =

2

a
{(−1)kw(a) − w(0)}

+ak
2

a

∫ a

0
w(xn) sin akxn dxn

and
2

a

∫ a

0
∂xnw(xn) sin akxn dxn = −ak

2

a

∫ a

0
w(xn) cos akxn dxn,

it is not so difficult to obtain the desired expression of uk from (2.1). We
omit the details.

We next compute the term Yk which involves the boundary values of the
xn derivative of m′. To do so, we make use of Green’s formula for (3.2). We
define (n − 1) × (n − 1) matrices

P ′
1,0 =

ξ′T ξ′

|ξ′|2 , P ′
0,0 = In−1 − P ′

1,0.

Proposition 3.7. Let the assumption of Proposition 3.6 be satisfied. Then
Yk has the form

Yk =
2

a

∫ a

0
{(−1)kB(λ, ξ′, yn) + B̌(λ, ξ′, a − yn)}f(yn) dyn,

where B(λ, ξ′, yn) and B̌(λ, ξ′, yn) are (n + 1) × (n + 1) matrices of the form

B(λ, ξ′, yn) =


0 0 0

b0(λ, ξ′, yn) B ′(λ, ξ′, yn) bn(λ, ξ′, yn)

0 0 0


and

B̌(λ, ξ′, yn) = B(λ, ξ′, yn)diag(1, · · · , 1,−1).
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Here b0(λ, ξ′, yn) and bn(λ, ξ′, yn) are (n − 1)-vectors of the form

b0(λ, ξ′, yn) = iξ′β0(λ, ξ′, yn)

with

β0(λ, ξ′, yn) =
γλ

ν1λ + γ2

1

D(λ, ξ′)
{b3(a)

1

µ2
sinhµ2yn + b1(a) cosh µ2yn}

and

bn(λ, ξ′, yn) = − iξ′

D(λ, ξ′)
{b3(a)b1(yn) − b1(a)b3(yn)} ;

and B ′(λ, ξ′, yn) is an (n − 1) × (n − 1) matrix defined by

B ′(λ, ξ′, yn) = −sinhµ1yn

sinh µ1a
P ′

0,0 − β1(λ, ξ′, yn)P ′
1,0

with

β1(λ, ξ′, yn) =
1

D(λ, ξ′)
{b3(a)b2(yn) + |ξ′|2b1(a)b1(yn)}.

Proof. In the proof we denote Yk =

(
0

Ỹk

)
. Since λ 
= 0, (2.1) is equivalent

to (3.1) and (3.2). Consider the following equation

(3.7) M̃(λ, ξ′)m = 0,

where

M̃(λ, ξ′)

=

 {λ2 + νλ(|ξ′|2 − ∂2
xn

)}In−1 + (ν̃λ + γ2)ξ′T ξ′ i(ν̃λ + γ2)ξ′∂xn

i(ν̃λ + γ2)T ξ′∂xn λ2 + νλ|ξ′|2 − {ν1λ + γ2}∂2
xn

 .

As in the proof of Proposition 3.3, one can see that the following functions
ṽ1, · · · , ṽ2n form a fundamental set of solutions of (3.7):

ṽj(xn) =

 e′
j coshµ1xn

i
ξj

µ1
sinhµ1xn

 , ṽn(xn) =

 −i ξ′
µ2

sinhµ2xn

cosh µ2xn

 ,

ṽn+j(xn) =

 e′
jµ1 sinh µ1xn

iξj cosh µ1xn

 , ṽ2n(xn) =

 −iξ′ coshµ2xn

µ2 sinh µ2xn

 ,

17



where j = 1, · · · , n − 1. We note that ṽ1, · · · , ṽ2n are analytic in λ and |ξ′|2.
By Green’s formula for (3.2), we see that

((F, vj)) = ((m, M̃(λ, ξ′)ṽj)) − λν
[
∂xnm′ · ṽ′

j

]xn=a

xn=0

−{ν1λ + γ2}
[
∂xnmnṽn

j

]xn=a

xn=0

= −∂xnV (a) · ṽj(a) + ∂xnV (0) · ṽj(0),

where

V (xn) =

 νλm′(xn)

{ν1λ + γ2}mn(xn)

 .

We thus obtain

Ã

 ∂xnV (0)

∂xnV (a)

 =

 F̃ (1)

F̃ (2)


with

Ã =

 A(1)(0) −A(1)(a)

A(2)(0) −A(2)(a)

 , F (j) = ((A(j), F )) (j = 1, 2),

A(1)(xn) =


T ṽ1(xn)

...

T ṽn(xn)

 , A(2)(xn) =


T ṽn+1(xn)

...

T ṽ2n(xn)

 .

For a moment we assume that Ã is invertible. We write the inverse of Ã as

Ã−1 =

 S1 S2

S3 S4

 .

Then we have(
∂xnV (0)
∂xnV (a)

)
=
∫ a

0

(
S1A

(1)(yn) + S2A
(2)(yn)

S3A
(1)(yn) + S4A

(2)(yn)

)
F (yn) dyn,

and, hence,

Ỹk =
2

aλ
Q̃′{(−1)k∂xnV (a) − ∂xnV (0)}

=
2

aλ

∫ a

0
Q̃′{(−1)k(S3A

(1)(yn) + S4A
(2)(yn))

−(S1A
(1)(yn) + S2A

(2)(yn))}F (yn) dyn.
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Here and in what follows we denote the n× n matrix diag(1, · · · , 1, 0) by Q̃′:

Q̃′ = diag(1, · · · , 1, 0).

By a direct calculation we have

A(1)(xn) =

 coshµ1xnIn−1 i ξ′
µ1

sinhµ1xn

−i
T ξ′
µ2

sinh µ2xn cosh µ2xn


and

A(2)(xn) =

 µ1 sinhµ1xnIn−1 iξ′ cosh µ1xn

−iT ξ′ cosh µ2xn µ2 sinhµ2xn

 .

We thus obtain

Ã =

 In −A(1)(a)

A(2)(0) −A(2)(a)

 .

We define A(yn) by

A(yn) = A(2)(0)A(1)(yn) − A(2)(yn)

=

 −µ1 sinhµ1ynIn−1 + |ξ′|2
µ2

sinhµ2ynP ′
1,0 −ib1(yn)ξ

′

−ib1(yn)
T ξ′ −b3(yn)

 .

One can see that if A(a) is invertible, then so is Ã, and Ã−1 is given by

Ã−1 =

 In − A(1)(a)A(a)−1A(2)(0) A(1)(a)A(a)−1

−A(a)−1A(2)(0) A(a)−1

 .

We now verify that A(a) is invertible under the assumption of Proposition 3.7.
We denote the n × n diagonal matrix diag (1, · · · , 1,−1) by Ǐn. We observe

that A(j)(xn) = T
[
ǏnAj(xn)Ǐn

]
, j = 1, 2, where Aj(xn) are the matrices given

in the proof of Lemma 3.4. Therefore, we have

Ã = T
[
diag (Ǐn,−Ǐn)A diag (Ǐn, Ǐn)

]
.

It then follows from (3.6) that

det Ã = (−1)ndet A = (−1)n{µ1 sinhµ1a}n−2D(λ, ξ′),

and hence, by Lemma 3.4, A(a) is invertible under the assumption of Propo-
sition 3.7.
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We thus obtain

(3.8) Ỹk =
2

aλ

∫ a

0
{(−1)kB̃(1)(λ, ξ′, yn) + B̃(2)(λ, ξ′, yn)}F (yn) dyn,

where B̃(1)(λ, ξ, yn) = −Q̃′A(a)−1A(yn) and B̃(2)(λ, ξ′, yn) = Q̃′(A(1)(yn) −
A(1)(a)A(a)−1A(yn)).

We next show that

(3.9) −A(a)−1A(yn) = K(1)(λ, ξ′, yn) + K(2)(λ, ξ′, yn),

where

K(1)(λ, ξ′, yn) = −sinhµ1yn

sinh µ1a

 P ′
0,0 0

0 0


and

K(2)(λ, ξ′, yn)

= − 1
D(λ,ξ′)

 {b3(a)b2(yn) + |ξ′|2b1(a)b1(yn)P
′
1,0 i{b3(a)b1(yn) − b1(a)b3(yn)}ξ′

i{b2(a)b1(yn) − b1(a)b2(yn)}T ξ′ b2(a)b3(yn) + |ξ′|2b1(a)b1(yn)

 .

Let us prove (3.9). Noting that P ′
1,0 is an orthogonal projection onto the

subspace spanned by ξ′, namely, P1,0ξ
′ = ξ′, T ξ′P ′

1,0 = T ξ′ and P ′
1,0

2 = P ′
1,0,

we see that

A(a)−1 = − 1

µ1 sinhµ1a

 P ′
0,0 0

0 0

 +
1

D(λ, ξ′)

 −b3(a)P ′
1,0 ib1(a)ξ′

ib1(a)T ξ′ −b2(a)

 ,

since µ1 sinhµ1a 
= 0 and D 
= 0. We now obtain (3.9) by a direct computa-
tion.

We next prove B̃(2)(λ, ξ′, a − yn) = B̃(1)(λ, ξ′, yn)Ǐn. To do so, we write
B̃(j)(λ, ξ′, yn) as

(3.10) B̃(j)(λ, ξ′, yn) =

 B ′(j)(λ, ξ′, yn) b(j)
n (λ, ξ′, yn)

0 0


for j = 1, 2. Then we need to show

(3.11) B ′(1)
(λ, ξ′, yn) = B ′(2)

(λ, ξ′, a − yn)

and

(3.12) b(1)
n (λ, ξ′, yn) = −b(2)

n (λ, ξ′, a − yn).
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To prove (3.11) and (3.12) we make use of the following reflection symmetry

of problem (3.2). For m(xn) =

 m′(xn)

mn(xn)

 we define m̌(xn) by

m̌(xn) =

 m′(a − xn)

−mn(a − xn)

 .

Let m(xn) be a solution of problem (3.2) with F (xn) = λ

 f ′(xn)

fn(xn)

 −

γ

 iξ′

∂xn

 f0(xn). Then m̌(xn) is a solution of problem (3.2) with F (xn)

replaced by F̌ (xn) =

 F ′(a − xn)

−F n(a − xn)

. Since ∂xn(m̌)′(a) = −∂xnm′(0) and

∂xn(m̌)′(0) = −∂xnm
′(a), we have

(3.13) (−1)k∂xn(m̌)′(a) − ∂xn(m̌)′(0) = (−1)k{(−1)k∂xnm′(a) − ∂xnm′(0)}.

We next define B ′
k(λ, ξ′, yn) and bn,k(λ, ξ′, yn) by

(3.14) B ′
k(λ, ξ′, yn) = (−1)kB ′(1)

(λ, ξ′, yn) + B ′(2)
(λ, ξ′, yn)

and

(3.15) bn,k(λ, ξ′, yn) = (−1)kb(1)
n (λ, ξ′, yn) + b(2)

n (λ, ξ′, yn).

Since bn,k(λ, ξ′, 0) = bn,k(λ, ξ′, a) = 0, integrating by parts, we see from (3.8)
that

(3.16)

2

a
λν{(−1)k∂xn(m̌)′(a) − ∂xn(m̌)′(0)}

=
2

a

∫ a

0
[B ′

k(λ, ξ′, yn){λf ′(a − yn) − iγξ′f0(a − yn)}

−λbn,k(λ, ξ′, yn)f
n(a − yn)

+γ∂ynbn,k(λ, ξ′, yn)f
0(a − yn)] dyn

=
2

a

∫ a

0
[B ′

k(λ, ξ′, a − yn){λf ′(yn) − iγξ′f0(yn)}

−λbn,k(λ, ξ′, a − yn)f
n(yn)

+γ∂ynbn,k(λ, ξ′, a − yn)f
0(yn)] dyn
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and

(3.17)

2

a
λν{(−1)k∂xnm′(a) − ∂xnm′(0)}

=
2

a

∫ a

0
[B ′

k(λ, ξ′, yn){λf ′(yn) − iγξ′f0(yn)}

+λbn,k(λ, ξ′, yn)f
n(yn) + γ∂ynbn,k(λ, ξ′, yn)f

0(yn)] dyn.

Combining (3.13), (3.16) and (3.17) we obtain B ′
k(λ, ξ′, a−yn) = (−1)kB ′

k(λ, ξ′, yn)
and bn,k(λ, ξ′, a−yn) = (−1)k+1bn,k(λ, ξ′, yn). This, together with (3.14) and
(3.15), implies that

(3.18)
(−1)kB ′(1)

(λ, ξ′, a − yn) + B ′(2)
(λ, ξ′, a − yn)

= B ′(1)(λ, ξ′, yn) + (−1)kB ′(2)(λ, ξ′, yn)

and

(3.19)
(−1)kb(1)

n (λ, ξ′, a − yn) + b(2)
n (λ, ξ′, a − yn)

= −b(1)
n (λ, ξ′, yn) − (−1)kb(2)

n (λ, ξ′, yn).

It follows from (3.18), with k being odd and even respectively, that
−B ′(1)(λ, ξ′, a − yn) + B ′(2)(λ, ξ′, a − yn) = B ′(1)(λ, ξ′, yn) − B ′(2)(λ, ξ′, yn),

B ′(1)(λ, ξ′, a − yn) + B ′(2)(λ, ξ′, a − yn) = B ′(1)(λ, ξ′, yn) + B ′(2)(λ, ξ′, yn),

which implies that B ′(2)(λ, ξ′, a − yn) = B ′(1)(λ, ξ′, yn). This shows (3.11).
Similarly, one can prove (3.12) by using (3.19).

We finally set B ′(λ, ξ′, yn) = B ′(1)(λ, ξ′, yn), bn(λ, ξ′, yn) = b(1)
n (λ, ξ′, yn)

and b0(λ, ξ′, yn) = −γ
λ
{iB ′(λ, ξ′, yn)ξ

′ − ∂ynbn(λ, ξ′, yn)}. Then, by a direct
calculation, we see that

b0 =
iγλξ′

ν1λ + γ2

1

D(λ, ξ′)

{
b3(a)

1

µ2
sinhµ2yn + b1(a) cosh µ2yn

}
,

and the desired expression of Yk is obtained. This completes the proof.

We now give an integral representation of (λ + L̂ξ′)
−1f . To do so, we

introduce some functions. We define gD
µj

(xn, yn) (j = 1, 2) by

gD
µj

(xn, yn) =
1

µj sinhµja
sinhµj(a − xn) sinhµjyn, yn ≤ xn,
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and xn, yn exchanged for xn ≤ yn. Similarly, we define gN
µj

(xn, yn) by

gN
µj

(xn, yn) =
1

µj sinhµja
cosh µj(a − xn) coshµjyn, yn ≤ xn,

and xn, yn exchanged for xn ≤ yn. We set

gM
µ1,µ2

(xn, yn) = gM
µ1

(xn, yn) − gM
µ2

(xn, yn), M = D,N.

Note that gD
µj

and gN
µj

are the Green functions of the equation µ2
jv − ∂2

xn
v =

0 under the Dirichlet and Neumann boundary conditions at {xn = 0, a},
respectively. We also define hµj (xn) and hµ1,µ2(xn) by

hµj (xn) =
1

µj sinhµja
cosh µjxn

and
hµ1,µ2(xn) = hµ1(xn) − hµ2(xn).

We will denote the Dirac measure with point mass at xn by δxn, namely,

δxnf =
∫ a

0
δ(xn − yn)f(yn) dyn = f(xn).

Theorem 3.8. Let λ satisfy λ 
= 0, ν̃λ + γ2 
= 0, ν1λ + γ2 
= 0. Assume that
λ 
= λ1,k and λ 
= λ±,k for any k = 0, 1, 2, · · ·. Assume also that λ ∈ ρ(−L̂′

ξ).

Then the solution (λ + L̂ξ′)
−1f of (2.1) is written as

(λ + L̂ξ′)
−1f = Ĝ(λ, ξ′)f + K̂(λ, ξ′)f

with integral operators Ĝ(λ, ξ′) and K̂(λ, ξ′) defined by

(Ĝ(λ, ξ′)f)(xn) =
∫ a

0
Ĝ(λ, ξ′, xn, yn)f(yn) dyn

and
(K̂(λ, ξ′)f)(xn) =

∫ a

0
K̂(λ, ξ′, xn, yn)f(yn) dyn.
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Here Ĝ(λ, ξ′, xn, yn) is an (n + 1) × (n + 1) matrix of the form

Ĝ(λ, ξ′, xn, yn)

= ν1

d(λ)
δ(xn − yn)Q0

+ γ
d(λ)


γλ

d(λ)
gN

µ2
(xn, yn) −iTξ′gN

µ2
(xn, yn) −∂xng

D
µ2

(xn, yn)

−iξ′gN
µ2

(xn, yn) 0 0

−∂xngN
µ2

(xn, yn) 0 0



+


0 0 0
0 1

ν
gN

µ1
(xn, yn)In−1 0

0 0 1
ν
gD

µ1
(xn, yn)



+


0 0 0

0 ξ′T ξ′
λ

gN
µ1,µ2

(xn, yn) − iξ′
λ

∂xngD
µ1,µ2

(xn, yn)

0 − iξ′
λ

∂xngN
µ1,µ2

(xn, yn) − 1
λ
∂2

xn
gD

µ1,µ2
(xn, yn)

 ,

where d(λ) = ν1λ + γ2 and µj = µj(λ, ξ′), j = 1, 2; and

K̂(λ, ξ′, xn, yn) = Ĥ(λ, ξ′, xn, yn) + Ȟ(λ, ξ′, a − xn, a − yn),

where

Ȟ(λ, ξ′, a − xn, a − yn) = Ĥ(λ, ξ′, a − xn, a − yn)diag (In,−1)
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and

H(λ, ξ′, xn, yn)

=


0 0 0

iξ′
ν

hµ1(xn)β0(yn)
1
ν
hµ1(xn)B ′(yn)

1
ν
hµ1(xn)bn(yn)

0 0 0



+


γ|ξ′|2
d(λ)

hµ2(xn)β0(yn)
iγT ξ′
d(λ)

hµ2(xn)β1(yn) − iγT ξ′
d(λ)

hµ2(xn)bn(yn)

i|ξ′|2ξ′
λ

hµ1,µ2(xn)β0(yn) 0 0

− |ξ′|2
λ

∂xnhµ1,µ2(xn)β0(yn) 0 0



+


0 0 0

0 − ξ′T ξ′
λ

hµ1,µ2(xn)β1(yn)
|ξ′|2
λ

hµ1,µ2(xn)bn(yn)

0 − i′T ξ′
λ

∂xnhµ1,µ2(xn)β1(yn)
iT ξ′
λ

∂xnhµ1,µ2(xn)bn(yn)


with d(λ) = ν1λ + γ2, µj = µj(λ, ξ′), j = 1, 2, βj(yn) = βj(λ, ξ′, yn), j = 0, 1,
B ′(yn) = B ′(λ, ξ′, yn) and bn(yn) = bn(λ, ξ′, yn).

Proof. By assumption we see that the Fourier series of (λ + L̂ξ′)
−1f takes

the form as in Proposition 3.6 with Yk given in Proposition 3.7.
The Fourier sine and cosine series of wM (xn) =

∫ a
0 gM

µ (xn, yn)v(yn) dyn

with M = D,N are given by

wD(xn) =
∞∑

k=1

1

µ2 + a2
k

vs,k sin akxn

and

wN (xn) =
1

2
vc,0 +

∞∑
k=1

1

µ2 + a2
k

vc,k cos akxn,

respectively. Here vs,k and vc,k are the Fourier sine and cosine coefficients of
v respectively. Since

1

λ − λ1,k
=

1

ν

1

µ2
1 + a2

k

,

1

(λ − λ+,k)(λ − λ−,k)
=

1

ν1λ + γ2

1

µ2
2 + a2

k

and

1

λ − λ1,k

1

|ξ(k)|2 − λ

(λ − λ+,k)(λ − λ−,k)

1

|ξ(k)|2 = −1

λ

(
1

µ2
1 + a2

k

− 1

µ2
2 + a2

k

)
,
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we see that the Fourier coefficients of Ĝ(λ, ξ′)f are equal to L̂k(λ, ξ′)−1fk.
Also, since the Fourier cosine coefficients of eµxn are given by

2

a

µ{(−1)keµa − 1}
µ2 + a2

k

, k = 0, 1, 2, · · · ,

we see from Propositions 3.6 and 3.7 that the Fourier coefficients of K̂(λ, ξ′)f
are equal to L̂k(λ, ξ′)−1Yk. This completes the proof.

4. Preliminary estimates

In this section we prepare some estimates for the analysis of the integral
kernel given in Theorem 3.8.

We first give an estimate of the resolvent set by the energy method.

Proposition 4.1. (i) There exists a positive constant c1 such that the set

Σ0 ≡ {λ; Re λ + c1 |Imλ|2 > 0}

is in the resolvent set ρ(−L̂ξ′) for all ξ′.

(ii) There exists a positive number η1 such that the set

{λ; Reλ ≥ −η1} ∩ {λ; Reλ ≤ 0, Im λ = 0}c

is in the resolvent set ρ(−L̂ξ′) for all ξ′. Here and in what follows, for a set
E, the symbol Ec denotes the complementary set of E.

Proof. Let us consider problem (2.1). We note that Âξ′ is self adjoint in
L2(0, a) and B̂ξ′ is skew-symmetric and the following relations hold:

(4.1)
(Âξ′u, u) = ν|ξ′|2|m|22 + ν|∂xnm|22 + ν̃|iξ′ ·m′ + ∂xnmn|22,

(B̂ξ′u, u) = 2iγIm (iξ′ ·m′ + ∂xnmn, φ).

Let u =

 φ

m

 be a solution of (2.1). Taking the L2-inner product of

(2.1) with u we see from (4.1) that

(4.2)
λ|u|22 + ν|ξ′|2|m|22 + ν|∂xnm|22 + ν̃|iξ′ · m′ + ∂xnmn|22

+2iγIm (iξ′ · m′ + ∂xnmn, φ) = (f, u).

The real part of (4.2) gives

(4.3)
Re λ|u|22 + ν|ξ′|2|m|22 + ν|∂xnm|22 + ν̃|iξ′ · m′ + ∂xnm

n|22

= Re (f, u) ≤ ε|u|22 + 1
ε
|f |22
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for any ε > 0. On the other hand, the imaginary part of (4.2) gives

Im λ|u|22 = Im(f, u) − 2γIm (iξ′ ·m′ + ∂xnmn, φ),

from which we obtain

(4.4) |Im λ|2 |u|22 ≤ 2
{
|f |22 + γ2|iξ′ · m′ + ∂xnmn|22

}
.

It then follows from (4.3) and (4.4) that

(4.5)
(
Re λ + c1 |Im λ|2 − ε

)
|u|22 +

ν

2

(
|ξ′|2|m|22 + |∂xnm|22

)
≤ Cε|f |22

for any ε > 0 with some constant c1 = c1(ν, γ) > 0.
We next estimate |∂xnφ|2. Differentiating the first row of (2.1) with re-

spect to xn we have

(4.6) λ∂xnφ + γ∂2
xn

mn = ∂xnf0 − iγξ′ · ∂xnm′

We also see from the third row of (2.1) that

(4.7) −ν1∂
2
xn

mn + γ∂xnφ = g,

where g = fn − {λmn + ν|ξ′|2mn − iν̃ξ′ · ∂xnm′}. By adding (4.7) × γ
ν1

to
(4.6) we obtain

(4.8)

(
λ +

γ2

ν1

)
∂xnφ = ∂xnf0 − iγξ′ · ∂xnm

′ +
γ

ν1
g.

This implies that if λ 
= −γ2

ν1
, then

(4.9) |∂xnφ|2 ≤
C∣∣∣λ + γ2

ν1

∣∣∣
{
|f |H1×L2 + |λ||m|2 + |ξ′|2|m|2 + |ξ′||∂xnm|2

}
.

We thus deduce from (4.5) and (4.9) that

(4.10) |u|H1×L2 ≤ C|f |H1×L2

for some C > 0, provided that λ ∈ Σ0. This, together with (2.1), yields

(4.11) |m|H2 ≤ C̃|f |H1×L2

with some constant C̃ = C̃(η0, θ0, ξ
′) > 0. Since λ 
= 0 and ν1λ + γ2 
= 0

when λ ∈ Σ0 , it follows from (4.10) and (4.11) that KerL = {0} for λ ∈ Σ0.
Lemma 3.1 then implies that Σ0 ⊂ ρ(−L̂ξ′). This completes the proof of (i).
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We next prove (ii). In view of Lemma 3.1 it suffices to prove that (3.2) is
uniquely solvable for any F ∈ L2(0, a) if λ ∈ {λ; Re λ ≥ −η1} ∩ {λ; Re λ ≤
0, Imλ = 0}c with some η1 > 0.

We take the L2-inner product of (3.2) with m. Then, integrating by parts,
we have

(4.12) (λ2 +νλ|ξ′|2)|m|22 +νλ|∂xnm|22+(ν̃λ+γ2)|iξ′ ·m′+∂xnm
n|22 = (F, m).

The imaginary part of (4.12) gives

Imλ
{
(2Reλ + ν|ξ′|2)|m|22 + ν|∂xnm|22 + ν̃|iξ′ · m′ + ∂xnmn|22

}
= Im (F, m).

It follows that if Im λ 
= 0, then

(4.13)
(
2Reλ + ν|ξ′|2

)
|m|22 + ν|∂xnm|22 + ν̃|iξ′ · m′ + ∂xnmn|22 =

Im (F, m)

Imλ
.

By the Poincaré inequality, there exists a positive constant η1 such that the
left-hand side of (4.13) is bounded from below by(

2Reλ + ν|ξ′|2 + 4η1

)
|m|22 +

ν

2
|∂xnm|22,

while the right-hand side of (4.13) is bounded from above by

η1|m|22 +
C

|Im λ|2 |F |22.

We thus conclude that(
2Re λ + ν|ξ′|2 + 3η1

)
|m|22 +

ν

2
|∂xnm|22 ≤

C

|Im λ|2 |F |22,

in particular, if λ ∈ Re λ ≥ −η1 − ν|ξ′|2
2

, Imλ 
= 0 and F = 0, then m = 0.

This, together with (i), implies that {λ; Re λ ≥ −η1 − ν|ξ′|2
2

} ∩ {λ; Re λ ≤
0, Imλ = 0}c ⊂ ρ(−L̂ξ′). This completes the proof.

We next investigate D(λ, ξ′). We first estimate |D(λ, ξ′)| from below for
small λ.

Proposition 4.2. (i) Let r1 and R1 be any positive numbers with r1 < R1.
Then there exists a positive number Λ1 = Λ1(r1, R1) such that the inequality

|D(λ, ξ′)| ≥ a4

24ν2
r2
1|λ|2
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holds for |λ| ≤ Λ1 and r1 ≤ |ξ′| ≤ R1.

(ii) There are positive numbers Λ2 and R2 = R2(Λ2) such that the in-
equality

|D(λ, ξ′)| ≥ 1

16ν2

(
sinh |ξ′|a

|ξ′|

)2

|λ|2

holds for |λ| ≤ Λ2 and |ξ′| ≥ R2.

Proof. Assume that |ν1λ+ γ2| ≥ γ2

2ν1
≡ c2. Let Λ and r be positive numbers

satisfying

(4.14)
Λ

νr2
< 1 and

Λ2

c2r2
< 1.

Then for |λ| ≤ Λ and |ξ′| ≥ r, we have∣∣∣∣∣ λ

ν|ξ′|2

∣∣∣∣∣ ≤ Λ

νr2
< 1 and

∣∣∣∣∣ λ2

ν1λ + γ2

1

|ξ′|2

∣∣∣∣∣ ≤ Λ2

c2r2
< 1,

and hence,

µ1 = |ξ′| + λ

2ν

1

|ξ′| −
λ2

8ν2

1

|ξ′|3 + O
(
|λ|3|ξ′|−5

)
and

µ2 = |ξ′| + µ
(1)
2

1

|ξ′| + µ
(2)
2

1

|ξ′|3 + O
(
|λ|6|ξ′|−5

)
.

Here

µ
(1)
2 =

λ2

2(ν1λ + γ2)
and µ

(2)
2 = − λ4

8(ν1λ + γ2)2
.

It then follows that

sinhµja = sinh |ξ′|a +
e
(1)
j

|ξ′| cosh |ξ′|a +
e
(2)
j

|ξ′|2 sinh |ξ′|a +
e
(3)
j

|ξ′|3 cosh |ξ′|a

+O
(
|λ|3|ξ′|−4e|ξ

′|a)
and

cosh µja = cosh |ξ′|a +
e
(1)
j

|ξ′| sinh |ξ′|a +
e
(2)
j

|ξ′|2 cosh |ξ′|a +
e
(3)
j

|ξ′|3 sinh |ξ′|a

+O
(
|λ|3|ξ′|−4e|ξ

′|a) ,
where j = 1, 2,

e
(1)
1 = λa

2ν
, e

(1)
2 = λ2a

2(ν1λ+γ2)
, e

(2)
1 = λ2a2

8ν2 , e
(2)
2 = λ4a2

8(ν1λ+γ2)2
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and
e
(3)
1 = O (|λ|2) , e

(3)
2 = O (|λ|4) .

We thus obtain

(4.15)
1

λ2
D(λ, ξ′) = − a2

4ν2
+d0(λ)+

(
1

4ν2
+ d1(λ)

)(
sinh |ξ′|a

|ξ′|

)2

+d2(λ, ξ′),

where d0(λ), d1(λ) and d2(λ, ξ′) are some functions satisfying

(4.16) |d0(λ)| ≤ C|λ|, |d1(λ)| ≤ C|λ|, |d2(λ, ξ′)| ≤ C
|λ|
|ξ′|3 e2|ξ′|a

uniformly in λ and ξ′ with |λ| ≤ Λ and |ξ′| ≥ r for some C = C(r1) > 0.
Let r1 > 0 and R1 > 0 be fixed. Since(

sinh |ξ′|a
|ξ′|

)2

− a2 =

(
sinh |ξ′|a

|ξ′| + a

)(
sinh |ξ′|a

|ξ′| − a

)
≥ a4

3
|ξ′|2

for |ξ′| > 0, we see from (4.15) and (4.16) that if r1 ≤ |ξ′| ≤ R1, then∣∣∣∣ 1λ2
D(λ, ξ′)

∣∣∣∣ ≥ a4

12ν2
|ξ′|2 − C|λ|

{
1 +

e2R1a

|ξ′|3

}
,

provided that |λ| ≤ Λ1 for some Λ1 satisfying (4.14) with Λ = Λ1 and r = r1.
Here C = C(r1) > 0. Therefore, there exists a constant Λ1 = Λ(r1, R1) > 0
such that

|D(λ, ξ′)| ≥ a4

24ν2
r2
1|λ|2

for λ and ξ′ with |λ| ≤ Λ1 and r1 ≤ |ξ′| ≤ R1. This proves (i).
We next prove (ii). From (4.16) we see that there exists a positive number

Λ2 such that ∣∣∣∣ 1

4ν2
+ d1(λ)

∣∣∣∣ ≥ 1

8ν2

for |λ| ≤ Λ2. Furthermore, there exists a positive number R2 = R2(Λ2) such
that (4.14) is satisfied with Λ = Λ2 and r = R2, and the inequalities∣∣∣∣∣− a2

4ν2
+ d0(λ)

∣∣∣∣∣ ≤ 1

32ν2

(
sinh |ξ′|a

|ξ′|

)2

, |d2(λ, ξ′)| ≤ 1

32ν2

(
sinh |ξ′|a

|ξ′|

)2

hold for all |λ| ≤ Λ2 and |ξ′| ≥ R2. It then follows from (4.15) that

∣∣∣∣ 1λ2
D(λ, ξ′)

∣∣∣∣ ≥ 1

16ν2

(
sinh |ξ′|a

|ξ′|

)2
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for all |λ| ≤ Λ2 and |ξ′| ≥ R2. This completes the proof.

By Propositions 4.1 and 4.2 we have the following consequence on ρ(−L̂ξ′).

Lemma 4.3. (i) There exists a number θ1 ∈ (π
2
, π) such that Σ(η, θ1) ⊂

ρ(−L̂ξ′) for any η > 0 and ξ′ ∈ Rn−1. Furthermore, the integral representa-
tion of (λ + L̂ξ′)

−1 in Theorem 3.8 holds for λ ∈ Σ(η, θ1) for any η > 0 and
ξ′ ∈ Rn−1.

(ii) For any r > 0 there exist positive numbers η2 and θ2 with θ2 ∈ (π
2
, π)

such that Σ(−η2, θ2) ⊂ ρ(−L̂ξ′) for |ξ′| ≥ r. Furthermore, the integral rep-
resentation of (λ + L̂ξ′)

−1 in Theorem 3.8 holds for λ ∈ Σ(−η2, θ2) and
|ξ′| ≥ r.

Proof. The first assertion of (i) is an easy consequence of Proposition 4.1. By
Remarks 3.2 and 3.5, changing θ1 suitably if necessary, we see that λ1,k , λ±,k /∈
Σ(η, θ1) for any k = 0, 1, 2, · · ·. Therefore, the integral representation in
Theorem 3.8 holds for λ ∈ Σ(η, θ1).

Similarly, we see from Lemma 3.4 and Propositions 4.1 and 4.2 that for
any r > 0 there exist positive numbers η2 and θ2 with θ2 ∈ (π

2
, π) such

that Σ(−η2, θ2) − {0} ⊂ ρ(−L̂ξ′) for |ξ′| ≥ r. Furthermore, by Remarks 3.2
and 3.5, changing η2 and θ2 suitably if necessary, we deduce that λ1,k , λ±,k /∈
Σ(−η2, θ2) for any k = 0, 1, 2, · · ·, and the integral representation in Theorem
3.8 holds for λ ∈ Σ(−η2, θ2) − {0} and |ξ′| ≥ r.

Let us prove 0 ∈ ρ(−L̂ξ′). Assume that ξ′ satisfies |ξ′| ≥ r. We note
that (λ + L̂ξ′)

−1 is analytic in Σ(−η2, θ2) − {0}. Furthermore, Ĝ(λ, ξ′) and

K̂(λ, ξ′) are also analytic in Σ(−η2, θ2)− {0}. Therefore, it suffices to prove
that Ĝ(λ, ξ′) and K̂(λ, ξ′) are bounded in Σ(−η2, θ2) − {0}.

Since

(4.17) µ1 − µ2 =
λ

µ1 + µ2

{
1

ν
+

λ

ν1λ + γ2

}
,

we see that Q̃Ĝ(λ, ξ′)Q̃ is bounded in Σ(−η2, θ2) − {0}. It is easy to see
that the other components of Ĝ(λ, ξ′) are bounded in Σ(−η2, θ2)−{0}, and
hence, Ĝ(λ, ξ′) is bounded in Σ(−η2, θ2) − {0}.

As for K̂(λ, ξ′), we easily see that bj(λ, ξ′, yn) = O(λ) as λ → 0 for
j = 1, 2, 3. This, together with Proposition 4.2, implies that βj(λ, ξ′, yn) =
O(1) (j = 0, 1), B ′(λ, ξ′, yn) = O(1) and bn(λ, ξ′, yn) = O(1) as λ → 0.
Furthermore, using (4.17), we also see that hµ1,µ2(xn) = O(λ) as λ → 0. It

then follows that K̂(λ, ξ′) is bounded in Σ(−η2, θ2) − {0} and assertion (ii)
is proved. This completes the proof.
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We next derive estimates for |D(λ, ξ′)| from below when |λ|+|ξ′|2 is large.
In the following we specify branches of µj(λ, ξ′), j = 1, 2, as a function of

λ. As for µ1(λ, ξ′) we take the principal branch of the square root of λ+ν|ξ′|2
ν

,

i.e., for λ /∈ (−∞,−ν|ξ′|2] we denote by µ1(λ, ξ′) the square root of λ+ν|ξ′|2
ν

with Re µ1(λ, ξ′) > 0. As for µ2(λ, ξ′) we take the branch in the following
way. When |ξ′| < 2γ

ν1
, we use the branch specified by the requirement

arg (λ − λ±,0) = ∓π
2

at λ = Re λ+,0 and arg (λ + γ2

ν1
) = 0 at λ = 0

and take the branch cut

{λ; Re λ ≤ −γ2

ν1
, Imλ = 0} ∪ {λ ∈ Γγ,ν1 ; Re λ ≤ Re λ±,0}.

Here Γγ,ν1 is the circle defined by Γγ,ν1 = {λ;
∣∣∣λ + γ2

ν1

∣∣∣ = γ2

ν1
}. When |ξ′| ≥ 2γ

ν1
,

we use the branch specified by arg (λ−λ±,0) = arg (λ+ γ2

ν1
) = 0 at λ = 0 and

take the branch cut
{λ; Re λ ≤ −γ2

ν1
, Imλ = 0}.

As shown in [6], it holds Re µ2(λ, ξ′) > 0 for λ outside the branch cut.
We introduce a function D1(λ, ξ′) defined by

D1(λ, ξ′) = e−(µ1+µ2)aD(λ, ξ′).

To investigate the resolvent (λ+L)−1 = F −1
[
(λ + L′

ξ)
−1
]

for large λ+ |ξ′|2,
it is convenient to consider D1(λ, ξ′) rather than D(λ, ξ′).

Lemma 4.4. (i) There are positive numbers η3 and θ3 with θ3 ∈ (π
2
, π) such

that the inequality

|D1(λ, ξ′)| ≥ C
|λ|2

|λ| + 1 + |ξ′|2

holds uniformly in λ ∈ Σ(−η3, θ3)∩ {λ; |λ| ≥ δ} and |ξ′| ≥ R3 for any δ > 0
with some constant R3 = R3(δ) > 0.

(ii) There are positive numbers η4 and θ4 with θ4 ∈ (π
2
, π) such that the

inequality

|D1(λ, ξ′)| ≥ C
|λ|2

|λ| + 1 + |ξ′|2

holds uniformly in λ ∈ Σ(η4, θ4) and ξ′ ∈ Rn−1.

Proof. We first observe that there are positive numbers η3, θ3 ∈ (π
2
, π) and

R̃3 such that

(4.18) Reµj ≥ C(|λ| + 1 + |ξ′|2) 1
2 (j = 1, 2)
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for λ ∈ Σ(−η3, θ3) and |ξ′| ≥ R̃3. Furthermore, there exist positive numbers
η̃4 and θ4 ∈ (π

2
, π) such that (4.18) also holds for λ ∈ Σ(η̃4, θ4) and ξ′ ∈ Rn−1.

In fact, it is easy to show the inequalities (4.18) for j = 1 with appropriate η3,
η̃4, θ3, θ4 and R̃3. As for j = 2 one can find (4.18) by using the observation
in Remark 3.2. It is also possible to see that

(4.19) |µj| ≤ C(|λ| + 1 + |ξ′|2) 1
2

for λ ∈ Σ(−η3, θ3) and ξ′ with |ξ′| ≥ R̃3, and for λ ∈ Σ(η̃4, θ4) and ξ′ ∈ Rn−1.
Consider next the quadratic equation ω2 +(2ν + ν̃)|ξ′|2ω + γ2|ξ′|2 = 0 for

ω. This equation has two roots

ω± = −1

2
(2ν + ν̃)|ξ′|2 ± 1

2

√
(2ν + ν̃)2|ξ′|4 − 4γ2|ξ′|2.

Therefore, as in Remark 3.2, we see that

ω± = −1

2
(2ν + ν̃)|ξ′|2 ± iγ|ξ′| + O(|ξ′|3) as |ξ′| → 0,

and ω± ∈ R for |ξ′| ≥ 2γ
2ν+ν̃

, and

ω+ = − γ2

2ν + ν̃
+ O(|ξ′|−2), ω− = −(2ν + ν̃)|ξ′|2 + O(1) as |ξ′| → ∞.

We thus deduce, by suitably changing θ3, θ4, R̃3, η3 and η̃4 if necessary, that

(4.20)
|λ2 + (2ν + ν̃)|ξ′|2λ + γ2|ξ′|2| = |(λ − ω+)(λ − ω−)|

≥ C(|λ| + 1 + |ξ′|2)(|λ| + 1)

for λ ∈ Σ(−η3, θ3) and ξ′ with |ξ′| ≥ R̃3, and for λ ∈ Σ(η̃4, θ4) and ξ′ ∈ Rn−1.
We now estimate D1(λ, ξ′). We write D1(λ, ξ′) as

(4.21) D1(λ, ξ′) =
1

4

(
|ξ′|4
µ1µ2

− 2|ξ′|2 + µ1µ2

)
+ D̃1(λ, ξ′),

where
(4.22)

D̃1(λ, ξ′) =
1

4

{
8|ξ′|2e−(µ1+µ2)a +

(
|ξ′|4
µ1µ2

− 2|ξ′|2 + µ1µ2

)
e−2(µ1+µ2)a

−
(
|ξ′|4
µ1µ2

+ 2|ξ′|2 + µ1µ2

)(
e−2µ1a + e−2µ2a

)}
.
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Since ∣∣∣∣∣ |ξ′|4µ1µ2
− 2|ξ′|2 + µ1µ2

∣∣∣∣∣ =
∣∣∣∣∣ 1

µ1µ2

∣∣∣∣∣
∣∣∣∣∣(µ1µ2)

2 − |ξ′|4
µ1µ2 + |ξ′|2

∣∣∣∣∣
2

and

(µ1µ2)
2 − |ξ′|4 =

λ{λ2 + (2ν + ν̃)|ξ′|2λ + γ2|ξ′|2}
ν1λ + γ2

,

we see from (4.19) and (4.20) that

(4.23)
1

4

∣∣∣∣∣ |ξ′|4µ1µ2
− 2|ξ′|2 + µ1µ2

∣∣∣∣∣ ≥ C0
|λ|2

|λ| + 1 + |ξ′|2

uniformly for λ ∈ Σ(−η3, θ3) and ξ′ with |ξ′| ≥ R̃3, and for λ ∈ Σ(η̃4, θ4) and
ξ′ ∈ Rn−1.

We also see from (4.18) and (4.19) that∣∣∣e−µja
∣∣∣ ≤ Ck (Re µja)−k ≤ Ck(|λ| + 1 + |ξ′|2)−k

2

for any k. This, together with (4.22), implies that for any δ > 0 there exists
a positive number R3 = R3(δ) with R3 ≥ R̃3 such that if λ ∈ Σ(−η3, θ3) ∩
{λ; |λ| ≥ δ} and |ξ′| ≥ R3, then

∣∣∣D̃1(λ, ξ′)
∣∣∣ ≤ C|λ|2

δ2(|λ| + 1 + |ξ′|2)2
≤ C0

2

|λ|2
|λ| + 1 + |ξ′|2 .

Combining this with (4.23), we have

|D1(λ, ξ′)| ≥ C0

2

|λ|2
|λ| + 1 + |ξ′|2

for λ ∈ Σ(−η3, θ3) ∩ {λ; |λ| ≥ δ} and ξ′ with |ξ′| ≥ R3. This proves (i).
We can also find a positive number η4 with η4 ≥ η̃4 such that

∣∣∣D̃1(λ, ξ′)
∣∣∣ ≤ C|λ|2

η2
4(|λ| + 1 + |ξ′|2)2

≤ C0

2

|λ|2
|λ| + 1 + |ξ′|2

for all λ ∈ Σ(η4, θ4) and ξ′ ∈ Rn−1, and hence,

|D1(λ, ξ′)| ≥ C0

2

|λ|2
|λ| + 1 + |ξ′|2

for all such λ and ξ′. This completes the proof.

To estimate each component of the integral kernel in Theorem 3.8, we
will use the following lemma.
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Lemma 4.5. Let α′ ∈ Zn−1 be any multi-index with |α′| ≤ n and let θ4 be
the number given in Lemma 4.4. Then there exists a positive number η4 such
that the following estimates hold uniformly in λ ∈ Σ(η4, θ4) and ξ′ ∈ Rn−1:

(i)
∣∣∣∂α′

ξ′ µj

∣∣∣ ≤ C(|λ| + 1 + |ξ′|2) 1
2
− |α′ |

2 (j = 1, 2),

(ii)
∣∣∣∂α′

ξ′ (µ1 − µ2)
∣∣∣ ≤ C|λ|(|λ| + 1 + |ξ′|2)− 1

2
− |α′ |

2 ,

(iii)
∣∣∣∂α′

ξ′
(
µ1µ2 − |ξ′|2

)∣∣∣ ≤ C|λ|(|λ|+ 1 + |ξ′|2)−
|α′ |
2 ,

(iv)
∣∣∣∂α′

ξ′ e
−µjxn

∣∣∣ ≤ C(|λ| + 1 + |ξ′|2)−
|α′ |
2 e−

1
2
Reµjxn (j = 1, 2)

for all 0 ≤ xn ≤ a,

(v)

∣∣∣∣∣∂α′
ξ′

(
1

D1(λ, ξ′)

)∣∣∣∣∣ ≤ C|λ|−2(|λ| + 1 + |ξ′|2)1− |α′ |
2 ,

(vi)

∣∣∣∂α′
ξ′
(
e−µ1xn − e−µ2xn

)∣∣∣
≤ C|λ|(|λ| + 1 + |ξ′|2)−1− |α′ |

2

{
e−

1
8
Re µ1xn + e−

1
8
Reµ2xn

}
for all 0 ≤ xn ≤ a.

The inequalities (i)–(vi) also hold uniformly in λ ∈ Σ(−η3, θ3) and |ξ′| ≥
R3 for some R3 > 0, where η3 and θ3 are the numbers given in Lemma 4.4.

Proof. Let η4 and θ4 are the numbers given in Lemma 4.4 (ii). Then a direct
calculation gives the inequality in (i). The inequality in (ii) follows from (i),
(4.17) and (4.18).

Let us prove (iii). Suppose first that |λ| ≤ C0|ξ′|2, where C0 is a positive
constant to be determined later. We write µ1µ2 − |ξ′|2 as

(4.24) µ1µ2 − |ξ′|2 =
(µ1µ2)

2 − |ξ′|4
µ1µ2 + |ξ′|2 .

Since

(µ1µ2)
2 − |ξ′|4 =

λ3

ν(ν1λ + γ2)
+ λ

(
1

ν
+

λ

ν1λ + γ2

)
|ξ′|2,
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we see that

(4.25)
∣∣∣∂α′

ξ′
(
(µ1µ2)

2 − |ξ′|4
)∣∣∣ ≤ C|λ|(|λ| + |ξ′|2)1− |α′ |

2 .

On the other hand, since
∣∣∣ λ2

ν1λ+γ2

∣∣∣ ≤ C|λ| for λ ∈ Σ(η4, θ4), taking C0 suffi-
ciently small, we find that∣∣∣∣∣λν

∣∣∣∣∣ ≤ |ξ′|2
2

,

∣∣∣∣∣ λ2

ν1λ + γ2

∣∣∣∣∣ ≤ |ξ′|2
2

for λ and ξ′ with |λ| ≤ C0|ξ′|2. Applying the mean value theorem to µ1 =

|ξ′|
√

1 + λ
ν|ξ′|2 and µ2 = |ξ′|

√
1 + λ2

(ν1λ+γ2)|ξ′|2 , we obtain

µ1µ2 + |ξ′|2 = 2|ξ′|2 + λ
ν
q1(λ, ξ′) + λ2

ν1λ+γ2 q2(λ, ξ′) + λ3

ν(ν1λ+γ2)|ξ′|2 q3(λ, ξ′),

where qj(λ, ξ′), j = 1, 2, 3, are some functions satisfying

|qj(λ, ξ′)| ≤ C, j = 1, 2, 3,

for λ and ξ′ with |λ| ≤ C0|ξ′|2. Therefore, taking C0 smaller if necessary, we
see that

(4.26)
∣∣∣µ1µ2 + |ξ′|2

∣∣∣ ≥ 2|ξ′|2 − C|λ| ≥ |ξ′|2 ≥ C(|λ| + 1 + |ξ′|2)

uniformly for λ ∈ Σ(η4, θ4) and ξ′ with |λ| ≤ C0|ξ′|2. It then follows from (i)
and (4.24)–(4.26) that∣∣∣∂α′

ξ′
(
µ1µ2 − |ξ′|2

)∣∣∣ ≤ C|λ|(|λ| + 1 + |ξ′|2)−
|α′ |
2

uniformly for λ ∈ Σ(η4, θ4) and ξ′ with |λ| ≤ C0|ξ′|2. As for the case |λ| ≥
C0|ξ′|2, we easily see that∣∣∣∂α′

ξ′
(
µ1µ2 − |ξ′|2

)∣∣∣ ≤ C(|λ| + |ξ′|2)1− |α′|
2 ≤ C|λ|(|λ| + 1 + |ξ′|2)−

|α′ |
2 .

This proves (iii).
We next consider (iv). The case α′ = 0 is trivial. Let |α′| ≥ 1. Then, by

(i) and (4.18), we have

∣∣∣∂α′
ξ′ e

−µjxn

∣∣∣ ≤ C
|α′|∑
�=1

e−Reµjxn
∏

α1+···+α�=α′

∣∣∣∂α1
ξ′ µjxn

∣∣∣ · · · ∣∣∣∂α�
ξ′ µjxn

∣∣∣
≤ C

|α′|∑
�=1

x�
ne

−Re µjxn
(
|λ| + 1 + |ξ′|2

) �
2
− |α′ |

2

≤ C
|α′|∑
�=1

(Re µj)
−�e−

1
2
Re µjxn

(
|λ| + 1 + |ξ′|2

) �
2
− |α′ |

2

≤ C
(
|λ| + 1 + |ξ′|2

)− |α′ |
2 e−

1
2
Reµjxn.
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This shows (iv).

As for (v), since |ξ′|4
µ1µ2

− 2|ξ′|2 + µ1µ2 = 1
µ1µ2

(µ1µ2 − |ξ′|2)2
, we see from

(i) and (iii) that∣∣∣∣∣∂α′
ξ′

(
|ξ′|4
µ1µ2

− 2|ξ′|2 + µ1µ2

)∣∣∣∣∣ ≤ C|λ|2(|λ| + 1 + |ξ′|2)−1− |α′ |
2 .

This, together with (4.21) and (4.22), implies that

(4.27)
∣∣∣∂α′

ξ′ D1(λ, ξ′)
∣∣∣ ≤ C|λ|2(|λ| + 1 + |ξ′|2)−1− |α′ |

2 .

Combining Lemma 4.4 (ii) and (4.27), we obtain the desired inequality in
(v).

We finally prove (vi). Since

e−µ1xn − e−µ2xn = (µ2 − µ1)xn

∫ 1

0
e−{θµ1+(1−θ)µ2}xn dθ,

we see from (ii) and (iv) that∣∣∣∂α′
ξ′
(
e−µ1xn − e−µ2xn

)∣∣∣
≤ Cxn|λ|(|λ| + 1 + |ξ′|2)− 1

2
− |α′ |

2

∫ 1

0
e−

1
2
Re {θµ1+(1−θ)µ2}xn dθ

≤ Cxn|λ|(|λ| + 1 + |ξ′|2)− 1
2
− |α′ |

2

(
e−

1
4
Reµ1xn + e−

1
4
Re µ2xn

)
≤ C|λ|(|λ| + 1 + |ξ′|2)−1− |α′ |

2

(
e−

1
8
Reµ1xn + e−

1
8
Reµ2xn

)
.

The desired inequalities are thus proved for λ ∈ Σ(η4, θ4).
Let us consider the case λ ∈ Σ(−η3, θ3). In the same way as above, one

can show the inequalities (i)–(iv) and (vi) for λ ∈ Σ(−η3, θ3) and |ξ′| ≥ R3,
where R3 is the positive number given in Lemma 4.4 (i). As for (v), we take
δ = Λ2 in Lemma 4.4 (i) with Λ2 being the number given in Proposition 4.2
(ii). Similarly to the case λ ∈ Σ(η4, θ4), by using Lemma 4.4 (i), we can
also prove the inequality (v) for λ ∈ Σ(−η3, θ3) and |ξ′| ≥ R3, provided that
|λ| ≥ δ = Λ2. In case |λ| ≤ Λ2, since e−(µ1+µ2)ae2|ξ′|a = eO(|ξ′|−1), we see from
Proposition 4.2 (ii) that

|D1(λ, ξ′)| ≥ C
|λ|2
|ξ′|2

for large |ξ′|. Furthermore, similarly to the case λ ∈ Σ(η4, θ4), one can
obtain (4.27) with a more detailed computation for D̃1(λ, ξ′) given in (4.22)
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for λ ∈ Σ(−η3, θ3) and large |ξ′|. The desired inequality (v) then follows by
changing R3 suitably large if necessary. This completes the proof.

We next derive the estimates for the integral kernel of Ĝ(λ, ξ′). We set

(4.28)



g(1)
µj

(xn, yn) =
1

2µj
e−µj |xn−yn|,

g(2)
µj

(xn, yn) =
1

2µj

(
e−µj(xn+yn) + e−µj{(a−xn)+(a−yn)}) ,

g(3)
µj

(xn, yn) =
1

2µj

e−2µja

1 − e−2µj

(
e−µj |xn−yn| + eµj |xn−yn|

)
,

g(4)
µj

(xn, yn) =
1

2µj

e−2µja

1 − e−2µj

(
e−µj (xn+yn) + e−µj{(a−xn)+(a−yn)}) ,

where µj = µj(λ, ξ′), j = 1, 2. In what follows we will denote |λ| + 1 + |ξ′|2
by σ(λ, ξ′):

σ(λ, ξ′) = |λ| + 1 + |ξ′|2.

Lemma 4.6. Let g(k)
µj

(xn, yn), j = 1, 2, k = 1, · · · , 4, be defined in (4.28).
Then

gD
µj

(xn, yn) =
4∑

k=1

(−1)k+1g(k)
µj

(xn, yn), gN
µj

(xn, yn) =
4∑

k=1

g(k)
µj

(xn, yn),

and the following estimates hold for any multi-index α′ ∈ Zn−1 with |α′| ≤
[n−1

2
]+1 and any nonnegative integer � uniformly in λ ∈ Σ(η4, θ4), ξ′ ∈ Rn−1

and xn, yn ∈ [0, a]:

(i)
∣∣∣∂α′

ξ′
[
(∂�

xn
g(k)

µj
)(xn, yn)

]∣∣∣ ≤ C�σ(λ, ξ′)
�
2
− 1

2
− |α′ |

2 E(k)(xn, yn)

for k = 1, 2 and j = 1, 2, and

(ii)

∣∣∣∂α′
ξ′
[
(∂�

xn
g(k)

µ1
)(xn, yn) − (∂�

xn
g(k)

µ2
)(xn, yn)

]∣∣∣
≤ C|λ|σ(λ, ξ′)

�
2
− 3

2
− |α′ |

2 E(k)(xn, yn),

for k = 1, 2. Here E(k)(xn, yn), k = 1, 2, are the functions defined by

E(1)(xn, yn) = e−cσ(λ,ξ′)
1
2 |xn−yn|,

E(2)(xn, yn) = e−cσ(λ,ξ′)
1
2 (xn+yn) + e−cσ(λ,ξ′)

1
2 {(a−xn)+(a−yn)}
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with some constant c > 0 independent of λ ∈ Σ(η4, θ4), ξ′ ∈ Rn−1 and
xn, yn ∈ [0, a]. Furthermore, for any nonnegative integer q, there hold the
estimates

(iii)
∣∣∣∂α′

ξ′
[
(∂�

xn
g(k)

µj
)(xn, yn)

]∣∣∣ ≤ C�,qσ(λ, ξ′)−
q+|α′ |

2 , k = 3, 4, j = 1, 2.

The inequalities (i)–(iii) also hold uniformly in λ ∈ Σ(−η3, θ3) and |ξ′| ≥
R3 for some R3 > 0, where η3 and θ3 are the numbers given in Lemma 4.4.

Proof. A direct computation shows that gM
µj

(xn, yn), M = D,N , are written
as above. One can prove inequalities (i) and (iii) by a direct application of
Lemma 4.5.

As for (ii), we write g(1)
µ1

(xn, yn) − g(1)
µ2

(xn, yn) as

g(1)
µ1

(xn, yn) − g(1)
µ2

(xn, yn) =
1

2

(
1

µ1
− 1

µ2

)
e−µ1|xn−yn|

+
1

2µ2

(
e−µ1|xn−yn| − e−µ2|xn−yn |) .

Since ∂�
xn

e−µj |xn−yn| = (−µjsgn (xn−yn))
�e−µj |xn−yn |, we can obtain inequality

(ii) for k = 1. The case k = 2 can be proved similarly. This completes the
proof.

In the same manner we can estimate hµj(xn).

Lemma 4.7. Let α′ ∈ Zn−1 be a multi-index with |α′| ≤ [n−1
2

] + 1 and let
� be a nonnegative integer. Then the following estimates hold uniformly in
λ ∈ Σ(η4, θ4), ξ′ and xn ∈ [0, a]:

(i)
∣∣∣∂α′

ξ′ ∂
�
xn

hµj (xn)
∣∣∣ ≤ C�σ(λ, ξ′)

�
2
− 1

2
− |α′ |

2 e−cσ(λ,ξ′)
1
2 (a−xn)

for j = 1, 2, and

(ii)
∣∣∣∂α′

ξ′ ∂
�
xn

hµ1,µ2(xn)
∣∣∣ ≤ C�σ(λ, ξ′)

�
2
− 3

2
− |α′ |

2 e−cσ(λ,ξ′)
1
2 (a−xn).

The inequalities (i) and (ii) also hold uniformly in λ ∈ Σ(−η3, θ3) and
|ξ′| ≥ R3 for some R3 > 0, where η3 and θ3 are the numbers given in Lemma
4.4.

Proof. The proof is similar to that of Lemma 4.6. We omit it.

We next estimate βj(λ, ξ′, yn), B ′(λ, ξ′, yn) and bn(λ, ξ′, yn).
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Lemma 4.8. Let α′ ∈ Zn−1 be a multi-index with |α′| ≤ [n−1
2

] + 1. Then the
following estimates hold uniformly in λ ∈ Σ(η4, θ4), ξ′ ∈ Rn−1 and yn ∈ [0, a]:

(i)
∣∣∣∂α′

ξ′ β0(λ, ξ′, yn))
∣∣∣ ≤ C� (|λ| + 1)−1 σ(λ, ξ′)−

|α′ |
2 e−cσ(λ,ξ′)

1
2 (a−yn),

(ii)
∣∣∣∂α′

ξ′ β1(λ, ξ′, yn)
∣∣∣ ≤ Cσ(λ, ξ′)−

|α′ |
2 e−cσ(λ,ξ′)

1
2 (a−yn),

(iii)
∣∣∣∂α′

ξ′ B
′(λ, ξ′, yn)

∣∣∣ ≤ Cσ(λ, ξ′)−
|α′ |
2 e−cσ(λ,ξ′)

1
2 (a−yn),

(iv)
∣∣∣∂α′

ξ′ bn(λ, ξ′, yn)
∣∣∣ ≤ Cσ(λ, ξ′)−

|α′ |
2 e−cσ(λ,ξ′)

1
2 (a−yn).

The inequalities (i)–(iv) also hold uniformly in λ ∈ Σ(−η3, θ3) and |ξ′| ≥
R3 for some R3 > 0, where η3 and θ3 are the numbers given in Lemma 4.4.

Proof. A direct calculation shows that

(4.29)
β0(λ, ξ′, yn) = γλ

ν1λ+γ2
1

4D1(λ,ξ′)
µ1µ2−|ξ′|2

µ1µ2
e−µ2(a−yn)

+ 1
4D1(λ,ξ′) β̃0(λ, ξ′, yn),

where β̃0(λ, ξ′, yn) is written as the sum of terms of the form

e−µka−µ1zn−µ2wn ×
{

polynomial in µ1, µ2,
1

µ1
,

1

µ2
and ξ′

}
, k = 1, 2,

with zn and wn being linear functions of yn that satisfy zn ≥ 0, wn ≥ 0 and
Re (µka+µ1zn+µ2wn) ≥ Re µ2(a−yn) for yn ∈ [0, a]. The desired inequality
in (i) is obtained by applying Lemma 4.5 to (4.29). Similarly, by a direct
computation, we see that β1(λ, ξ′, yn) and bn(λ, ξ′, yn) can be written as

β1(λ, ξ′, yn) = µ1µ2−|ξ′|2
4D1(λ,ξ′)

{
µ1µ2−|ξ′|2

µ1µ2
e−µ2(a−yn) −

(
e−µ1(a−yn) − e−µ2(a−yn)

)}
+β̃1(λ, ξ′, yn)

and

bn(λ, ξ′, yn) = − iξ′
4D1(λ,ξ′)

µ1µ2−|ξ′|2
µ1

(
e−µ1(a−yn) − e−µ2(a−yn)

)
+iξ′β̃n(λ, ξ′, yn),
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where β̃j(λ, ξ′, yn), j = 1, n, are written as the sum of terms of the same

form as that for β̃0(λ, ξ′, yn) with zn and wn satisfying zn ≥ 0, wn ≥ 0 and
Re (µka + µ1zn + µ2wn) ≥ Re µ�(a − yn) for yn ∈ [0, a], k = 1, 2 and � = 1 or
2. The desired inequalities in (ii) and (iv) now follow from Lemma 4.5.

We next consider inequality (iii). We write B ′(λ, ξ′, yn) as

B ′(λ, ξ′, yn) = −sinhµ1yn

sinh µ1a
In−1 − β(λ, ξ′, yn)P

′
1,0,

where

β(λ, ξ′, yn) =
sinh µ1yn

sinh µ1a
− β1(λ, ξ′, yn).

A direct computation shows that β(λ, ξ′, yn) is written as

β(λ, ξ′, yn) = − |ξ′|2
4D1(λ,ξ′)

µ1µ2−|ξ′|2
µ1µ2

(
e−µ1(a−yn) − e−µ2(a−yn)

)
+ |ξ′|2

4D1(λ,ξ′)(1−e−2µ1a)
β̃(λ, ξ′, yn),

where β̃(λ, ξ′, yn) is written as the sum of the same form as that for β̃1(λ, ξ′, yn).
Consequently we have

B ′(λ, ξ′, yn)

= 1
µ1

e−µ1(a−yn)In−1 + ξ′T ξ′
4D1(λ,ξ′)

µ1µ2−|ξ′|2
µ1µ2

(
e−µ1(a−yn) − e−µ2(a−yn)

)
+ 1

µ1

e−µ1a

1−e−2µ1a

(
e−µ1(2a−yn) − e−µ1yn

)
In−1 + ξ′T ξ′

4D1(λ,ξ′)(1−e−2µ1a)
β̃(λ, ξ′, yn).

The desired inequality in (iii) now follows from Lemma 4.5.
Similarly to above, one can prove the desired inequalities for λ ∈ Σ(−η3, θ3)

and |ξ′| ≥ R3 with |λ| ≥ δ, where δ is any positive number.
Let us consider the case |λ| ≤ δ. In this case a direct computation shows

that ∣∣∣∂α′
ξ′ β̃j(λ, ξ′, yn)

∣∣∣ ≤ C|λ|2e−c|ξ′|a, j = 0, 1, n,

for small |λ| and large |ξ′|. Combining this with Lemma 4.5, we can obtain
the desired inequalities for λ ∈ Σ(−η3, θ3) and |ξ′| ≥ R3 with some large
R3 > 0. This completes the proof.

5. Proof of the main results

In this section we prove the main results stated in section 2.
To prove Theorem 2.1 we will apply the following Fourier multiplier the-

orem.
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Lemma 5.1. (Fourier multiplier theorem) Let 1 < p < ∞ and let s be an
integer satisfying s ≥ [k

2
] + 1. Suppose that Ψ(ζ) ∈ Cs(Rk − {0}) ∩ L∞(Rk)

and that there exists a positive constant C0 such that

|ζ||α|
∣∣∣∂α

ζ Ψ(ζ)
∣∣∣ ≤ C0

for all ζ ∈ Rk − {0} and |α| ≤ s. Then the operator F −1
ζ [Ψ(ζ)(F f)(ζ)] is

extended to a bounded linear operator on Lp(Rk) and there holds the estimate

‖F −1
ζ [Ψ(ζ)(F f)(ζ)] ‖Lp(Rk) ≤ CC0‖f‖Lp(Rk).

See, e.g., [4] for the proof.

We will also use the following lemma concerning integral operator.

Lemma 5.2. Let Φ(xn, yn) be a measurable function on (0, a) × (0, a).

(i) Suppose that there exists a positive constant M such that
∫ a
0 |Φ(xn, yn)| dyn ≤

M for a.e. xn and
∫ a
0 |Φ(xn, yn)| dxn ≤ M for a.e. yn. Let 1 ≤ p ≤ ∞. Then

it holds that ∣∣∣∣∫ a

0
Φ(·, yn)f(yn) dyn

∣∣∣∣
p
≤ M |f |p.

(ii) Suppose that there exists a positive constant M such that (
∫ a
0 |Φ(xn, yn)|2 dyn)

1
2 ≤

M for a.e. xn. Then it holds that∣∣∣∣∫ a

0
Φ(·, yn)f(yn) dyn

∣∣∣∣∞ ≤ M |f |2.

The proof of the above lemma is well known. We omit it.

To obtain the estimates for derivatives of the resolvent we still need some
consideration. We proceed as in [3].

Lemma 5.3. There holds

F −1
ξ′

[∫ a

0

1

2µj

e−µj |xn−yn|f̂ (ξ′, yn) dyn

]
(x′, xn) = F −1

ξ

[
1

µ2
j + ξ2

n

F Ef(ξ)

]
(x′, xn)

for j = 1, 2, where ξ = (ξ′, ξn) and Ef(x′, xn) is the zero-extension of
f(x′, xn) to Rn.
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Proof. Since F xn

[
1

2µj
e−µj |xn|

]
= 1

µ2
j+ξ2

n
, we obtain the desired relation. This

completes the proof.

We will also use the following lemma ([3, Lemma 2.6]).

Lemma 5.4. ([3, Lemma 2.6]) Let 1 < p < ∞ and define the operator T by

Tf(xn) =
∫ a

0

f(yn)

xn + yn
dyn

for xn ∈ (0, a) and f ∈ Lp(0, a). Then there exists a positive constant C =
C(p) such that

|Tf |p ≤ C|f |p.

This lemma follows from the fact that Tf can be written in a form of the
Hilbert transformation on R. See [3, Lemma 2.6].

We are now in a position to Prove Theorem 2.1.

Proof of Theorem 2.1. Let η be any positive number. We will prove
Theorem 2.1 with θ satisfying π

2
< θ < min {θ1, θ3, θ4}, where θj (j = 1, 3, 4)

are the numbers given in Lemmas 4.3 and 4.4. We note that Σ(η, θ) ⊂
Σ(η, θ1) ∩ Σ(−η3, θ3) and that Σ(η, θ)− Σ(η4, θ4) is a compact set. Here η3

and η4 are the numbers given in Lemma 4.4.
We see from Theorem 3.8 that there exists a solution u of problem (1.1)–

(1.2) which takes the form u = R(λ)f , where R̂(λ, ξ′) = (λ + L̂ξ′)
−1 =

Ĝ(λ, ξ′) + K̂(λ, ξ′) with Ĝ(λ, ξ′) and K̂(λ, ξ′) being the integral operators
given in Theorem 3.8. We first prove that the estimates in Theorem 2.1
hold for u = R(λ)f . We then prove the uniqueness of solutions of problem
(1.1)–(1.2).

Let us estimate u = R(λ)f . We first consider the case λ ∈ Σ(η4, θ4). We
note that one can see from the form of R̂(λ, ξ′) that k-th order derivatives of
Q0R(λ)f are estimated as (k + 1)-th order ones of Q̃R(λ)f . So we here give
the proof of the estimates for Q̃R(λ)f only.

Hereafter we set G(λ) = F −1
ξ′ [Ĝ(λ, ξ′)] and K(λ) = F −1

ξ′ [K̂(λ, ξ′)]. We

also write G(λ) = G(1)(λ) + · · · + G(4)(λ), where G(�)(λ) is the matrix with
gD

µj
and gN

µj
in G(λ) replaced by (−1)�+1g(�)

µj
and g(�)

µj
, respectively. Here g(�)

µj

are the functions defined in (4.28).
Let us consider Q̃R(λ)Q̃f . We first estimate ∂k

xQ̃G(λ)Q̃f for k ≤ 1. Since

∂2
xn

(
gM

µ1,µ2
Q̃f̂
)

=
(
∂2

xn
gM

µ1
− ∂2

xn
gM

µ2

) [
Q̃f̂
]
, we see from Lemma 4.6 that, for
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|β ′| + � ≤ 1 and j = 1, 2,∣∣∣∂α′
ξ′
[
(iξ′)β′

∂�
xn

Q̃Ĝ(j)(λ, ξ′xn, yn)Q̃
]∣∣∣

≤ Cσ(λ, ξ′)
|β′ |+�

2
− 1

2
− |α′ |

2

{
E(1)(xn, yn) + E(2)(xn, yn)

}
≤ C(|λ| + 1)

|β′ |+�
2

− 1
2E(λ, xn, yn)|ξ′|−|α′|,

where

E(λ, xn, yn) = e−c(|λ|+1)
1
2 |xn−yn| + e−c(|λ|+1)

1
2 (xn+yn) + e−c(|λ|+1)

1
2 {(a−xn)+(a−yn)}.

Since

sup
0≤xn≤a

∫ a

0
E(λ, xn, yn) dyn + sup

0≤yn≤a

∫ a

0
E(λ, xn, yn) dxn ≤ C(|λ| + 1)−

1
2 ,

we see from Lemmas 5.1 and 5.2 that

‖∂k
xQ̃G(j)(λ)Q̃f‖p ≤ C

(|λ| + 1)1−
k
2

‖Q̃f‖p, j = 1, 2,

for k ≤ 1. Similarly, one can estimate ∂k
xQ̃G(j)(λ)Q̃f (j = 3, 4) and ∂k

xQ̃K(λ)Q̃f
for k ≤ 1.

We next consider ∂2
xQ̃R(λ)Q̃f . We first estimate ∂2

xQ̃G(1)(λ)Q̃f . By
Lemma 5.3, we have

F −1
ξ′
[
g(1)

µj
Q̃f̂
]
(x′, xn) = F −1

ξ

[
1

µ2
j + ξ2

n

F x[Q̃Ef ]

]
(x′, xn), j = 1, 2,

and, in particular,

F−1
ξ′
[
g(1)

µ1,µ2
Q̃f̂
]
(x′, xn) = F −1

ξ

[
M(λ, ξ)F x[Q̃Ef ]

]
(x′, xn),

where Ef denotes the zero extension of f to Rn and

M(λ, ξ) =
1

µ2
1 + ξ2

n

− 1

µ2
2 + ξ2

n

with µj = µj(λ, ξ′), j = 1, 2. Since µ2
1 +ξ2

n = λ+ν|ξ|2
ν

, µ2
2 +ξ2

n = λ2+ν1|ξ|2λ+γ2|ξ|2
ν1λ+γ2

with |ξ|2 = |ξ′|2 + ξ2
n, and ν1 = ν + ν̃, we have

M(λ, ξ) = − λ(ν̃λ + γ2)

(λ + ν|ξ|2)(λ2 + ν1|ξ|2λ + γ2|ξ|2) .
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Therefore, in view of the observation in Remarks 3.2 and 3.5, we obtain∣∣∣∣∂α
ξ

(
ξβ

µ2
j+ξ2

n

)∣∣∣∣ ≤ C|ξ|−|α| for |β| = 2 and
∣∣∣∂α

ξ

(
ξβ

λ
M(λ, ξ)

)∣∣∣ ≤ C|ξ|−|α| for |β| =

4 uniformly in λ ∈ Σ(η4, θ4). It then follows from Lemma 5.1 that

‖∂2
xQ̃G(1)(λ)Q̃f‖p ≤ C‖Q̃f‖p,

We next consider ∂2
xQ̃G(2)(λ)Q̃f . For |β ′| + � = 2, we see from Lemma

4.6 that ∣∣∣∂α′
ξ′
[
(iξ′)β′

∂�
xn

Q̃Ĝ(2)(λ, ξ′, xn, yn)Q̃
]∣∣∣

≤ Cσ(λ, ξ′)
1
2
− |α′ |

2 E(2)(xn, yn)

≤ C
{

1
xn+yn

+ 1
(a−xn)+(a−yn)

}
|ξ′|−|α′|.

It then follows from Lemma 5.1 that∥∥∥∂2
xQ̃G(2)(λ)Q̃f(·, yn)

∥∥∥
Lp(Rn−1)

≤ C
∫ a

0

{
1

xn + yn
+

1

(a − xn) + (a − yn)

} ∥∥∥Q̃f(·, yn)
∥∥∥

Lp(Rn−1)
dyn,

and hence, by Lemma 5.4, we obtain∥∥∥∂2
xQ̃G(2)(λ)Q̃f

∥∥∥
p
≤ C
∥∥∥Q̃f
∥∥∥

p
.

In the same way one can also obtain the desired estimates for ∂2
xQ̃G(j)(λ)Q̃f

(j = 3, 4) and ∂2
xQ̃K(λ)Q̃f .

We next consider Q̃R(λ)Q0f . Similarly to above, one can prove
∥∥∥∂k

xQ̃R(λ)Q0f
∥∥∥

p
≤

C
|λ|+1

‖Q0f‖p for k ≤ 1. As for ∂2
xQ̃R(λ)Q0f , we first note that ∂xngN

µ2
Q0f̂ =

gD
µ2

[∂xnQ0f̂ ], which is obtained by integration by parts. It then follows that

Q̃Ĝ(λ, ξ′)Q0f̂ = − γ

ν1λ + γ2

 0

gN
µ2

[ ̂∇′Q0f ]

gD
µ2

[∂xnQ̂0f ]

 ,

where ∇′ = T (∂x1, · · · , ∂xn−1). Therefore, similarly to above, we obtain

‖∂2
xQ̃G(λ)Q0f‖p ≤ C

|λ| + 1
‖Q0f‖W 1,p .

As for ∂2
xQ̃K(λ)Q0f , we write

Q̃Ĥ(λ, ξ′)Q0f̂ =


0(

1
ν
hµ1β0 + |ξ′|2

λ
hµ1,µ2

)
[ ̂∇′Q0f ]

iξ′
λ

∂xnhµ1,µ2[
̂∇′Q0f ]

 .
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The desired estimate for ∂2
xQ̃K(λ)Q0f now follows similarly to above.

As mentioned before, one can prove the estimates for ∂k
xQ0R(λ)f with

k ≤ 1 similarly to the estimates for ∂k+1
x Q̃R(λ)f . We thus omit the details.

Let us prove the last inequality in Theorem 2.1. We assume that Q̃f
∣∣∣
xn=0,a

=

0. It suffices to prove

‖∂xnQ̃R(λ)Q̃f‖p ≤ C

|λ| + 1
‖Q̃f‖W 1,p .

Since Q̃f
∣∣∣
xn=0,a

= 0, by integration by parts, we also have

∂xngD
µj

Q̃f̂ = gN
µj

[
∂xnQ̃f̂

]
, j = 1, 2.

Therefore, we see from Lemmas 4.6, 5.1 and 5.2 that

‖∂xnQ̃G(λ)Q̃f‖p ≤
C

|λ| + 1
‖∂xnQ̃f‖p.

As for Q̃K(λ)Q̃f , we note that an application ∂xn to hµj(xn) yields one of
the factors µj, j = 1, 2. But, since B ′(λ, ξ′, yn) and bn(λ, ξ′, yn) are written

as linear combinations of e±µjyn (j = 1, 2), we see that if Q̃f
∣∣∣
xn=0,a

= 0, then

∫ a

0
e±µjynQ̃f̂(yn) dyn = ∓ 1

µj

∫ a

0
e±µjyn∂ynQ̃f̂(yn) dyn, j = 1, 2.

Therefore, we can gain one of the factors µ−1
j , j = 1, 2. It then follows that

‖∂xnQ̃K(λ)Q̃f‖p ≤ C

|λ| + 1
‖∂xnQ̃f‖p.

We have thus obtained the desired estimates when λ ∈ Σ(η4, θ4).
We next consider the case λ ∈ Σ(η, θ) − Σ(η4, θ4). We fix a positive

number R3 in such a way that Lemmas 4.5–4.8 hold for λ ∈ Σ(−η3, θ3) and
|ξ′| ≥ R3.

We decompose R(λ)f in the following way. Let χ̃(ξ′) be a C∞ function
on Rn−1 satisfying 0 ≤ χ̃ ≤ 1 on Rn−1, χ̃(ξ′) = 0 for |ξ′| ≤ R3 and χ̃(ξ′) = 1
for |ξ′| ≥ 2R3. We write R(λ)f as

R(λ)f = R̃(0)(λ)f + R̃(∞)(λ)f,

where
R̃(0)(λ)f = F −1

ξ′
[
(1 − χ̃(ξ′))R̂(λ, ξ′)f̂

]
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and
R̃(∞)(λ)f = F −1

ξ′
[
χ̃(ξ′)R̂(λ, ξ′)f̂

]
.

Similarly to the case of λ ∈ Σ(η4, θ4), we can obtain the desired estimates
for R̃(∞)(λ)f since Σ(η, θ) ⊂ Σ(−η3, θ3). The desired estimates also hold for
R̃(0)(λ)f . In fact, by Lemmas 3.4 and 4.3, we see that D(λ, ξ′) 
= 0 on the
compact set Σ(η, θ) − Σ(η4, θ4)×{ξ′; |ξ′| ≤ 2R3}. Therefore, R̂(λ, ξ′, xn, yn)
is analytic, and so we can obtain the desired estimates for R̃(0)(λ)f . We thus
conclude that u = R(λ)f satisfies the estimates in Theorem 2.1.

It remains to prove the uniqueness of solutions of problem (1.1)–(1.2). To
prove the uniqueness, we consider the adjoint problem

(5.1) (λ + L∗)w = g, Q̃w
∣∣∣
xn=0,a

= 0,

where

L =

 0 −γdiv

−γ∇ −ν∆In − ν̃∇div

 .

Similarly to the case of problem (1.1)–(1.2), we consider the Fourier transform
of (5.1) in x′ ∈ Rn−1:

(λ + L̂∗
ξ′)ŵ = ĝ, Q̃ŵ

∣∣∣
xn=0,a

= 0.

It is easily verified that (λ + L̂∗
ξ′)

−1 has an integral representation R̂∗(λ, ξ′)
corresponding to Theorem 3.8, which is written in terms of the components
of R̂(λ, ξ′). Therefore, R∗(λ)g = F −1

ξ′
[
R̂∗(λ, ξ′)ĝ

]
, which is a solution of

(5.1), has the same estimates as those for R(λ)f . We thus conclude that
for any λ ∈ Σ(η, θ) and g ∈ W 1,p × Lp problem (5.1) has a solution w ∈
W 1,p ×

(
W 2,p ∩ W 1,p

0

)
.

Assume now that u ∈ W 1,p ×
(
W 2,p ∩ W 1,p

0

)
and (λ + L)u = 0. Let

g ∈ C∞
0 (Ω)×C∞

0 (Ω) and let w be a solution of (5.1) satisfying w ∈ W 1,p′ ×(
W 2,p′ ∩ W 1,p′

0

)
with 1/p′ = 1 − 1/p. It then follows that

0 = ((λ + L)u, w) = (u, (λ + L∗)w) = (u, g).

This implies that u = 0, and the uniqueness of problem (1.1)–(1.2) holds for
λ ∈ Σ(η, θ). This completes the proof.

We next give a proof of Theorem 2.2.

Proof of Theorem 2.2. We here prove the second inequality in Theorem
2.2 for ∂xnQnG(λ)f only, since the other cases can be proved similarly by
applying Lemmas 4.6–4.8 and 5.2.
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We first consider the case λ ∈ Σ(η4, θ4). Let E(j)(xn, yn), j = 1, 2,
be the functions defined in Lemma 4.6 and set E(xn, yn) = E(1)(xn, yn) +
E(2)(xn, yn). Then we have

sup
0≤xn≤a

(∫ a

0
|E(xn, yn)|2 dyn

)1
2

≤ Cσ(λ, ξ′)−
1
4 .

Since ∂2
xn

(
gN

µ2
Q0f̂
)

=
(
∂2

xn
gN

µ2

) [
Q0f̂
]
− Q0f̂ , we see from Lemmas 4.6

and 5.2 that

‖∂xnQnG(λ)Q0f‖∞ ≤ C
|λ|+1

{
‖Q0f‖∞ +

∥∥∥(∂2
xn

gN
µ2

) [
Q0f̂
]∥∥∥

L1
ξ′L

∞
xn

}

≤ C
|λ|+1

‖Q0f‖∞ +
∥∥∥∥(|λ| + 1 + |ξ′|2)

1
4

∣∣∣Q0f̂(ξ′)
∣∣∣
2

∥∥∥∥
L1

ξ′


≤ C

{
1

|λ|+1
‖Q0f‖∞ + 1

(|λ|+1)
3
4
‖Q0f‖H [n

2
]+1

}
≤ C

(|λ|+1)
3
4
‖Q0f‖H [n

2 ]+1 .

We next consider ∂xnQnG(λ)Q′f . Similarly to above, we see from Lem-
mas 4.6 and 5.2 that, for 0 < ε < 1,

‖∂xnQnG(λ)Q′f‖∞ ≤ C
∥∥∥∂xnQnĜ(λ, ξ′)Q′f̂

∥∥∥
L1

ξ′L
∞
xn

≤ C

∥∥∥∥(|λ| + 1 + |ξ′|2)−
3
4 |ξ′|
∣∣∣Q′f̂(ξ′)

∣∣∣
2

∥∥∥∥
L1

ξ′

≤ C

∥∥∥∥(|λ| + 1)−
ε
4 (|λ| + 1 + |ξ′|2)−

1
4
(1−ε)
∣∣∣Q′f̂(ξ′)

∣∣∣
2

∥∥∥∥
L1

ξ′

≤ C

(|λ|+1)
ε
4

∥∥∥Q′f̂
∥∥∥

Hs

with s > n
2
− ε. Therefore, we can take s =

[
n
2

]
. Similarly, we can obtain

‖∂xnQnG(λ)Qnf‖∞ ≤ C

(|λ| + 1)
ε
4
‖f ′(ξ′)‖

H [n
2 ] .

We next consider the case λ ∈ Σ(η, θ) − Σ(η4, θ4). We decompose (λ +
L)−1f into (λ+L)−1f = R̃(0)(λ)f +R̃(∞)(λ)f as in the proof of Theorem 2.1.
It then follows that R̃(∞)(λ)f can be estimated as above. One can also see
that R̃(0)(λ)f has the desired estimates since D(λ, ξ′) 
= 0 on the compact
set Σ(η, θ) −Σ(η4, θ4) × {ξ′; |ξ′| ≤ 2R3}. This completes the proof.

We next prove the Lp estimates of the resolvent for p = 1,∞. For this
purpose we prepare the following lemma.
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Lemma 5.5. Let � = 0, 1 and let Φ̂(ξ′, xn) be a function satisfying

|∂α′
ξ′ Φ̂(ξ′, ·)|1 ≤ Cσ(λ, ξ′)

�
2
−1− |α′ |

2

for all α′ with |α′| ≤ n. Then Φ(x′, xn) = (F−1
ξ′ Φ̂)(x′, xn) satisfies

‖Φ‖1 ≤ C(|λ| + 1)
�
2
−1.

Proof. The proof is based on the Riemann-Lebesgue lemma as in the esti-
mates of solutions to the Cauchy problem given in [8].

Since 2 − � + n > n − 1, by integration by parts, we see that

|Φ(x′, ·)|1 =

∣∣∣∣∣∣(2π)n−1
∫
Rn−1

Φ̂(ξ′, xn)

n−1∑
j=1

xj

i|x′|2∂ξj

n

eix′·ξ′ dξ′
∣∣∣∣∣∣
L1

xn

≤ C|x′|−n
∫
Rn−1

∑
|α′|=n

∣∣∣∂α′
ξj

Φ̂(ξ′, xn)
∣∣∣
L1

xn

dξ′

≤ C|x′|−n
∫
Rn−1

(
|λ| + 1 + |ξ′|2

) �
2
−1−n

2 dξ′

≤ C|x′|−n(|λ| + 1)−
3
2
+ �

2 .

This implies that

‖|Φ(x′, ·)|1‖
L1(|x′|≥(|λ|+1)−

1
2 )

≤ C(|λ| + 1)−
3
2
+ �

2 ‖|x′|−n‖
L1(|x′|≥(|λ|+1)−

1
2 )

≤ C(|λ| + 1)−1+ �
2 .

We next show that

‖|Φ(x′, ·)|1‖
L1(|x′|≤(|λ|+1)−

1
2 )

≤ C(|λ| + 1)−1+ �
2 .

In case � = 0, similarly to above, we have

|Φ(x′, ·)|1 =

∣∣∣∣∣∣∣(2π)n−1
∫
Rn−1

Φ̂(ξ′, xn)

n−1∑
j=1

xj

i|x′|2 ∂ξj

n−2

eix′·ξ′ dξ′

∣∣∣∣∣∣∣
L1

xn

≤ C|x′|−(n−2)
∫
Rn−1

∑
|α′|=n−2

∣∣∣∂α′
ξj

Φ̂(ξ′, xn)
∣∣∣
L1

xn

dξ′

≤ C|x′|−(n−2)
∫
Rn−1

(
|λ| + 1 + |ξ′|2

) �
2
−1−n−2

2 dξ′

≤ C|x′|−(n−2)(|λ| + 1)−
1
2 .
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This implies

‖|Φ(x′, ·)|1‖
L1(|x′|≤(|λ|+1)−

1
2 )

≤ C(|λ| + 1)−
1
2

∥∥∥|x′|−(n−2)
∥∥∥

L1(|x′|≤(|λ|+1)−
1
2 )

≤ C(|λ| + 1)−1.

The proof of the lemma for � = 0 is thus complete.
Let us consider the case � = 1. We first observe that

(5.2)

∫
Rn−1

∂α′
ξ′ Φ̂(ξ′, xn)e

ix′·ξ′ dξ′ = −
∫
Rn−1

∂α′
ξ′ Φ̂(ξ′, xn)e

ix′·(ξ′+ x′
|x′ |2 π)

dξ′

= −
∫
Rn−1

∂α′
ξ′ Φ̂(ξ′ − z′, xn)e

ix′·ξ′ dξ′.

Here and in what follows we write z′ = x′
|x′|2 π. From (5.2) we see that

(5.3)

|Φ(x′)|1

≤ C|x′|−(n−2)
∫
Rn−1

∑
|α′|=n−2

∣∣∣∂α′
ξ′
(
Φ̂(ξ′ − z′, xn) − Φ̂(ξ′, xn)

)∣∣∣
L1

xn

dξ′.

By assumption, we have

(5.4)
∣∣∣∂α′

ξ′
(
Φ̂(ξ′ − z′, xn) − Φ̂(ξ′, xn)

)∣∣∣
L1

xn

≤ CΦ(1)(ξ′, x′),

where

Φ(1)(ξ′, x′) =
(
|λ| + 1 + |ξ′|2

)−n−1
2 +
(
|λ| + 1 + |ξ′ − z′|2

)−n−1
2 .

We also have

(5.5)

∣∣∣∂α′
ξ′
(
Φ̂(ξ′ − z′, xn) − Φ̂(ξ′, xn)

)∣∣∣
L1

xn

≤ C|z′|
∑

|β′|=n−1

∫ 1

0

∣∣∣∂β′
ξ′ Φ̂(ξ′ − θz′, xn)

∣∣∣
L1

xn

dθ

≤ C|x′|−1Φ(2)(ξ′, x′),

where

Φ(2)(ξ′, x′) =
∫ 1

0

(
|λ| + 1 + |ξ′ − θz′|2

)−n
2 dθ.

Let τ be a number satisfying 1 − 1
n

< τ < 1. It then follows from (5.4) and
(5.5) that, for |α′| = n − 2,

(5.6)

∫
Rn−1

∣∣∣∂α′
ξ′
(
Φ̂(ξ′ − z′, xn) − Φ̂(ξ′, xn)

)∣∣∣
L1

xn

dξ′

≤ C|x′|−(1−τ)
∫
Rn−1

Φ̂(1)(ξ′, x′)τ Φ̂(2)(ξ′, x′)1−τ dξ′

= C|x′|−(1−τ)
∫

Ω1

+
∫

Ω2

+
∫

Ω3

Φ̂(1)(ξ′, x′)τ Φ̂(2)(ξ′, x′)1−τ dξ′,
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where
Ω1 = {ξ′; |ξ′| ≥ 2|z′|} ,

Ω2 = {ξ′; |ξ′| ≤ 2|z′|} ∩ {ξ′; |ξ′ − z′| ≥ 2|z′|} ,

Ω3 = {ξ′; |ξ′| ≤ 2|z′|} ∩ {ξ′; |ξ′ − z′| ≤ 2|z′|} .

On Ω1 we have |ξ′ − z′| ≥ 1
2
|ξ′| and |ξ′ − θz′| ≥ 1

2
|ξ′| for any θ ∈ [0, 1]. It

follows that
(5.7)∫

Ω1

Φ̂(1)(ξ′, x′)τ Φ̂(2)(ξ′, x′)1−τ dξ′ ≤ C
∫
Rn−1

(
|λ| + 1 + |ξ′|2

)−n
2
+ τ

2 dξ′

≤ C(|λ|+ 1)−
1
2
+ τ

2 .

On Ω2 we have |ξ′ − z′| ≥ |ξ′| and |ξ′ − θz′| ≥ |ξ′ − z′| − (1− θ)|z′| ≥ 1
2
|ξ′| for

any θ ∈ [0, 1]. Therefore, as above, we obtain

(5.8)
∫

Ω2

Φ̂(1)(ξ′, x′)τ Φ̂(2)(ξ′, x′)1−τ dξ′ ≤ C(|λ| + 1)−
1
2
+ τ

2 .

As for the integral on Ω3, we have

(5.9)

∫
Ω3

Φ̂(1)(ξ′, x′)τ Φ̂(2)(ξ′, x′)1−τ dξ′

≤ C
∫
{|ξ′|≤2|z′|}

|ξ′|−(n−1)τ (|λ| + 1)−
n
2
(1−τ )dξ′

+C
∫
{|ξ′−z′|≤2|z′|}

|ξ′ − z′|−(n−1)τ(|λ| + 1)−
n
2
(1−τ )dξ′

≤ C(|λ|+ 1)−
n
2
(1−τ )|x′|−(1−τ)(n−1).

Consequently we see from (5.6)–(5.9) that∫
Rn−1

∣∣∣∂α′
ξ′
(
Φ̂(ξ′ − z′, xn) − Φ̂(ξ′, xn)

)∣∣∣
L1

xn

dξ′

≤ C
{
(|λ| + 1)−

1
2
+ τ

2 |x′|−(1−τ) + (|λ| + 1)−
n
2
(1−τ )|x′|−(1−τ)n

}
.

This, together with (5.3), implies that

|Φ(x′)|1 ≤ C
{
(|λ| + 1)−

1
2
+ τ

2 |x′|−(n−1)+τ

+(|λ| + 1)−
n
2
(1−τ )|x′|−(n−2)−(1−τ)n

}
.

Since 1 − 1
n

< τ , integrating this over {x′; |x′| ≤ (|λ| + 1)−
1
2}, we obtain

‖|Φ(x′, ·)|1‖
L1(|x′|≤(|λ|+1)−

1
2 )

≤ C(|λ|+ 1)−
1
2 .
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This completes the proof.

We now prove the Lp estimates of the resolvent for p = 1,∞.

Proof of Theorem 2.3. We here prove the estimates only for λ ∈ Σ(η4, θ4).
The other case can be treated by using the decomposition (λ + L)−1f =
R̃(0)(λ)f + R̃(∞)(λ)f as in the proof of Theorem 2.1.

Let us denote the integral kernels of (λ + L)−1, G(λ)f and K(λ)f by
R(λ, x′−y′, xn, yn), G(λ, x′−y′, xn, yn) and K(λ, x′−y′, xn, yn), respectively.

Let E(xn, yn) = E(1)(xn, yn) + E(2)(xn, yn) be defined as in the proof of
Theorem 2.2. It holds that

sup
0≤yn≤a

∫ a

0
E(xn, yn) dxn + sup

0≤xn≤a

∫ a

0
E(xn, yn) dyn ≤ Cσ(λ, ξ′)−

1
2 .

Therefore, by Lemmas 4.6–4.8 and 5.5, we have

‖∂k
xQ̃(λ + L)−1Q̃f‖1 ≤ sup0≤yn≤a ‖∂k

xQ̃R(λ, ·, ·, yn)‖1‖Q̃f‖1

≤ C

(|λ|+1)1−
k
2
‖Q̃f‖1, k = 0, 1,

and

‖∂k
xQ̃(λ + L)−1Q̃f‖∞ ≤ sup0≤xn≤a ‖∂k

xQ̃R(λ, ·, xn, ·)‖1‖Q̃f‖∞

≤ C

(|λ|+1)1−
k
2
‖Q̃f‖∞, k = 0, 1.

Similarly one can estimate Q0(λ + L)−1f to obtain the desired estimate.
We next consider ∂xQ0(λ+L)−1Q̃f . We here estimate only ∂xQ0G(λ)Qnf .

Since ∂α′
x′ G(λ)f = G(λ)∂α′

x′ f , we see from Lemmas 4.6 and 5.5 that

‖∂α′
x′ Q0G(λ)Qnf‖p ≤ C

|λ| + 1
‖∂α′

x′ Qnf‖p, p = 1,∞, |α′| = 1.

Since ∂2
xn

(g(D)
µ2

f̂) = µ2
2g

(D)
µ2

f̂ − f̂ and µ2
2 = λ2

ν1λ+γ2 + |ξ′|2, we have

∂xnQ0G(λ)Qnf

= − γ
ν1λ+γ2

{
λ2

ν1λ+γ2 Q0G(λ)Qnf + ∇′Q0G(λ)[∇′Qnf ] −Qnf
}

.

It then follows from Lemmas 4.6 and 5.5 that

‖∂xnQ0G(λ)Qnf‖p ≤ C

|λ| + 1
{‖Qnf‖p + ‖∇′Qnf‖p} , p = 1,∞.
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The remaining part of ∂xQ0(λ+L)−1Q̃f can be estimated similarly. One can
also estimate ∂xQ̃(λ + L)−1Q0f in a similar manner.

We next estimate ∂xQ0(λ+L)−1Q0f . Consider first Q0K(λ)Q0f . We set

k̃(λ, x′, xn, yn) = F −1 [hµ2(λ, ξ′, xn)β0(λ, ξ′, yn)] (x
′),

K̃(λ)f =
∫
Rn−1 k̃(x′ − y′, xn, yn)Q0f(y′, yn) dy′dyn.

Then
Q0K(λ)Q0f = − γ

ν1λ + γ2
∇′K̃(λ) [∇′Q0f ] .

It then follows from Lemmas 4.7, 4.8 and 5.5 that

‖∂x′Q0K(λ)Q0f‖p ≤ C

|λ| + 1
‖∂x′∇′Q0f‖p, p = 1,∞.

Also, since

Q0K(λ)Q0f = − γ

ν1λ + γ2
K̃(λ) [∆′Q0f ] ,

we similarly obtain, by Lemmas 4.7, 4.8 and 5.5,

‖∂xnQ0K(λ)Q0f‖p ≤ C

|λ| + 1
‖∆′Q0f‖p.

As for ∂xQ0G(λ)Q0f , one can treat it as in the case of ∂xQ̃(λ + L)−1Q̃f .

Let us finally consider ∂xQ̃(λ + L)−1f , assuming that Q̃f
∣∣∣
xn=0,a

= 0.

As for ∂xQ̃(λ + L)−1Q̃f , we rewrite it as in the proof of the last inequality
of Theorem 2.1. One can then estimate it similarly to the case of ∂k

xQ̃(λ +
L)−1Q̃f with k ≤ 1 to obtain the desired inequality. The estimate for ∂xQ̃(λ+
L)−1Q0f has been already obtained. This completes the proof.

We finally prove Theorems 2.5–2.7.

Proof of Theorems 2.5–2.7. We prove Theorems 2.5–2.7 for η̃ = min {η2, η3}
and π

2
< θ̃ < min {θ2, θ3, θ4}, where ηj (j = 2, 3) and θj (j = 2, 3, 4) are the

numbers given in Lemmas 4.3 and 4.4. For this {η̃, θ̃} we see from Lemma
4.3 that Σ(−η̃, θ̃) ⊂ ρ(−L̂ξ′) for |ξ′| ≥ r. Furthermore, we deduce that

Σ(−η̃, θ̃) ⊂ Σ(−η2, θ2) ∩Σ(−η3, θ3) and that Σ(−η̃, θ̃) − Σ(η4, θ4) is a com-
pact set. Here η4 and θ4 are the numbers given in Lemma 4.4.

In view of the proof of Theorems 2.1–2.3, the desired estimates for R(1)(λ)f
hold for λ ∈ Σ(η4, θ4).
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In case λ ∈ Σ(−η̃, θ̃)−Σ(η4, θ4), we decompose R(1)(λ)f in the following
way. Let χ(ξ′) and χ̃(ξ′) be the cut-off functions given in the definition of
R(1)(λ)f and in the proof of Theorem 2.1, respectively. We write R(1)(λ)f as

R(1)(λ)f = R̃(2)(λ)f + R̃(∞)(λ)f,

where
R̃(2)(λ)f = F −1

ξ′
[
χ(ξ′)(1 − χ̃(ξ′))R̂(λ, ξ′)f̂

]
and

R̃(∞)(λ)f = F −1
ξ′
[
χ(ξ′)χ̃(ξ′)R̂(λ, ξ′)f̂

]
.

By Lemma 3.4 and Lemma 4.3 (ii) we see that D(λ, ξ′) 
= 0 on the compact

set Σ(−η̃, θ̃) −Σ(η4, θ4). Therefore, as above, one can see that R(1)(λ)f has
the desired estimates for λ ∈ Σ(−η̃, θ̃)−Σ(η4, θ4) as in the proof of Theorems
2.1–2.3. This completes the proof.
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