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Abstract

Asymptotic behavior of solutions to the linearized compressible Navier-
Stokes equation around a given constant state is considered in an infi-
nite layer Rn−1 × (0, a), n ≥ 2, under the no slip boundary condition
for the momentum. The Lp decay estimates of the associated semi-
group are established for all 1 ≤ p ≤ ∞. It is also shown that the
time-asymptotic leading part of the semigroup is given by an n − 1
dimensional heat semigroup.

1. Introduction

This paper is concerned with the large time behavior of solutions to the
following system of equations:

(1.1) ∂tu+ Lu = 0,

where u =

(
φ
m

)
with φ = φ(x, t) ∈ R and m = T (m1(x, t), · · · , mn(x, t)) ∈

Rn, n ≥ 2, and L is an operator defined by

L =

 0 γdiv

γ∇ −ν∆In − ν̃∇div


with positive constants ν and γ and a nonnegative constant ν̃. Here t >
0 denotes the time variable and x ∈ Rn denotes the space variable; the
superscript T · stands for the transposition; In is the n × n identity matrix;
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and div, ∇ and ∆ are the usual divergence, gradient and Laplacian with
respect to x. We consider (1.1) in an infinite layer

Ω = Rn−1 × (0, a) = {x =

(
x′

xn

)
; x′ ∈ Rn−1, 0 < xn < a}

under the boundary condition

(1.2) m|∂Ω = 0,

together with the initial condition

(1.3) u|t=0 = u0 =

(
φ0

m0

)
.

Problem (1.1)–(1.3) is obtained by the linearization of the compressible Navier-
Stokes equation around a motionless state with a positive constant density,
where φ is the perturbation of the density and m is the momentum.

In [6] we showed that −L generates the analytic semigroup U (t) in W 1,p×
Lp for 1 < p <∞. In this paper we establish the Lp decay estimates of U (t)
for all 1 ≤ p ≤ ∞ and derive an asymptotic state of U (t) as t→ ∞.

One of the primary factors affecting the large time behavior of solutions
to (1.1)–(1.3) is that (1.1) is a symmetric hyperbolic-parabolic system. Due
to this structure, solutions of (1.1) exhibit characters of solutions of both
wave and heat equations. In the case of the Cauchy problem on the whole
space Rn, detailed descriptions of large time behavior of solutions have been
obtained ([4, 5, 10, 12, 13]). Hoff and Zumbrun [4, 5] showed that there
appears some interesting interaction of hyperbolic and parabolic aspects of
(1.1) in the decay properties of Lp norms with 1 ≤ p ≤ ∞. It was shown in
[4, 5] that the solution is asymptotically written in the sum of two terms, one
is the solution of the heat equation and the other is given by the convolution
of the heat kernel and the fundamental solution of the wave equation. The
latter one is called the diffusion wave and it decays faster than the heat
kernel in Lp norm for p > 2 while slower for p < 2. This decay property of
the diffusion wave also appears in the exterior domain problem ([11]). In the
case of the half space problem, it was shown in [7, 8] that not only the above
mentioned behavior of the diffusion wave appears but also some difference to
the Cauchy problem appears in the decay property of the spatial derivatives
due to the presence of the unbounded boundary.

There is one more factor that affects the large time behavior of solutions
to (1.1)–(1.3). In contrast to the domains mentioned above, the infinite layer
Ω has a finite thickness in the xn direction. This implies that the Poincaré
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inequality holds. If one considers, for example, the incompressible Navier-
Stokes equation under the no slip boundary condition (1.2), then it is easy
to see that, by the Poincaré inequality, the L2 norm of the solution tends to
zero exponentially as t→ ∞. In the case of the compressible problem (1.1)–
(1.3), the Poincaré inequality still holds for m but not for φ. Therefore, some
different behavior could be expected to happen.

In this paper we will show that the solution u = U (t)u0 of (1.1)–(1.3)
satisfies

(1.4) ‖u(t)‖Lp = O(t−
n−1

2
(1− 1

p
)), ‖u(t) − u(0)(t)‖Lp = O(t−

n−1
2

(1− 1
p
)− 1

2 )

for any 1 ≤ p ≤ ∞ as t → ∞. Here u(0) = (φ(0)(x′, t), 0) and φ(0)(x′, t) is a
function satisfying

∂tφ
(0) − κ∆′φ(0) = 0, φ(0)

∣∣∣
t=0

=
1

a

∫ a

0
φ0(x

′, xn) dxn,

where κ = a2γ2

12ν
and ∆′ = ∂2

x1
+ · · · + ∂2

xn−1
. We note that the leading part

is given by the density component and no hyperbolic feature appears in the
leading part. The precise statement will be given in section 2.

The proof of (1.4) is based on a detailed analysis of the resolvent (λ+L)−1

associated with (1.1)–(1.3). The resolvent problem in an infinite layer was
studied in [1, 2, 3] for the incompressible Stokes equation. They established
Lp estimates of the resolvent for 1 < p < ∞, which yields the exponential
decay of the Stokes semigroup in Lp norms as t→ ∞. To obtain the resolvent
estimates, they considered the Fourier transform of the resolvent in x′ ∈ Rn−1

and applied the Fourier multiplier theorem.
In order to analyze the compressible problem (1.1)–(1.3) we also consider

the Fourier transform (λ + L̂ξ′)
−1 of the resolvent in x′ ∈ Rn−1, where ξ′ ∈

Rn−1 denotes the dual variable. The semigroup U (t) generated by −L is then

written as U (t) = F −1
ξ′
[

1
2πi

∫
Γ e

λt(λ + L̂ξ′)
−1 dλ

]
. In contrast to the case of

the incompressible problem, (λ+ L̂ξ′)
−1 has different characters between the

cases |ξ′| >> 1 and |ξ′| << 1. We thus decompose the semigroup U (t) into
the two parts according to the partition: |ξ′| ≥ r0 and |ξ′| ≤ r0 for some
r0 > 0.

In [6] we established the estimates of (λ+ L̂ξ′)
−1 with |ξ′| ≥ r0, which will

lead to the exponential decay of the corresponding part of U (t). In this paper
we study (λ + L̂ξ′)

−1 with |ξ′| << 1. We regard L̂ξ′ as a perturbation from
L̂0 to investigate the spectrum of −L near λ = 0. Combining the spectral
analysis for |ξ′| << 1 and the results in [6], we prove the asymptotic behavior
of u(t) = U (t)u0 described in (1.4).
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This paper is organized as follows. In section 2 we introduce some no-
tation and state the main result of this paper. In section 3 we investigate
(λ + L̂ξ′)

−1 with |ξ′| << 1. Section 4 is devoted to the proof of the main
result.

2. Main Result

We first introduce some notation which will be used throughout the paper.
For a domain D and 1 ≤ p ≤ ∞ we denote by Lp(D) the usual Lebesgue
space on D and its norm is denoted by ‖ · ‖Lp(D). Let 	 be a nonnegative
integer. The symbol W 	,p(D) denotes the 	 th order Lp Sobolev space on
D with norm ‖ · ‖W �,p(D). When p = 2, the space W 	,2(D) is denoted by
H	(D) and its norm is denoted by ‖ · ‖H�(D). C	

0(D) stands for the set of

all C	 functions which have compact support in D. We denote by W 1,p
0 (D)

the completion of C1
0(D) in W 1,p(D). In particular, W 1,2

0 (D) is denoted by
H1

0 (D).
We simply denote by Lp(D) (resp., W 	,p(D), H	(D)) the set of all vector

fields m = T (m1, · · · , mn) on D with mj ∈ Lp(D) (resp., W 	,p(D), H	(D)),
j = 1, · · · , n, and its norm is also denoted by ‖ · ‖Lp(D) (resp., ‖ · ‖W �,p(D),

‖ · ‖H�(D)). For u =

(
φ
m

)
with φ ∈ W k,p(D) and m = T (m1, · · · , mn) ∈

W 	,q(D), we define ‖u‖Wk,p(D)×W �,q(D) by ‖u‖Wk,p(D)×W �,q(D) = ‖φ‖Wk,p(D) +
‖m‖W �,q(D). When k = 	 and p = q, we simply write ‖u‖Wk,p(D)×Wk,p(D) =
‖u‖Wk,p(D).

In case D = Ω we abbreviate Lp(Ω) (resp., W 	,p(Ω), H	(Ω)) as Lp (resp.,
W 	,p, H	). In particular, the norm ‖ · ‖Lp(Ω) = ‖ · ‖Lp is denoted by ‖ · ‖p.

In case D = (0, a) we denote the norm of Lp(0, a) by | · |p. The inner
product of L2(0, a) is denoted by

(f, g) =
∫ a

0
f(xn)g(xn) dxn, f, g ∈ L2(0, a).

Here g denotes the complex conjugate of g. Furthermore, we define 〈·, ·〉 and
〈·〉 by

〈f, g〉 =
1

a
(f, g) and 〈f〉 = 〈f, 1〉 =

1

a

∫ a

0
f(xn) dxn

for f, g ∈ L2(0, a), respectively.
The norms of W 	,p(0, a) and H	(0, a) are denoted by | · |W �,p and | · |H�,

respectively.

We often write x ∈ Ω as x =

(
x′

xn

)
, x′ = T (x1, · · · , xn−1) ∈ Rn−1.

Partial derivatives of a function u in x, x′, xn and t are denoted by ∂xu, ∂x′u,
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∂xnu and ∂tu, respectively. We also write higher order partial derivatives of
u in x as ∂k

xu = (∂α
xu; |α| = k).

We denote the k×k identity matrix by Ik. In particular, when k = n+1,
we simply write I for In+1. We also define (n+1)× (n+1) diagonal matrices
Q0 and Q̃ by

Q0 = diag (1, 0, · · · , 0), Q̃ = diag (0, 1, · · · , 1).

We then have, for u =

(
φ
m

)
∈ Rn+1,

Q0u =

(
φ
0

)
, Q̃u =

(
0
m

)
.

We next introduce some notation about integral operators. For a function
f = f(x′) (x′ ∈ Rn−1), we denote its Fourier transform by f̂ or F f :

f̂ (ξ′) = (F f)(ξ′) =
∫
Rn−1

f(x′)e−iξ′·x′
dx′.

The inverse Fourier transform is denoted by F −1:

(F−1f)(x) = (2π)−(n−1)
∫
Rn−1

f(ξ′)eiξ′·x′
dξ′.

For a function K(xn, yn) on (0, a) × (0, a) we will denote by Kf the integral
operator

∫ a
0 K(xn, yn)f(yn) dyn.

We denote the resolvent set of a closed operator A by ρ(A) and the
spectrum of A by σ(A). For Λ ∈ R and θ ∈ (π

2
, π) we will denote the subset

{λ ∈ C; |arg (λ− Λ)| ≤ θ} by Σ(Λ, θ):

Σ(Λ, θ) = {λ ∈ C; |arg (λ− Λ)| ≤ θ}.

We now state the main result of this paper. In [6] we showed that −L
generates the analytic semigroup U (t) and established the estimates of U (t)
for 0 < t ≤ 1. As for the large time behavior of U (t), we have the following
result.

Theorem 2.1. Let U (t) be the semigroup generated by −L. Then the
solution u = U (t)u0 of problem (1.1)–(1.3) is decomposed as

U (t)u0 = U (0)(t)u0 + U (∞)(t)u0,

where each term on the right-hand side has the following properties.
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(i) U (0)(t)u0 is written in the form

U (0)(t)u0 = W (0)(t)u0 + R (0)(t)u0.

Here W (0)(t)u0 =

(
φ(0)(x′, t)

0

)
and φ(0)(x′, t) is a function independent of

xn and satisfies the following heat equation on Rn−1:

∂tφ
(0) − κ∆′φ(0) = 0, φ(0)|t=0 = 〈φ0(x

′, ·)〉,

where κ = a2γ2

12ν
and ∆′ = ∂2

x1
+ · · · + ∂2

xn−1
. The function R (0)(t)u0 satisfies

the following estimate. For any 1 ≤ p ≤ ∞ and 	 = 0, 1, there exists a
positive constant C such that

‖∂	
xR

(0)(t)u0‖p ≤ Ct−
n−1

2
(1− 1

p
)− 1

2‖u0‖1

holds for t ≥ 1. Furthermore, it holds that

‖∂xR
(0)(t)Q̃u0‖p ≤ Ct−

n−1
2

(1− 1
p
)−1‖Q̃u0‖1

and
‖R (0)(t)[∂xQ̃u0]‖p ≤ Ct−

n−1
2

(1− 1
p
)− 1

2‖Q̃u0‖1.

(ii) There exists a positive constant c such that U (∞)(t)u0 satisfies

‖∂	
xU

(∞)(t)u0‖p ≤ Ce−ct‖u0‖W �,p×Lp , 1 < p <∞, 	 = 0, 1,

for all t ≥ 1. Furthermore, the following estimates

‖∂	
xU

(∞)(t)u0‖∞ ≤ Ce−ct‖u0‖H [n
2 ]+1+�×H[ n

2 ]+�,

‖∂	
xU

(∞)(t)u0‖p ≤ Ce−ct‖u0‖W �+1,p×W �,p , p = 1,∞,

hold for all t ≥ 1. Here [q] denotes the greatest integer less than or equal to
q.

Remark 2.2. We have the optimal decay estimate

‖U (0)(t)u0‖p ≤ Ct−
n−1

2
(1− 1

p
)‖u0‖1

since ‖W (0)(t)u0‖p decays exactly in the order t−
n−1

2
(1− 1

p
). We also note that

W (0)(t)Q̃u0 = 0. Therefore, we have the estimate

‖∂xU
(0)(t)Q̃u0‖p ≤ Ct−

n−1
2

(1− 1
p
)−1‖Q̃u0‖1
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for t ≥ 1.

We will prove Theorem 2.1 in section 4.

3. Spectral analysis for −L
The proof of Theorem 2.1 is based on the analysis of the resolvent problem

associated with (1.1)–(1.3), which takes the form

(3.1) λu+ Lu = f,

where L is the operator on H1×L2 defined in (1.1) with domain of definition
D(L) = H1×(H2∩H1

0 ). To investigate (3.1) we take the Fourier transform in
x′ ∈ Rn−1. We then have the following boundary value problem for functions
φ(xn) and m(xn) on the interval (0, a):

(3.2) λu+ L̂ξ′u = f,

where u =

 φ(xn)
m′(xn)
mn(xn)

, f =

 f0(xn)
f ′(xn)
fn(xn)

, and L̂ξ′ is the operator of the

form

L̂ξ′ =


0 iγT ξ′ γ∂xn

iγξ′ ν(|ξ′|2 − ∂2
xn

)In−1 + ν̃ξ′T ξ′ −iν̃ξ′∂xn

γ∂xn −iν̃T ξ′∂xn ν(|ξ′|2 − ∂2
xn

) − ν̃∂2
xn

 ,

which is a closed operator on H1(0, a) × L2(0, a) with domain of definition
D(L̂ξ′) = H1(0, a) × (H2(0, a) ∩H1

0 (0, a)).
In [6] we studied (λ + L̂ξ′)

−1 with |ξ′| ≥ r for any r > 0. In this section
we investigate the spectrum of −L̂ξ′ for |ξ′| << 1. We analyze it regarding
the problem as a perturbation from the one with ξ′ = 0.

We write L̂ξ′ in the following form:

L̂ξ′ = L̂0 +
n−1∑
j=1

ξjL̂
(1)
j +

n−1∑
j,k=1

ξjξkL̂
(2)
jk ,

where ξ′ = T (ξ1, · · · , ξn−1),

L̂0 =


0 0 γ∂xn

0 −ν∂2
xn
In−1 0

γ∂xn 0 −ν1∂
2
xn

 , ν1 = ν + ν̃,
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L̂
(1)
j =


0 iγTe′

j 0

iγe′
j 0 −iν̃e′

j∂xn

0 −iν̃Te′
j∂xn 0

 ,

L̂
(2)
jk =


0 0 0

0 νδjkIn−1 + ν̃e′
j
Te′

k 0

0 0 νδjk

 .

We will treat L̂ξ′ as a perturbation from L̂0. We begin with the analysis of
(3.2) with ξ′ = 0:

(λ+ L̂0)u = f.

We introduce some quantities. For k = 1, 2, · · ·, we set ak = kπ/a. We
define λ1,k and λ±,k by

λ1,k = −νa2
k

and

λ±,k = −ν1

2
a2

k ±
1

2

√
ν2

1a
4
k − 4γ2a2

k

for k = 1, 2, · · ·. An elementary observation shows that λ±,k are the two roots

of λ2 + ν1a
2
kλ + γ2a2

k = 0; λ−,k = λ+,k with Im λ+,k = γak

√
1 − ν2

1

4γ2a
2
k when

ak < 2γ/ν1 and λ±,k ∈ R when ak > 2γ/ν1; and it holds that

(3.3) λ+,k = −γ
2

ν1
+O(k−2), λ−,k = −ν1a

2
k +O(1)

as k → ∞. (See [6, Remarks 3.2 and 3.5].)

Lemma 3.1. (i) The spectrum σ(−L̂0) is given by

σ(−L̂0) = {0} ∪ {λ1,k}∞k=1 ∪ {λ+,k, λ−,k}∞k=1 ∪ {−γ2

ν1
}.

Here 0 is an eigenvalue.

(ii) There exist positive numbers η0 and θ0 with θ0 ∈ (π
2
, π) such that the

following estimates hold uniformly for λ ∈ ρ(−L̂0) ∩ Σ(−η0, θ0):∣∣∣(λ+ L̂0)
−1f

∣∣∣
H�×L2

≤ C

|λ| |f |H�×L2 , 	 = 0, 1,

∣∣∣∂	
xn
Q̃(λ + L̂0)

−1f
∣∣∣
2
≤ C

(|λ| + 1)1−
�
2

|f |H�−1×L2 , 	 = 1, 2,
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∣∣∣∂2
xn
Q0(λ + L̂0)

−1f
∣∣∣
2
≤ C

(|λ| + 1)
1
2

|f |H2×H1 .

Proof. We write (3.2) with ξ′ = 0 as

(3.4) λm′ − ν∂2
xn
m′ = f ′, m′|xn=0,a = 0,

and

(3.5)


λφ+ γ∂xnm

n = f0,

λmn − ν1∂
2
xn
mn + γ∂xnφ = fn, mn|xn=0,a = 0.

It is easy to see that (3.4) has a unique solution m′ ∈ H2(0, a)∩H1
0 (0, a)

for any f ′ ∈ L2(0, a) if and only if λ �= λ1,k for any k = 1, 2, · · ·. Furthermore,
it is also possible to deduce the estimates∣∣∣∂	

xn
m′
∣∣∣
2
≤ C

(|λ| + 1)1−
�
2

|f ′|2, 	 = 0, 1, 2,

uniformly in λ = − νπ2

2a2 + ηe±iθ with η ≥ 0 and θ ∈ [0, θ0). Here θ0 is any
fixed constant in (π

2
, π) and C is a positive constant depending only on θ0.

We next consider (3.5). Let λ = 0 and f0 = fn = 0 in (3.5). We see from
the first equation of (3.5) that ∂xnm

n = 0. Then the boundary condition
mn|xn=0,a = 0 implies that mn = 0. It follows from the second equation of
(3.5) that φ is a constant. Therefore, 0 is an eigenvalue and the geometric
eigenspace is spanned by ψ(0) = T (1, 0, · · · , 0).

Let λ �= 0 in (3.5). We then see that problem (3.5) is equivalent to

(3.6) φ =
1

λ

{
f0 − γ∂xnm

n
}
,

(3.7) λ2mn − (ν1λ + γ2)∂2
xn
mn = λfn − γ∂xnf

0, mn|xn=0,a = 0.

In case ν1λ + γ2 = 0, it is easy to see that problem (3.6)–(3.7) has only the
trivial solution φ = mn = 0 for f0 = fn = 0. For general f0 ∈ H1(0, a)
and fn ∈ L2(0, a), (3.7) implies that mn = λ−2 {λfn − γ∂xnf

0} which is not

necessarily in H1(0, a). This implies that −γ2

ν1
∈ σ(−L̂0).

Let us consider the case λ �= 0 and ν1λ + γ2 �= 0. In this case, (3.7) is
equivalent to

(3.8) σmn − ∂2
xn
mn =

1

ν1λ+ γ2

{
λfn − γ∂xnf

0
}
, mn|xn=0,a = 0,
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where σ = λ2

ν1λ+γ2 . Since λfn−γ∂xnf
0 ∈ L2(0, a), problem (3.8) has a unique

solution mn ∈ H2(0, a)∩H1
0 (0, a) if and only if σ �= −a2

k for any k = 1, 2, · · ·,
namely, (λ − λ+,k)(λ − λ−,k) �= 0 for any k = 1, 2, · · ·. If (3.8) has a solu-
tion mn ∈ H2(0, a) ∩H1

0 (0, a), then (3.6) determines φ which is in H1(0, a).

Consequently we see that σ(−L̂0) = {0}∪{λ1,k}∞k=1∪{λ+,k, λ−,k}∞k=1∪{−γ2

ν1
}.

We next derive estimates for φ and mn uniformly in λ ∈ ρ(−L̂0) ∩
Σ(−η0, θ0) with suitable η0 and θ0. To do so, we expand the solution mn

of (3.8) into the Fourier sine series mn =
∑∞

k=1 m
n
k sin akxn. It is easy to see

that the Fourier coefficients mn
k are given by

mn
k =

1

σ + a2
k

1

ν1λ+ γ2

{
λfn

k + γakf
0
k

}
for k = 1, 2, · · ·, where f0

k and fn
k are the coefficients of the Fourier cosine

and sine series expansion of f0 and fn, respectively.
Since (σ + a2

k)(ν1λ + γ2) = (λ− λ+,k)(λ− λ−,k), we have

|mn|22 ≤ C
∞∑

k=1

1

|(λ− λ+,k)(λ− λ−,k)|2
{
|λ|2 |fn

k |2 + a2
k

∣∣∣f0
k

∣∣∣2} .
It then follows from (3.3) that there are positive numbers η0 and θ0 ∈ (π

2
, π)

such that, for λ with |arg (λ + η0)| ≤ θ0,

|mn|22 ≤ C
∞∑

k=1

1

(|λ| + 1)2(|λ| + k2)2

{
|λ|2 |fn

k |2 + a2
k

∣∣∣f0
k

∣∣∣2}

≤ C|f |22
(|λ| + 1)2

.

This, together with (3.8), then implies that

∣∣∣∂2
xn
mn

∣∣∣
2

≤ |σ| |mn|2 +
|λ|

|ν1λ+ γ2| |f
n|2 +

1

|ν1λ+ γ2|
∣∣∣∂xnf

0
∣∣∣
2

≤ C|f |H1×L2

uniformly in λ with |arg (λ + η0)| ≤ θ0. Taking the L2 inner product of (3.8)
with mn and integrating by parts, we have

|∂xnm
n|22 ≤ C

{
|σ| |mn|22 + |fn|2 |mn|2 +

1

|λ| + 1

∣∣∣f0
∣∣∣
2
|∂xnm

n|2
}

≤ C|f |22
|λ| + 1

+
1

2
|∂xnm

n|22

10



uniformly in λ with |arg (λ+ η0)| ≤ θ0, and hence, |∂xnm
n|2 ≤ C|f |2

(|λ|+1)
1
2
.

Consequently, we have

(3.9)
∣∣∣∂	

xn
mn

∣∣∣
2
≤ C|f |H(�−1)+×L2

(|λ| + 1)1−
�
2

for 	 = 0, 1, 2 uniformly in λ with |arg (λ+ η0)| ≤ θ0. It then follows from
(3.6) and (3.9) that

|φ|2 ≤
1

|λ|
{∣∣∣f0

∣∣∣
2
+ γ |∂xnm

n|2
}
≤ C

|λ| |f |2.

We next estimate the derivatives of φ. Differentiating the first equation
of (3.5) we have

(3.10) λ∂xnφ+ γ∂2
xn
mn = ∂xnf

0

We see from the second equation of (3.5) that

(3.11) −ν1∂
2
xn
mn + γ∂xnφ = fn − λmn.

By adding (3.11) × γ
ν1

to (3.10) we obtain(
λ+

γ2

ν1

)
∂	+1

xn
φ = ∂	+1

xn
f0 +

γ

ν1

{
∂	

xn
fn − λ∂	

xn
mn

}
, 	 = 0, 1.

This, together with (3.9), implies that

∣∣∣∂	+1
xn

φ
∣∣∣
2

≤ C

|λ| + 1

{∣∣∣∂	+1
xn

f0
∣∣∣
2
+
∣∣∣∂	

xn
fn
∣∣∣
2
+ |λ|

∣∣∣∂	
xn
mn

∣∣∣
2

}
≤ C

(|λ| + 1)1−
�
2

|f |H�+1×H� , 	 = 0, 1,

for λ with |arg (λ+ η0)| ≤ θ0, by changing η0 > 0 and θ0 ∈ (π
2
, π) suitably if

necessary. This completes the proof.

We next investigate the eigenvalue 0 of −L̂0.

Lemma 3.2. The eigenvalue 0 of −L̂0 is simple and the associated eigen-
projection is given by

Π̂(0)u =

 〈φ〉
0

 for u =

 φ

m

 .
11



Proof. To show the simplicity of the eigenvalue 0, let us first consider the
problem L̂0u = ψ(0), where ψ(0) = T (1, 0, · · · , 0) is an eigenfunction for the
eigenvalue 0. This problem is equivalent to (3.4)–(3.5) with λ = 0, f ′ = 0,
f0 = 1, fn = 0. By (3.4), we have m′ = 0, and by the first equation of (3.5),
we have mn = 1

γ
xn + c for some constant c. There is no such mn satisfying

the boundary condition mn|xn=0,a = 0. Therefore, 0 is a simple eigenvalue.

Let us prove that the eigenprojection Π̂(0) has the desired form. Since
dim Range Π̂(0) = 1, we have Π̂(0)u = cuψ

(0) for some cu ∈ C. It then follows
that

(3.12) 〈Π̂(0)u, ψ(0)〉 = cu.

Consider now the formal adjoint problem

λu+ L̂∗
0u = 0,

where

L̂∗
0 =


0 0 −γ∂xn

0 −ν∂2
xn
In−1 0

−γ∂xn 0 −ν1∂
2
xn

 .

with domain of definition D(L̂∗
0) = D(L̂0). Similarly to above, we can see

that σ(−L̂∗
0) = σ(−L̂0), and, in particular, 0 is a simple eigenvalue and

L̂∗
0ψ

(0) = 0. Furthermore, let Π̂(0)∗ be the eigenprojection for the eigenvalue
0 of −L̂∗

0. Then we have

Π̂(0)u =
1

2πi

∫
Γ
(λ+ L̂0)

−1 dλ, Π̂(0)∗u =
1

2πi

∫
Γ
(λ + L̂∗

0)
−1 dλ,

where Γ is a circle with center 0 and sufficiently small radius. Let Ĝ(0)(λ, xn, yn)
be the integral kernel of (λ+L̂0)

−1. Then it is easy to see that Ĝ(0)∗(λ, xn, yn) =
T

(
Ĝ(0)(λ, xn, yn)

)
is the integral kernel of (λ+ L̂∗

0)
−1. We then obtain

〈Π̂(0)u, ψ(0)〉 =
1

a

∫ a

0

(
1

2πi

∫
Γ

∫ a

0
Ĝ(0)(λ, xn, yn)u(yn) dyndλ

)
ψ(0)(xn) dxn

=
1

a

∫ a

0
u(yn)

(
1

2πi

∫
Γ

∫ a

0
Ĝ(0)∗(λ, xn, yn)ψ(0)(xn) dxndλ

)
dyn

= 〈u, Π̂(0)∗ψ(0)〉 = 〈u, ψ(0)〉 = 〈φ〉

12



for u =

(
φ
m

)
. This, together with (3.12), gives the desired expression of

Π̂(0). This completes the proof.

We next estimate (λ+ L̂ξ′)
−1 for small ξ′. Based on Lemma 3.1 we obtain

the following estimates.

Theorem 3.3. Let η0 and θ0 be the numbers given in Lemma 3.1. Then
there exists a positive number r̃0 = r̃0(η0,θ0) such that the set Σ(−η0, θ0) ∩{
λ; |λ| ≥ η0

2

}
is in ρ(−L̂ξ′) for |ξ′| ≤ r̃0. Furthermore, the following esti-

mates hold for any multi-index α′ with |α′| ≤ n uniformly in λ ∈ Σ(−η0, θ0)∩{
λ; |λ| ≥ η0

2

}
and ξ′ with |ξ′| ≤ r̃0:

∣∣∣∂α′
ξ′ (λ+ L̂ξ′)

−1f
∣∣∣
H�×L2

≤ C

|λ| |f |H�×L2 , 	 = 0, 1,

∣∣∣∂α′
ξ′ ∂

	
xn
Q̃(λ+ L̂ξ′)

−1f
∣∣∣
2
≤ C

(|λ| + 1)1−
�
2

|f |H�−1×L2 , 	 = 1, 2,

∣∣∣∂α′
ξ′ ∂

2
xn
Q0(λ + L̂ξ′)

−1f
∣∣∣
2
≤ C

(|λ| + 1)
1
2

|f |H2×H1.

Proof. In the following we will write

L̂(1)(ξ′) =
n−1∑
j=1

ξjL̂
(1)
j and L̂(2)(ξ′) =

n−1∑
j,k=1

ξjξkL̂
(2)
jk .

We first observe that

(3.13)
∣∣∣L̂(1)

j u
∣∣∣
H�×H(�−1)+

≤ C
{
|Q0u|H(�−1)+ + |Q̃u|H(�−1)++1

}
and

(3.14)
∣∣∣L̂(2)

jk u
∣∣∣
H�×H(�−1)+

≤ C|Q̃u|H(�−1)+ .

It then follows from Lemma 3.1 and (3.14) that

(3.15)
∣∣∣L̂(2)

jk (λ + L̂0)
−1f

∣∣∣
H�×L2

≤ C
∣∣∣Q̃(λ + L̂0)

−1f
∣∣∣
2
≤ C|f |2

for 	 = 0, 1 and λ ∈ Σ(−η0, θ0)∩
{
λ; |λ| ≥ η0

2

}
with C = C(η0, θ0) > 0. Also,

by Lemma 3.1 and (3.13), we have

(3.16)
∣∣∣L̂(1)

j (λ+ L̂0)
−1f

∣∣∣
H�×L2

≤ C|f |2

13



for 	 = 0, 1 and λ ∈ Σ(−η0, θ0) ∩
{
λ; |λ| ≥ η0

2

}
with C = C(η0, θ0) > 0. It

then follows that there exists a positive number r̃0 such that if |ξ′| ≤ r̃0, then

∣∣∣(L̂(1)(ξ′) + L̂(2)(ξ′)
)

(λ + L̂0)
−1f

∣∣∣
H�×L2

≤ 1

2
|f |2

for 	 = 0, 1 and λ ∈ Σ(−η0, θ0) ∩
{
λ; |λ| ≥ η0

2

}
. By the Neumann series

expansion, we see that I +
(
L̂(1)(ξ′) + L̂(2)(ξ′)

)
(λ + L̂0)

−1 is invertible on

H	(0, a) × L2(0, a), 	 = 0, 1, for λ ∈ Σ(−η0, θ0) ∩
{
λ; |λ| ≥ η0

2

}
and ξ′ with

|ξ′| ≤ r̃0. In particular, we conclude that Σ(−η0, θ0) ∩
{
λ; |λ| ≥ η0

2

}
⊂

ρ(−L̂ξ′) and

(3.17) (λ+L̂ξ′)
−1 = (λ+L̂0)

−1
∞∑

N=0

(−1)N
[(
L̂(1)(ξ′) + L̂(2)(ξ′)

)
(λ+ L̂0)

−1
]N

for λ ∈ Σ(−η0, θ0)∩
{
λ; |λ| ≥ η0

2

}
and ξ′ with |ξ′| ≤ r̃0. Furthermore, we see

from Lemma 3.1, (3.13) and (3.14) that∣∣∣∂α′
ξ′ (λ+ L̂ξ′)

−1f
∣∣∣
H�×L2

≤ C

|λ|

∣∣∣∣∣∂α′
ξ′

∞∑
N=0

(−1)N
[(
L̂(1)(ξ′) + L̂(2)(ξ′)

)
(λ + L̂0)

−1
]N
f

∣∣∣∣∣
H�×L2

≤ C

|λ| |f |H�×L2 , 	 = 0, 1.

Similarly, we have, for 	 = 1, 2,∣∣∣∂α′
ξ′ ∂

	
xn
Q̃(λ + L̂ξ′)

−1f
∣∣∣
2

≤ C

(|λ| + 1)1−
�
2

∣∣∣∣∣∂α′
ξ′

∞∑
N=0

(−1)N
[(
L̂(1)(ξ′) + L̂(2)(ξ′)

)
(λ + L̂0)

−1
]N
f

∣∣∣∣∣
H�−1×L2

≤ C

(|λ| + 1)1−
�
2

|f |H�−1×L2 .

Let us estimate ∂2
xn
Q0(λ + L̂ξ′)

−1f . We see from Lemma 3.1, (3.13) and
(3.14) that ∣∣∣L̂(1)

j (λ+ L̂0)
−1f

∣∣∣
H2×H1

≤ C|f |H1×L2

and ∣∣∣L̂(2)
jk (λ+ L̂0)

−1f
∣∣∣
H2×H1

≤ C|f |2
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uniformly for λ ∈ Σ(−η0, θ0) ∩
{
λ; |λ| ≥ η0

2

}
. Therefore, taking r̃0 smaller if

necessary, we have

∣∣∣(L̂(1)(ξ′) + L̂(2)(ξ′)
)

(λ + L̂0)
−1f

∣∣∣
H2×H1

≤ 1

2
|f |H1×L2

for λ ∈ Σ(−η0, θ0) ∩
{
λ; |λ| ≥ η0

2

}
and ξ′ with |ξ′| ≤ r̃0. It then follows from

Lemma 3.1 and (3.17) that∣∣∣∂α′
ξ′ ∂

2
xn
Q0(λ + L̂ξ′)

−1f
∣∣∣
2

≤ C

(|λ| + 1)
1
2

∣∣∣∣∣∂α′
ξ′

∞∑
N=0

(−1)N
[(
L̂(1)(ξ′) + L̂(2)(ξ′)

)
(λ + L̂0)

−1
]N
f

∣∣∣∣∣
H2×H1

≤ C

(|λ| + 1)
1
2

|f |H2×H1.

This completes the proof.

We next investigate the spectrum of −L̂ξ′ near λ = 0.

Theorem 3.4. Let η0 and r̃0 be the numbers given in Theorem 3.3. Then
there exists a positive number r0 with r0 ≤ r̃0 such that for each ξ′ with
|ξ′| ≤ r0 it holds that

σ(−L̂ξ′) ∩ {λ; |λ| ≤ η0} = {λ0(ξ
′)},

where λ0(ξ
′) ∈ R and λ0(ξ

′) is a simple eigenvalue of −L̂ξ′ that has the form

λ0(ξ
′) = −a

2γ2

12ν
|ξ′|2 +O(|ξ′|4)

as |ξ′| → 0.

Proof. By Theorem 3.3, (3.13) and (3.14), we see that if |λ| = η0, then
λ ∈ ρ(−L̂ξ′) for |ξ′| ≤ r̃0. In particular,

Π̂(ξ′) =
1

2πi

∫
|λ|=η0

(λ + L̂ξ′)
−1 dλ

is the eigenprojection for the eigenvalues of −L̂ξ′ lying inside the circle

|λ| = η0. The perturbation theory then implies that dim Range Π̂(ξ′) =
dim Range Π̂(0) = 1. Therefore, we see from Lemma 3.2 that σ(−L̂ξ′) ∩
{λ; |λ| ≤ η0} consists of only one simple eigenvalue, say λ0(ξ

′).
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To show that λ0(ξ
′) has the desired asymptotic form, we first observe that

λ is an eigenvalue of −L̂ξ′ if and only if it is an eigenvalue of −L̂T ′ξ′ for any
(n− 1) × (n− 1) orthogonal matrix T ′, since L̂ξ′ = T−1L̂T ′ξ′T , where

T =


1 0 0

0 T ′ 0

0 0 1

 .
It then follows that λ0(ξ

′) is a function of |ξ′|, and hence, it suffices to consider
L̂ξ′ with ξ′ = ηe′

1, where η ∈ R and |η| = |ξ′|.
We write L̂ξ′ with ξ′ = ηe′

1 as L̂η, and L̂η = L̂0 + ηL̂
(1)
1 + η2L̂

(2)
1,1. We

also denote the corresponding eigenvalue by λ0(η). With this L̂η , taking
T ′ = −In−1, we see that λ0(η) = λ0(−η) since λ0(ξ

′) is simple. Furthermore,

we have a relation L̂ηu = L̂−ηu, which implies that λ0(η) = λ0(−η) = λ0(η).
This means that λ0(η) ∈ R.

In view of (3.13) and (3.14) we can apply the analytic perturbation theory
[9, Chap. 2 and 7] to see that

λ0(η) = λ(0) + ηλ(1) + η2λ(2) + η3λ(3) +O(η4)

with λ(0) = 0. Since λ0(η) = λ0(−η), we have λ(1) = λ(3) = 0. The coefficient
λ(2) of η2 is given by

λ(2) = −〈L̂(2)
1,1ψ

(0), ψ(0)〉 + 〈L̂(1)
1 SL̂

(1)
1 ψ(0), ψ(0)〉,

where S =
[
(I − Π̂(0))L̂0(I − Π̂(0))

]−1
. It is easy to see that L̂

(2)
1,1ψ

(0) = 0.

Let us compute 〈L̂(1)
1 SL̂

(1)
1 ψ(0), ψ(0)〉. Since L̂

(1)
1 ψ(0) = iγ

 0
e′

1

0

, we have

SL̂
(1)
1 ψ(0) =

iγ

ν

 0
e′

1

0

 (−∂2
xn

)−1 · 1,

and hence,

L̂
(1)
1 SL̂

(1)
1 ψ(0) = −


γ2

ν
(−∂2

xn
)−1 · 1

0

− ν̃γ
ν
∂xn(−∂2

xn
)−1 · 1

 .
Here (−∂2

xn
)−1 denotes the inverse of −∂2

xn
under the 0-Dirichlet boundary

condition at xn = 0, a. We thus obtain

〈L̂(1)
1 SL̂

(1)
1 ψ(0), ψ(0)〉 = −γ

2

ν
〈(−∂2

xn
)−1 · 1〉 = −a

2γ2

12ν
.
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Consequently, we obtain

λ0(η) = −a
2γ2

12ν
η2 +O(η4).

This completes the proof.

We next investigate the eigenprojection Π̂(ξ′) associated with λ0(ξ
′). To

do so, we will consider the formal adjoint problem

λu+ L̂∗
ξ′u = f,

where L̂∗
ξ′ is an operator of the form

L̂∗
ξ′ = L̂∗

0 +
n−1∑
j=1

ξjL̂
(1)∗
j +

n−1∑
j,k=1

ξjξkL
(2)∗
jk

with domain of definition D(L̂∗
ξ′) = D(L̂ξ′). Here ξ′ = T (ξ1, · · · , ξn−1),

L̂∗
0 =


0 0 −γ∂xn

0 −ν∂2
xn
In−1 0

−γ∂xn 0 −ν1∂
2
xn

 ,

L̂
(1)∗
j =


0 −iγTe′

j 0

−iγe′
j 0 −iν̃e′

j∂xn

0 −iν̃T e′
j∂xn 0

 ,

L̂
(2)
jk =


0 0 0

0 νδjkIn−1 + ν̃e′
k
Te′

j 0

0 0 νδjk

 .

Theorem 3.5. Let Π̂(ξ′) be the eigenprojection associated with λ0(ξ
′). Then

there exists a positive number r0 such that, for any ξ′ with |ξ′| ≤ r0, Π̂(ξ′) is
written in the form

Π̂(ξ′)u =
∫ a

0
Π̂(ξ′, xn, yn)u(yn) dyn

with

Π̂(ξ′, xn, yn) = Π̂(0) +
n−1∑
j=1

ξjΠ̂
(1)
j (xn, yn) + Π̂(2)(ξ′, xn, yn).

17



Here Π̂(0) = 1
a
Q0; Π̂

(1)
j ∈ W 1,∞ ((0, a) × (0, a)), j = 1, · · · , n − 1; and

Π̂(2)(ξ′, xn, yn) satisfies∣∣∣∂α′
ξ′ Π̂

(2)(ξ′, ·, ·)
∣∣∣
W 1,∞((0,a)×(0,a))

≤ C|ξ′|2−|α′|

for any multi-index α′ with |α′| ≤ n uniformly in ξ′ with |ξ′| ≤ r0. Further-
more, Π̂(ξ′) has the properties

Π̂(ξ′)
[
∂xnQ̃u

]
= −

n−1∑
j=1

ξj
(
∂ynΠ̂

(1)
j (ξ′)

) [
Q̃u

]
−
(
∂ynΠ̂

(2)(ξ′)
) [
Q̃u

]
and

∂xnΠ̂(ξ′)Q̃u = ∂xnΠ̂
(2)(ξ′)Q̃u.

Proof. By (3.13)–(3.17) we see that (λ+ L̂ξ′)
−1 has the form

(λ + L̂ξ′)
−1 = (λ+ L̂0)

−1 +
n−1∑
j=1

ξj(λ+ L̂0)
−1L

(1)
j (λ+ L̂0)

−1 + R̃(λ, ξ′),

where

(3.18)

R̃(λ, ξ′)

= (λ + L̂0)
−1L̂(2)(ξ′)(λ+ L̂0)

−1

+(λ + L̂0)
−1

∞∑
N=2

(−1)N
[
(L̂(1)(ξ′) + L̂(2)(ξ′))(λ+ L̂0)

−1
]N

and R̃(λ, ξ′) satisfies

(3.19)
∣∣∣∂α′

ξ′ R̃(λ, ξ′)f
∣∣∣
H2

≤ C|ξ′|2−|α′||f |H2×H1.

Similarly, one can prove that

(λ+ L̂∗
ξ′)

−1 = (λ + L̂∗
0)

−1 +
n−1∑
j=1

ξj(λ + L̂∗
0)

−1L
(1)∗
j (λ+ L̂∗

0)
−1 + R̃∗(λ, ξ′),

where

(3.20)

R̃∗(λ, ξ′)

= (λ+ L̂∗
0)

−1L̂(2)∗(ξ′)(λ+ L̂∗
0)

−1

+(λ+ L̂∗
0)

−1
∞∑

N=2

(−1)N
[
(L̂(1)∗(ξ′) + L̂(2)∗(ξ′))(λ + L̂∗

0)
−1
]N
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and R̃∗(λ, ξ′) satisfies

(3.21)
∣∣∣∂α′

ξ′ R̃
∗(λ, ξ′)f

∣∣∣
H2

≤ C|ξ′|2−|α′||f |H2×H1.

We now define ψ(ξ′, xn) and ψ̃∗(ξ′, xn) by

ψ(ξ′, xn) =
1

2πi

∫
|λ|=η0

(λ + L̂ξ′)
−1ψ(0) dλ

and

ψ̃∗(ξ′, xn) =
1

2πi

∫
|λ|=η0

(λ + L̂∗
ξ′)

−1ψ(0) dλ,

where ψ(0) = T (1, 0, · · · , 0). It then follows from (3.18)–(3.21) that ψ and ψ̃∗

have the form

(3.22)

ψ(ξ′, xn) = ψ(0) +
n−1∑
j=1

ξjψ
(1)
j (xn) + ψ(2)(ξ′, xn),

ψ̃∗(ξ′, xn) = ψ(0) +
n−1∑
j=1

ξjψ̃
(1)∗
j (xn) + ψ̃(2)∗(ξ′, xn),

where ψ
(1)
j , ψ̃

(1)∗
j , ψ(2) and ψ̃(2)∗ satisfy∣∣∣ψ(1)

j

∣∣∣
H2

+
∣∣∣ψ̃(1)∗

j

∣∣∣
H2

≤ C, j = 1, · · · , n− 1,∣∣∣∂α′
ξ′ ψ

(2)(ξ′)
∣∣∣
H2

+
∣∣∣∂α′

ξ′ ψ̃
(2)∗(ξ′)

∣∣∣
H2

≤ C|ξ′|2−|α′|.

Therefore, we have∣∣∣ψ(1)
j

∣∣∣
W 1,∞ +

∣∣∣ψ̃(1)∗
j

∣∣∣
W 1,∞ ≤ C, j = 1, · · · , n− 1,

and

(3.23)
∣∣∣∂α′

ξ′ ψ
(2)(ξ′)

∣∣∣
W 1,∞ +

∣∣∣∂α′
ξ′ ψ̃

(2)∗(ξ′)
∣∣∣
W 1,∞ ≤ C|ξ′|2−|α′|.

We note that 〈ψ(ξ′), ψ̃∗(ξ′)〉 is analytic in ξ′ and

〈ψ(ξ′), ψ̃∗(ξ′)〉 = 1 +
n−1∑
j=1

ξj
{
〈ψ(0), ψ̃

(1)∗
j 〉 + 〈ψ(1)

j , ψ(0)〉
}

+ Ψ̃ (2)(ξ′),

where Ψ̃ (2)(ξ′) satisfies
∣∣∣∂α′

ξ′ Ψ̃
(2)(ξ′)

∣∣∣ ≤ C|ξ′|2−|α′|. In particular, taking r0
smaller if necessary, we see that∣∣∣〈ψ(ξ′), ψ̃∗(ξ′)〉

∣∣∣ ≥ 1

2
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for |ξ′| ≤ r0.
We set

ψ∗(ξ′, xn) =
1

〈ψ(ξ′), ψ̃∗(ξ′)〉ψ̃
∗(ξ′, xn).

Then we have
〈ψ(ξ′), ψ∗(ξ′)〉 = 1

and

(3.24) ψ∗(ξ′, xn) = ψ(0) +
n−1∑
j=1

ξjψ
(1)∗
j (xn) + ψ(2)∗(ξ′, xn),

where ψ
(1)∗
j and ψ(2)∗ satisfy

(3.25)

∣∣∣ψ(1)∗
j

∣∣∣
W 1,∞ ≤ C, j = 1, · · · , n− 1,∣∣∣∂α′

ξ′ ψ
(2)∗
j (ξ′)

∣∣∣
W 1,∞ ≤ C|ξ′|2−|α′|.

It is not difficult to see that 〈u, ψ∗(ξ′)〉ψ(ξ′) is the eigenprojection Π̂(ξ′)
associated with λ0(ξ

′).
Setting

Π̂(0) = 1
a
Q0

Π̂
(1)
j (xn, yn) = ψ(0)(xn)

Tψ
(1)∗
j (yn) + ψ

(1)
j (xn)

Tψ(0)(yn),

Π̂(2)(ξ′, xn, yn) = ψ(ξ′, xn)
Tψ(2)∗(ξ′, yn) + ψ(2)(ξ′, xn)

Tψ∗(ξ′, yn),

we see from (3.22)–(3.25) that the integral kernel Π̂(ξ′, xn, yn) of Π̂(ξ′) is
written as

Π̂(ξ′, xn, yn) = ψ(ξ′, xn)
Tψ∗(ξ′, yn) = Π̂(0)+

n−1∑
j=1

ξjΠ̂
(1)
j (xn, yn)+Π̂

(2)(ξ′, xn, yn)

with Π̂
(1)
j ∈W 1,∞ ((0, a) × (0, a)), j = 1, · · · , n− 1, and∣∣∣∂α′

ξ′ Π̂
(2)(ξ′, ·, ·)

∣∣∣
W 1,∞((0,a)×(0,a))

≤ C|ξ′|2−|α′|.

We thus conclude that Π̂(ξ′) is written in the desired form.

We finally show that Π̂(ξ′)
[
∂xnQ̃u

]
(xn) and ∂xnΠ̂(ξ′)Q̃u have the desired

forms. Since ψ∗(ξ′, yn) is an eigenfunction of L̂∗
ξ′, we have Q̃ψ∗

∣∣∣
yn=0,a

= 0,
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which implies that Π̂(ξ′, xn, yn)Q̃
∣∣∣
yn=0,a

= 0. An integration by parts then

yields

Π̂(ξ′)
[
∂xnQ̃u

]
(xn) =

∫ a

0
Π̂(ξ′, xn, yn)∂ynQ̃u(yn) dyn

= −
∫ a

0
∂ynΠ̂(ξ′, xn, yn)Q̃u(yn) dyn

= −
(
∂ynΠ̂(ξ′)

) [
Q̃u

]
(xn).

Since ∂ynΠ̂
(0) = 0, we have the desired form of Π̂(ξ′)

[
∂xnQ̃u

]
. Furthermore,

since ∂xnψ
(0) = 0 and Q̃ψ(0) = 0, we have ∂xnΠ̂

(1)
j (xn, yn)Q̃ = 0, and hence,

∂xnΠ̂(ξ′)Q̃u = ∂xnΠ̂
(2)(ξ′)Q̃u. This completes the proof.

We next consider (λ + L̂ξ′)
−1 with |ξ′| ≥ r0. The analysis of (λ + L̂ξ′)

−1

with |ξ′| ≥ r for any r > 0 is given in [6]. Applying [6, Theorems 2.5–2.7],
we obtain the following estimates.

Let r0 be the number given in Theorem 3.5. We take a cut-off function
χ(ξ′) ∈ C∞(Rn−1) satisfying 0 ≤ χ ≤ 1 on Rn−1，χ(ξ′) = 1 for |ξ′| ≤ r0

2
and

χ(ξ′) = 0 for |ξ′| ≥ r0. We set

(3.26) χ(0)(ξ′) = χ(ξ′), χ(1)(ξ′) = 1 − χ(ξ′).

We define the operators R(j)(λ), j = 0, 1, by

(3.27) R(j)(λ)f = F −1
ξ′
[
χ(j)(ξ′)(λ+ L̂ξ′)

−1f̂
]
, j = 0, 1.

By [6, Theorems 2.5–2.7] we have the following estimates.

Theorem 3.6. Let r0 be the positive number given in Theorem 3.5.

(i) There exist positive numbers η̃ and θ̃ with θ̃ ∈ (π
2
, π) such that Σ(−η̃, θ̃) ⊂

ρ(−L̂ξ′) for |ξ′| ≥ r0

2
.

(ii) Let 1 < p < ∞ and define R(1)(λ) as above. Then the following
estimates hold uniformly in λ ∈ Σ(−η̃, θ̃):

‖∂k
xR

(1)(λ)f‖p ≤
{‖Q0f‖Wk,p

|λ| + 1
+

‖Q̃f‖p

(|λ| + 1)1−
k
2

}
, k = 0, 1.

Theorem 3.7 Let η̃ and θ̃ be the numbers as in Theorem 3.6. Then the
following estimates hold uniformly in λ ∈ Σ(−η̃, θ̃):

‖∂k
xQ0R

(1)(λ)f‖∞ ≤ C

‖Q0f‖H [ n
2 ]+1+k

|λ| + 1
+

‖Q̃f‖
H [ n

2 ]+k

(|λ| + 1)
3
4

 , k = 0, 1,
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and

‖∂k
xQ̃R

(1)(λ)f‖∞ ≤ C

‖Q0f‖H [ n
2

]+k

(|λ| + 1)
3
4

+
‖Q̃f‖

H [n
2

]−1+k

(|λ| + 1)
ε
4

 , k = 0, 1.

Here ε is some number satisfying 0 < ε < 1
3
.

Theorem 3.8. Let p = 1,∞ and let η̃ and θ̃ be the numbers as in Theorem
3.6. Then the following estimates hold uniformly in λ ∈ Σ(−η̃, θ̃):

‖∂k
xQ0R

(1)(λ)f‖p ≤ C

|λ| + 1
‖f‖Wk+1,p×Wk,p , k = 0, 1,

and

‖∂k
xQ̃R

(1)(λ)f‖p ≤ C

{‖Q0f‖Wk,p

|λ| + 1
+

‖Q̃f‖p

(|λ| + 1)1−
k
2

}
, k = 0, 1.

4. Proof of Theorem 2.1

In this section we prove Theorem 2.1 by applying Theorems 3.3–3.8.

Proof of Theorem 2.1. Let η > 0 be a positive number. By Theorem 2.1
in [6] there exists a number θ ∈ (π

2
, π) such that U (t)u0 is written as

U (t)u0 =
1

2πi

∫
Γ
eλt(λ+ L)−1u0 dλ,

where Γ = {λ = η + se±iθ; s ≥ 0}.
We decompose U (t)u0 into the following form:

U (t)u0 = U (0)(t)u0 + U (1)(t)u0,

where U (j)(t)u0, j = 0, 1, are defined by

U (j)(t)u0 = F −1
[

1

2πi

∫
Γ
χ(j)(ξ′)(λ + L̂ξ′)

−1 dλ
]
, j = 0, 1,

with χ(j)(ξ′) defined in (3.26).
We first consider U (1)(t)u0. In view of Theorem 3.6, we can deform the

contour Γ into Γ∞ = {λ = −η̃+se±iθ̃; s ≥ 0}, where η̃ and θ̃ are the numbers
given in Theorem 3.6. We then obtain

U (1)(t)u0 =
1

2πi

∫
Γ∞

eλtR(1)(λ)u0 dλ,
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where R(1)(λ) is the operator defined in (3.27). It follows from Theorems
3.6–3.8 that∥∥∥∂	

xU
(1)(t)u0

∥∥∥
p
≤ Ce−ct‖u0‖W �,p×Lp, 1 < p <∞, 	 = 0, 1,∥∥∥∂	

xU
(1)(t)u0

∥∥∥∞ ≤ Ce−ct‖u0‖H [n
2 ]+1+�×H[n

2 ]+� , 	 = 0, 1,∥∥∥∂	
xU

(1)(t)u0

∥∥∥
p
≤ Ce−ct‖u0‖W �+1,p×W �,p , p = 1,∞, 	 = 0, 1,

for t ≥ 1.
We next consider U (0)(t)u0. By Theorem 3.3, we can deform the contour

Γ into Γ0 ∪ Γ̃ , where

Γ0 = {λ = −η0 + is; |s| ≤ s0}, Γ̃ = {λ = η + se±iθ; s ≥ s̃0}.

Here we choose positive numbers s0 and s̃0 so that Γ0 connects with Γ̃ at
the end points of Γ0. It then follows from Theorems 3.4, 3.5 and the residue
theorem that U (0)(t)u0 is written as

U (0)(t)u0 = W (0)(t)u0 +W (1)(t)u0,

where
W (0)(t)u0 = F −1

[
χ(0)(ξ′)eλ0(ξ

′)tΠ̂(ξ′)û0

]
and

W (1)(t)u0 = F −1
[

1

2πi

∫
Γ0∪Γ̃

eλtχ(0)(ξ′)(λ + L̂ξ′)
−1û0 dλ

]
.

Similarly to the case of U (1)(t)u0, by using the integral representation of
(λ + L̂ξ′)

−1 given in [6, Theorem 3.8], one can see that W (1)(t)u0 has the
same estimates as those for U (1)(t)u0.

Let us consider W (0)(t)u0. We write it as

W (0)(t)u0 = W (0)(t)u0 + R (0)(t)u0,

where

W (0)(t)u0 = F −1
[
e−κ|ξ′|2tΠ̂(0)û0

]
, κ = −a

2γ2

12ν
,

and
R (0)(t)u0 = W (1)(t)u0 + R

(0)
1 (t)u0 + R

(0)
2 (t)u0 + R

(0)
3 (t)u0.

Here
W (1)(t)u0 = F −1

[
(χ(0)(ξ′) − 1)e−κ|ξ′|2tΠ̂(0)û0

]
,

R (0)
1 (t)u0 = F −1

[
χ(0)(ξ′)e−κ|ξ′|2tΠ̂(1)(ξ′)û0

]
,
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R (0)
2 (t)u0 = F −1

[
χ(0)(ξ′)e−κ|ξ′|2tΠ̂(2)(ξ′)û0

]
and

R
(0)
3 (t)u0 = F −1

[
χ(0)(ξ′)(eλ0(ξ′)t − e−κ|ξ′|2t)Π̂(ξ′)û0

]
with κ = −a2γ2

12ν
.

Clearly, W (0)(t)u0 =

(
φ(0)(t)

0

)
and φ(0) satisfies

∂tφ
(0) − ∆′φ(0) = 0, φ(0)

∣∣∣
t=0

= 〈φ0〉.
It is easy to see that∥∥∥∂	

xW
(1)(t)u0

∥∥∥
p
≤ Ce−ct‖u0‖1, 	 = 0, 1.

By Theorem 3.5, we easily deduce that∥∥∥∂	
xR

(0)
1 (t)u0

∥∥∥
p
≤ Ct−

n−1
2

(1− 1
p
)− 1

2‖u0‖1, 	 = 0, 1.

Let us consider R (0)
2 (t)u0. We will estimate it based on the Riemann-

Lebesgue lemma as in the estimates for solutions of the Cauchy problem
given in [12]. Since

R
(0)
2 (t)u0 =

∫
Rn−1

∫ a

0
R

(0)
2 (t, x′ − y′, xn, yn)u(y′, yn) dy′dyn

with

(4.1)

R (0)
2 (t, x′, xn, yn) = F−1

[
χ(0)(ξ′)e−κ|ξ′|2tΠ̂(2)(ξ′, xn, yn)

]
(x′)

=
∫
Rn−1

χ(0)(ξ′)e−κ|ξ′|2tΠ̂(2)(ξ′, xn, yn)e
iξ′·x dξ′,

we have ∥∥∥∂	
xR

(0)
2 (t)u0

∥∥∥
1
≤ sup

0≤yn≤a

∥∥∥∂	
xR

(0)
2 (t, ·, ·, yn)

∥∥∥
1
‖u0‖1.

By Theorem 3.5, we see that

sup
0≤yn≤a

∣∣∣∂α′
ξ′
(
ξ′β

′
∂j

xn
χ(0)(ξ′)e−κ|ξ′|2tΠ̂(2)(ξ′, xn, yn)

)∣∣∣
L1

xn

≤ C|ξ′|2−|α′|e−
κ
2
|ξ′|2t

for |β ′| + j ≤ 1. Therefore, since eiξ′·x′
=

n−1∑
j=1

xj

i|x′|2∂ξje
iξ′·x′

, we perform the

integration by parts in (4.1) to obtain, for any k = 0, 1, 2, · · ·,

sup0≤yn≤a

∣∣∣∂β′
x′ ∂j

xn
R

(0)
2 (t, x′, ·, yn)

∣∣∣
1

≤ C|x′|−k
∫
Rn−1

|ξ′|2+|α′|−ke−
κ
2
|ξ′|2t dξ′

≤ C|x′|−kt
k
2 t−

n−1
2

−1, |β ′| + j ≤ 1.
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This implies that

sup
0≤yn≤a

∥∥∥∂	
xR

(0)
2 (t, ·, ·, yn)

∥∥∥
1

≤ C
∫
|x′|≤t

1
2

t−
n−1

2
−1 dx′ +

∫
|x′|≥t

1
2

|x′|−nt
n
2 t−

n−1
2

−1 dx′

≤ Ct−1

for 	 = 0, 1. Similarly, one can estimate R
(0)
3 (t)u0. In fact, by Theorem

3.4, we have λ0(ξ
′) = −κ|ξ′|2 + λ(4)(ξ′), where λ(4)(ξ′) is analytic in ξ′ and

|λ(4)(ξ′)| ≤ C|ξ′|4. Since

eλ0(ξ′)t − e−κ|ξ′|2t = λ(4)(ξ′)te−κ|ξ′|2t
∫ 1

0
eθλ(4)(ξ′)t dθ,

we see from Theorem 3.5 that

sup
0≤yn≤a

∣∣∣∂α′
ξ′
[
ξ′β

′
∂j

xn
χ(0)(ξ′)(eλ0(ξ

′)t − e−κ|ξ′|2t)Π̂(ξ′, ·, yn)
]∣∣∣

1
≤ C|ξ′|2−|α′|e−

κ
2
|ξ′|2t

for |β ′|+j ≤ 1. Similarly to above, one can obtain sup0≤yn≤a

∥∥∥∂	
xR

(0)
3 (t, ·, ·, yn)

∥∥∥
1
≤

Ct−1 for 	 = 0, 1. Consequently, we have∥∥∥∂	
xR

(0)(t)u0

∥∥∥
1
≤ Ct−

1
2‖u0‖1, 	 = 0, 1.

On the other hand, it is easy to see that∥∥∥∂	
xR

(0)(t)u0

∥∥∥∞ ≤ Ct−
n−1

2
− 1

2 ‖u0‖1, 	 = 0, 1.

Therefore, by interpolation, we have∥∥∥∂	
xR

(0)(t)u0

∥∥∥
p
≤ Ct−

n−1
2

(1− 1
p
)− 1

2‖u0‖1, 	 = 0, 1.

By Theorem 3.5, we have Π̂(0)Q̃ = 0, ∂xnΠ̂
(0) = 0 and ∂xnΠ̂

(1)(ξ′)Q̃ = 0.
It then follows that∥∥∥∂xnR (0)(t)Q̃u0

∥∥∥
p

=
∥∥∥∂xn

(
R (0)

2 (t) + R (0)
3 (t)

)
Q̃u0

∥∥∥
p

≤ Ct−
n−1

2
(1− 1

p
)−1

∥∥∥Q̃u0

∥∥∥
1
.

Since Π̂(j)(ξ′)
[
∂xnQ̃û0

]
= −

(
∂ynΠ̂

(j)(ξ′)
) [
Q̃û0

]
, j = 1, 2, we see that∥∥∥R (0)(t)

[
∂xnQ̃u0

]∥∥∥
p

=
∥∥∥(∂ynR (0)(t)

)
Q̃u0

∥∥∥
p

≤ Ct−
n−1

2
(1− 1

p
)− 1

2

∥∥∥Q̃u0

∥∥∥
1
.
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Clearly, ∂x′R (0)(t)Q̃u0 = R (0)(t)
[
∂x′Q̃u0

]
and

∥∥∥∂x′R (0)(t)Q̃u0

∥∥∥
p
≤ Ct−

n−1
2

(1− 1
p
)−1

∥∥∥Q̃u0

∥∥∥
1
.

The desired results of Theorem 2.1 are thus obtained by setting U (0)(t) =
W (0)(t)+R (0)(t) and U (∞)(t) = U (1)(t)+W (1)(t). This completes the proof.
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MHF2006-15 Raimundas VIDŪNAS
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