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ABSTRACT  

This chapter briefly reviews the basic explosion mechanism used in the fireworks algorithm (FWA) and 

comprehensively investigates relevant research on explosion operations. Since the explosion mechanism 

is one of the core operations directly affecting the performance of FWA, the authors focus on analyzing 

the FWA explosion operation and highlighting two novel explosion strategies: a multi-layer explosion 

strategy and a scouting explosion strategy. The multi-layer explosion strategy allows a firework 

individual to perform multiple explosions instead of the single explosion used in the original FWA, where 

each round of explosion can be regarded as a layer; the scouting explosion strategy controls a firework 

individual to generate spark individuals one by one instead of generating all spark individuals within the 

explosion amplitude at once. The authors then introduce several other strategies to efficiently use the 

information generated by the explosion operation. Finally, the authors list some open topics for 

discussion. 
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INTRODUCTION  

The fireworks algorithm (FWA) (Tan & Zhu, 2014) is a population-based meta-heuristic optimization 

algorithm that simulates the explosion process of real fireworks repeatedly in order to find the global 

optimum. Although it is a young member of the family of algorithms in the evolutionary computation 

(EC) community, it attracts a lot of attention from practitioners thanks to its huge potential due to its e.g. 

ease of use, robustness, efficiency, parallelism, and other characteristics. With the rapid increase in its 

popularity and application, development is booming and it has become an important branch in EC 

algorithms. 

 

Since the basic FWA was first proposed in 2010, researchers have frequently proposed many effective 

strategies to further improve its performance. For example, Zheng et al. modified five operations used in 

FWA to develop a more efficient version, enhanced FWA (EFWA) (Zheng, 2013). Yu et al. used the 

explosion information to calculate a convergence point that has a high possibility to locate in the optimal 

area and used it as an elite individual to accelerate the convergence of FWA (Yu, Tan & Takagi, 2018). 

Pei et al. adopted different sampling methods to approximate the fitness landscape to accelerate the FWA 

search (Pei, 2012). Some work focuses on developing powerful hybrid algorithms by introducing 

operations from other EC algorithms into FWA to inherit their strengths, such as differential mutation 

(Yu & Kelley, 2014), covariance mutation (Yu & Tan, 2015), the gravitational search operator (Zhu, 

2016), chaotic systems (Gong, 2016), and the firefly algorithm (Wang, 2019). Additionally, FWA has 

also been applied to solve various types of optimization problems, such as multimodal optimization (Yu, 

2019), multi-objective optimization (Zhan, 2018), constrained optimization (Bacanin, 2015), dynamic 

optimization (Pekdemir, 2016), and large-scale optimization (Pandey, 2018). 

 



FWA has not only flourished in an academic setting, but has also has appeared frequently in the industry 

in recent years. For example, FWA successfully solved the network reconfiguration required to reduce 

power loss and improve voltage distribution (Mohamed, 2014); it was also used to design the coefficients 

of a digital filter (Gao, 2011). Actually, FWA has also perfectly solved many other complex real-world 

problems, such as retinal image registration (Tuba, 2017), wireless sensor network coverage (Tuba, 

2016), distributed resource scheduling (Reddy, 2016), image segmentation (Misra, 2017), and others. 

 

The main objective of this chapter is to comprehensively analyze the explosion operation, one of FWA’s 

three core operations, to thoroughly understand FWA and to highlight two effective new explosion 

strategies in detail. The second one is to introduce several strategies for accelerating FWA search by fully 

using the information generated by the explosion operation. Finally, the authors point out several 

potential research topics for discussion. 

EXPLOSION OPERATION  

FWA was created by observing the explosion phenomenon of real fireworks and believing that an 

explosion can be thought of as corresponding to a local search centered on a particular point. Based on 

this inspiration, FWA simulates an explosion operation repeatedly and, through cooperation among 

firework individuals, gradually evolves to the global optimal area. Similar to other EC algorithms, FWA 

randomly generates multiple firework individuals to form an initial population, and then each firework 

individual is adaptively assigned an explosion amplitude and a number of generated spark individuals 

according to its fitness before the explosion operation is performed. Usually, a firework individual with 

better fitness generates many spark individuals within a small explosion amplitude for exploitation, while 

a poor firework individual generates a few spark individuals within a large explosion amplitude for 

exploration. FWA also employs mutation operations to increase individual diversity, and spark 

individuals generated in this way are referred to as mutation spark individuals. Next, a selection operation 

is used to select firework individuals in the next generation from all current individuals, including current 

firework individuals, explosion spark individuals, and mutation spark individuals. The above three 

operations - the explosion operation, the mutation operation, and the selection operation - are repeated 

until a termination condition is satisfied. Fig. 1 illustrates the general optimization framework of a basic 

FWA. 

 

 
 

Fig. 1 The search process of the basic FWA. (a) initial firework individuals (black five-pointed stars) are 

randomly generated, (b), spark individuals (red solid circles) are generated around each firework 

individual by performing the explosion operation; mutation spark individuals (irregular blue points) are 

also generated by Gaussian mutation, (c) new firework individuals in the next generation are selected 

from all individuals in step (b). Steps (b) and (c) are iterated until a termination condition is satisfied. 

 



Let us begin by defining symbols to describe the implementation of an explosion operation in detail. 

Suppose the population size is set to N, Â and M̂ represent the maximum explosion amplitude and the 

total number of spark individuals generated by explosion operations of all firework individuals. For a 

given 𝑖-th firework individual, x𝑖, Eq. (1.1) and (1.2) are used to determine its explosion amplitude, A𝑖, 

and the number of spark individuals, M𝑖, generated by the explosion operation for that individual. Note 

that we explain operations and algorithms using minimization problems in this Chapter, and they can be 

easily rewritten for maximization problem. The spark individuals and a firework individual are FWA's 

own terms and mean solution candidates of optimization. 

 

Ai = Â ∗  
𝑓(𝑥𝑖)−𝑦𝑚𝑖𝑛 + 𝜉

∑ (𝑓(𝑥𝑖)−𝑦𝑚𝑖𝑛)+𝜉𝑁
𝑖=1

                                                   (1.1) 

 

Mi = M̂ ∗ 
𝑦𝑚𝑎𝑥−𝑓(𝑥𝑖) + 𝜉

∑ (𝑦𝑚𝑎𝑥−𝑓(𝑥𝑖))+𝜉𝑁
𝑖=1

                                                   (1.2) 

 

where 𝑓(𝑥𝑖)  returns the fitness of the 𝑖-th firework individual, and 𝑦𝑚𝑖𝑛 and 𝑦𝑚𝑎𝑥 are respectively the 

best and worst fitness found by the current population. 𝜉 is the smallest constant in the computer to avoid 

a division-by-zero error. 

 

To avoid the 𝑖-th individual generating too many or too few sparks, Eq. (1.3) is used to limit the number 

of spark individuals generated by the explosion operation. 

 

Mi =  {

𝑟𝑜𝑢𝑛𝑑(𝑎 ∗ Mi) ,   𝑖𝑓 Mi <  𝑎 ∗  Mi  

𝑟𝑜𝑢𝑛𝑑(𝑏 ∗ Mi),     𝑖𝑓 𝑏 ∗  Mi <  Mi

Mi,                                 𝑜𝑡ℎ𝑒𝑟𝑠            
                                          (1.3) 

 

where 𝑟𝑜𝑢𝑛𝑑() is a rounded function, 𝑎 and 𝑏 are constant parameters (0 < 𝑎 < 𝑏 < 1). 

 

The next problem is how can a firework individual generate multiple diverse spark individuals? The 𝑖-th 

firework individual randomly selects some dimensions, and a spark individual may undergo the effect of 

the explosion operation from these affected dimensions with the same random displacement. This process 

is repeated Mi times to generate Mi spark individuals. Thus, each firework individual performs its 

explosion operation according to the process described in Algorithm 1. When all firework individuals 

have performed the explosion operation, a selection strategy is then adopted to select firework individuals 

for the next generation. 

 

Algorithm 1: The explosion process of an 𝑖-th firework individual. 𝐷: Dimension; 𝑠𝑗  is the 𝑗-th spark 

individual generated by the 𝑖-th firework individual. 

1. count = 0; 

2. while count < Mi do 

3.     z =  𝑟𝑜𝑢𝑛𝑑(𝐷 ∗ 𝑟𝑎𝑛𝑑(0,1)); 

4.     Randomly select z dimensions of the 𝑖-th firework individual; 

5.     Randomly generate a displacement, ℎ =  Ai ∗ 𝑟𝑎𝑛𝑑(−1,1));  

6.     for each affected 𝑘-th dimension do 

7.        𝑠𝑗
𝑘 =  𝑥𝑖

𝑘 + ℎ  

8.     end for 

9.     if a generated spark individual, 𝑠𝑗, is outside the search area then 

10.      use a mapping rule to bring back to the search area. 

11.   end if 

12.   count ++; 



13. end while; 

14. output the found global optimum. 

 

Researchers have proposed many effective strategies to improve the performance of the explosion 

operation. For example, enhanced FWA (EFWA) (Zheng, 2013) proposed a new check strategy to limit 

the minimum explosion amplitude and a new operator to generate spark individuals through the explosion 

operation. Dynamic search (Zheng, 2014) is integrated into EFWA to further improve its performance by 

adaptively increasing or decreasing the explosion amplitude of a firework individual according to the 

search process. Yu et al. proposed a non-linear decreasing strategy to balance exploration and exploitation 

capabilities by controlling the explosion amplitude regardless of their fitness (Yu & Takagi, 2017). Li et 

al. proposed a new technique of guiding spark individuals using the information generated by the 

explosion operations to direct evolution more effectively (Li, 2017). Their explosion operation is effective 

and has been succeeded by many related studies. Authors extend this operator from a new perspective and 

propose two explosion strategies in this Chapter. 

MULTI-LAYER EXPLOSION STRATEGY 

A fireworks festival often attracts many people to enjoy the visual feast of various fascinating firework 

explosions. The explosive patterns formed by real fireworks are not only simple spheres, but also many 

customized explosive effects, e.g. several explosion shapes such as circle, heart, fan, star, or willow, 

single or multiple explosion stages, and their combinations. Through the observation and review of these 

explosion patterns, Yu et al. creatively proposed a multi-layer explosion strategy (Yu, Takagi & Tan, 

2018) to fully exploit the local fitness landscape instead of the single-layer spherical explosion strategy 

used normally in FWA, where each round of explosions can be considered as a layer. Although the 

maximum number of explosion layers can theoretically be set to any positive integer, it should be set 

reasonably according to the characteristics of the optimization problem and calculation cost, e.g. the total 

number of fitness evaluations and CPU consumption time. Fig. 2 illustrates the overall optimization 

process of the multi-layer explosion strategy. 

 

 
Fig. 2 The general framework of a multi-layer explosion strategy. (a) a few spark individuals (colored 

four-pointed stars) are generated by a firework individual (a black five-pointed star) in the first layer, (b) 

these generated spark individuals, rather than the firework, individually trigger the next round of 

explosions and generate new spark individuals in the subsequent layer, and the newly generated spark 

individuals continue to perform the next layer of explosion operations until a maximum predefined 

number of layers is reached. 

 

First Layer Explosion 



An explosion operation is determined by two parameters: the number of generated spark individuals and 

the explosion amplitude. Similar to basic FWA, Eq. (1.1) is used to adaptively determine the explosion 

amplitude of a firework individual according to its fitness. 

However, the difference here is that all firework individuals generate the same number of few spark 

individuals in the first layer regardless of their fitness. Since this strategy does not focus on how to 

generate a spark individual, Algorithm 1 or any other method can be employed to generate the spark 

individuals in the first layer. Suppose the number of spark individuals generated by the 𝑖-th firework 

individual is set to 𝑚𝑖
(1)

 all spark individuals generated in the first layer, 𝑚𝑖
(1)

∗ 𝑛, start the next round of 

explosion operations instead of the firework individuals. 

 

Subsequent Layer Explosion 

Suppose the maximum number of explosion layers is set to L, and 𝑚𝑖 is the total number of spark 

individuals in all layers under the 𝑖-th firework individual, i.e. M̂ =  ∑ 𝑚𝑖
𝑁
𝑖=1 . 𝑚𝑖

(𝑘)
 represents the number 

of generated spark individuals in the 𝑘-th explosion layer (k <  L) and 𝑚𝑖 =  ∑ 𝑚𝑖
(𝑘)𝐿

𝑖=1 . 

 

To perform explosion operations in subsequent layers smoothly, the first problem to be solved is how to 

allocate the remaining assignable spark individuals, Mi −  𝑚𝑖
(1)

∗ 𝑛. Since the 𝑖-th firework individual and 

𝑚𝑖 spark individuals form a subgroup, the number of spark individuals in subsequent layers, 𝑚𝑖 − 𝑚𝑖
(1)

, 

is dynamically assigned to each subgroup according to the fitness of its initial firework individual using 

the Eq. (1.2). Next, each subsequent layer in the 𝑖-th subgroup is evenly allocated a number of spark 

individuals, i.e. the number of spark individuals in the 𝑘-th layer is set to 
𝑚𝑖− 𝑚𝑖

(1)

𝐿−1
. 

 

The other key problem is to decide on the setting of the two parameters, the number of spark individuals 

and the explosion amplitudes, for spark individuals in the (k − 1) layer to trigger the 𝑘-th round of 

explosions. These two parameters are also dynamically determined by the fitness of the spark individuals 

in the (k − 1) layer using Eq. (1.1) and (1.2), and then this layer explosion is repeated until the explosions 

have been repeated (L − 1) times. Here, the Algorithm 2 summarizes the overall optimization process of 

a multi-layer explosion strategy. 

 

Algorithm 2: The general framework of a multi-layer explosion strategy. 

1. for 𝑖 = 0;  𝑖 <  N;  𝑖 + + do 

2.     Decide the number of spark individuals, 𝑚𝑖
(1)

, in the first layer for the 𝑖-th firework individual; 

4.     Decide an explosion amplitude for the 𝑖-th firework individual; 

5.     Perform the first layer explosion for 𝑖-th firework to generate spark individuals;  

6. end for 

7. while the number of explosions does not reach a predefined L layer do 

8.     Perform the next round of explosion operations for each spark individual in the previous layer described 

in the sub-section Subsequent Layer Explosion. 

9. end while 

10. end of the multi-layer explosion. 

 

The multi-layer explosion strategy does not need to change the optimization framework of the basic FWA 

or add additional fitness calculations, and can be combined with any other FWA variants easily by 

replacing their explosion operation. Its core idea is to use the characteristics of the local fitness landscape 

to fully generate promising spark individuals by exploding layer by layer. Additionally, because spark 

individuals are derived from both firework individuals and spark individuals in previous layers, the 

diversity of the population is greatly increased. Thus, this strategy can explore local landscape 



information deeply and not easily fall into local minima, especially useful for some complex multi-modal 

problems. 

 

Although the maximum number of explosive layers can be set to any positive number, the authors do not 

recommend setting it too large. When the number of layers is greater than 2, each spark individual can 

only generate one new individual because the total number of spark individuals in subsequent layers is 

equally distributed. To overcome this limitation, practitioners can use a non-equal method to assign the 

number of spark individuals in subsequent layers, or develop an adaptive version to tune the maximum 

number of explosion layers according to the optimization process. Additionally, some poor spark 

individuals can be forbidden from exploding again to save resources and transfer this part of the resources 

to promising individuals to explore. In short, there is still a lot of room and value to further improve with 

this strategy. 

SCOUTING EXPLOSION STRATEGY BACKGROUND 

There is a phenomenon that often occurs during a large fireworks festival where real fireworks can 

explode repeatedly in some specific directions rather than spreading everywhere. Inspired by these 

observations, the scouting explosion strategy (Yu, Tan & Takagi, 2018) is introduced into the FWA to 

increase local search capabilities and bias toward promising areas by generating spark individuals one by 

one instead of generating them all at once. Fig. 3 illustrates the general explosion effect of a firework 

individual when adopting a scouting strategy. 

 

 
Fig. 3 An instance of a scouting explosion strategy for a firework individual. A black five-pointed star and 

red solid points represent respectively a firework individual and its spark individuals. Solid arrows 

indicate that the current direction is promising and continues to be tracked, whereas dotted arrows 

indicate that the continuous scouting stops here and new scouting starts from the initial point. 

 

Since this strategy also focuses on generating spark individuals in a more efficient way without modifying 

the overall optimization framework of FWA, the only difference is that it gradually generates spark 

individuals to track promising areas, which gives the appearance of a scout looking for a safe direction 

forward in an unknown environment. 

 

Take the 𝑖-th firework individual as an example; the following explosion operation replaces the original 

operation used in the FWA to develop a new FWA version. First, only one spark individual is generated 

at a time and compared with the 𝑖-th firework individual. If the spark individual is worse, the 𝑖-th 

firework individual generates a new spark individual randomly again until a better spark individual 

emerges. The better spark individual becomes the center of the next explosion operation to generate a new 

spark individual. This process is repeated until the (j + 1)-th spark individual is worse than the 𝑗-th spark 



individual, then the current continuous scouting stops and a new scouting starts from the initial firework 

individual. Since an explosion operation only generates one spark individual, the 𝑖-th firework individual 

repeats Mi times to generate multiple spark individuals. Finally, all firework individuals perform the 

scouting explosion strategy described in the Algorithm 3 in turn to generate spark individuals. 

 

Algorithm 3: A scouting explosion strategy is used for the 𝑖-th firework individual to generate Mi spark 

individuals. 

1. Determine the total number of spark individual, Mi, generated by the 𝑖-th firework individual; 

2. Determine the explosion amplitude, Ai, of the 𝑖-th firework individual; 

3. 𝑖 = 0; 

4. while i is less than 𝑆𝑖 do 

5.    Randomly generate a spark individual within Ai and evaluate it. 

6.    𝑖 = i + 1; 
7.    if the spark individual is worse than the firework individual then  

8.        Go to step 4; 

9.    end if 

10.  while the subsequent spark individual is better than previous one (firework or spark individual) do 

11.      Generate a new spark individual randomly around the previous individual rather than the firework 

within Ai; 

12.       𝑖 = i + 1; 
13.    end while 

14. end while. 

 

The scouting explosion strategy calculates the number of generated spark individuals, Mi, and explosion 

amplitude, Ai, for the 𝑖-th firework individual in the same way as in basic FWA; i.e. according to Eq. 

(1.1) and (1.2). However, it generates spark individuals one by one to dig deeper into local directions with 

high potential instead of randomly exploring within an explosion amplitude; this allows it to make better 

use of the local fitness landscape to speed up the FWA search because more resources (fitness 

evaluations) are allocated to areas of high potential. Since many promising spark individuals have an 

opportunity to generate their offspring individuals, population diversity is greatly enriched, avoiding the 

population becoming tracked in local areas. Obviously, this strategy can be easily combined with other 

FWA variants and only requires that they replace their explosion operations without any tedious 

modification. This strategy can thus be said to be a low-cost, high-reward strategy. 

 

Although a single point tracking method is used to explore the local information, other tracking methods 

are also acceptable. For example, practitioners can try to use a multi-point tracking or tree tracking 

method to further reduce the risk of falling into a locally optimal area. Additionally, how to adaptively 

tune an explosion amplitude during the process of a tracking search is also a promising topic for future 

exploration. 

IMPROVEMENTS ON EXPLOSION OPERATION 

The explosion operation is one of the core components directly affecting FWA performance. The 

operation has two parameters that control the generation of the many spark individuals that are used to 

achieve a local search. However, this raises a problem in that many spark individuals are destroyed 

quickly after only participating in the selection operations; this is a great waste of limited resources 

(fitness evaluations) and the approach does not make reasonable use of the spark individuals. Here, the 

authors list two efficient strategies for controlling the parameters and making full use of existing spark 

individuals to better guide evolution than a random search. 

 



Amplitude Reduction Strategy 

 

The basic FWA dynamically determines the explosion amplitudes of firework individuals according to 

their fitness in order to balance well both exploration and exploitation; the better the firework individual, 

the smaller the explosion amplitudes. Since firework individuals become similar with the process of 

convergence while the maximum explosion amplitude, Â, is fixed in each generation, all firework 

individuals will share the same maximum amplitude,Â, equally. This results in the exploitation ability not 

being highlighted, which makes it difficult for FWA to converge. An amplitude reduction strategy (Yu & 

Takagi, 2017) is introduced to nonlinearly reduce the explosion amplitude of firework individuals 

regardless of their fitness. This means that each firework individual is treated equally and its explosion 

amplitude is determined by Eq. (1.4). Fig. 4 illustrates the process by which the explosion amplitudes are 

changed throughout the whole search period. 

 

𝐴𝑖 = {
Â ∗ (1 −  

𝐹𝐸𝑐𝑢𝑟

𝐹𝐸𝑚𝑎𝑥
) ,      𝑖𝑓  𝐹𝐸𝑐𝑢𝑟 < 𝑐 ∗ 𝐹𝐸𝑚𝑎𝑥 

Â ∗ (1 −  𝑐)                    𝑂𝑡ℎ𝑒𝑟𝑠                                
                                  (1.4) 

 

where 𝐹𝐸𝑐𝑢𝑟 and 𝐹𝐸𝑚𝑎𝑥 are the current and maximum number of fitness evaluations, respectively; and c 

is a constant to avoid an explosion amplitude becoming too small. 

 

 
 

Fig. 4 Changes in explosion amplitudes of firework individuals throughout the whole search period. 

 

This strategy emphasizes that all firework individuals possess the exploration ability in the early stages of 

the search process to quickly find areas of potential. As the convergence of the population progresses, this 

ability becomes gradually weaker while the exploitation ability becomes gradually stronger to improve 

convergence accuracy in the later stages of search process. Its core is to switch between two different 

abilities during different search stages. Obviously, applying appropriate methods for controlling explosion 

amplitudes is a key factor affecting performance, so developing other methods is a potential research 

direction. 

 

Synthetic Spark Individuals 

 

A firework individual usually generates multiple spark individuals within its explosion amplitude. 

Although these spark individuals can carefully search local areas, it is difficult for them all to survive to 

the next generation and most of them are abandoned after the selection operation is performed. To 

improve the efficiency of local fitness information utilization, a new type of individual, the synthetic 

spark individual (Yu, Tan & Takagi, 2018), is proposed. 



 

 

A firework individual and its generated spark individuals are considered to belong to the same sub-area, 

and each sub-area can thus calculate a synthetic spark individual by fully using these spark individuals. 

Take any given 𝑖-th firework individual as an example. The first step is to construct Mi vectors from the 

firework individual to each spark individual. If an offspring individual (spark) is better than the parent 

individual (firework), this direction is considered to have potential. Otherwise, its opposite direction is 

considered to be potential and involved in the calculation of a synthetic spark individual. Next, the 

absolute value of the fitness difference between the endpoint and the start point of a vector is employed to 

evaluate the potential of these vectors even if the opposite direction is used, i.e. the larger the fitness 

difference, the higher the weight of the vector. Finally, a synthetic spark individual is calculated by 

weighting these vectors using Eq. (1.5); Fig. 5 illustrates the construction of a synthetic spark individual. 

 

𝑣𝑖 = ∑
𝑓(𝑥𝑖)−𝑓(𝑠𝑗)

∑ ||𝑓(𝑥𝑖)−𝑓(𝑠𝑗)||
Mi
𝑗=1

∗ (𝑠𝑗 − 𝑥𝑖) + 𝑥𝑖
Mi
𝑗=1                                         (1.5) 

 

where 𝑠𝑗 is the 𝑗-th generated spark individual or antipodal individual in the 𝑖-th sub-group, and 𝑣𝑖 is the 

𝑖-th synthetic spark individual.  

 

 
 

Fig. 5 A synthetic spark individual is calculated from a firework individual (black five-pointed star) and 

its generated spark individuals (the red solid points). The presence of a red hollow circle means that the 

antipode has been used. The purple solid point is the synthetic spark individual obtained by weighting 

these vectors. 

 

Since a synthetic spark individual reuses multiple spark individuals, it has good anti-noise properties and 

a high possibility to find a better potential direction - although it does require an additional fitness 

evaluation. To avoid additional fitness costs, the reverse symmetry points of poor spark individuals are 

not evaluated but participate in the calculation, and the fitness difference of the original vector is roughly 

used to evaluate a used antipodal direction. However, these factors may cause the accuracy of synthetic 

spark individuals to decrease. One of the key tasks in the future is to further improve accuracy from the 

cost-performance point of view. For example, gradient information can replace the fitness difference of 

vectors to evaluate their weights more objectively. In addition, how to effectively use synthetic spark 

individuals is also a task that must be solved in the near future. 

 

SUMMARY 

This chapter focuses on analyzing the effects of the FWA’s explosion operation. The basic explosion 

operation is first reviewed in detail, and two novel explosion strategies are demonstrated to accelerate 

FWA search. Attention is next focused on introducing some interesting strategies by which FWA 

performance could be further enhanced by controlling parameters or reusing existing information 



efficiently. Although all of these strategies have achieved satisfactory results, the authors finally introduce 

some other topics worthy of further study and discussion. 

 

 How can diverse spark individuals be generated from a firework individual? Since the relationship 

between parent individuals and offspring individuals is one-to-many, i.e. lots of spark individuals are 

derived from a few firework individuals, it is difficult to generate diverse spark individuals when all 

firework individuals have become similar. It also means that once we have become trapped in a local 

minimum, it is difficult to jump out. How to increase the diversity of the population is thus one of the 

problems that need to be solved. 

 

 How can the many generated spark individuals be used most efficiently? As described above, all 

spark individuals are involved in the selection operation, but only a few survive to the next 

generation. It is a great waste of limited resources, especially in expensive problems. Thus, it is an 

effective approach to accelerate FWA convergence by mining more hidden information from these 

spark individuals. 

 

 How can resources be allocated appropriately to achieve a stronger performance? Due to the 

limitations of any real-world implementation, the maximum number of fitness evaluations often 

cannot be set too large. Furthermore, different optimization problems have different characteristics. 

Thus, balancing resource allocation between firework individuals and spark individuals as well as 

setting suitable parameters to solve various problems is also an important topic. 
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