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1 Introduction

The term earthquake is commonly used to describe sudden slip on a fault
within the Earth that produces seismic waves. The inverse problem of earth-
quakes consists of analyzing records of seismic waves to obtain detailed in-
formation on the earthquake rupturing process. The solution of this problem
is far from trivial for various reasons [1].

This paper deals with a simple model of earthquakes — called Random
Domino Automaton (RDA) [2] — built on simple mechanism present in
tectonic earthquakes, i.e those earthquakes that occur in response to plate
motions (or other predominantly shearing sources). As stress builds up
across a fault surface, friction on the fault prevents the surface from sliding
until the strength (some maximum shear stress) of the fault is exceeded.
Then the two sides of the fault snap back (elastic rebound), releasing some
or all of the elastic strain built up. This slip occurs at several kilometers per
second, releasing high-frequency seismic waves. These are by far the most
common type of earthquakes and the most destructive [3].

The RDA model aims to reproduce some universal statistical temporal
properties of earthquakes. It is a slowly driven system with avalanches in
the form of stochastic cellular automaton, i.e. totally discrete (in space-time
and in values) dynamical system. Depending on the parameters, it is able
to produce a range of avalanche distributions [2]. It may be regarded as
an extension of Drosel-Schwabl forest-fires model [4]. In its simplest version
RDA was proposed to test the reconstruction procedure for the Ito equation
[5, 6] and then was studied as a earthquakes model [7]. Inverse problem
for finite RDA [8] was considered in the paper [9] using Markov Chains
terminology. It’s algebraic structure is related to Motzkin numbers [10],
and recently a similarly constructed stochastic cellular automaton related
to Catalan numbers was proposed [11]. Moreover, for a special choice of
parameters, RDA exhibits two Self Organized Criticality - like states [12],
and this property may help explain mega-earthquakes [13].
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2 1D Random Domino Automaton model

Particles occupy the sites (cells) of a finite subset of 1-dimensional lattice
Ω ⊂ Z. Sites may be vacant or occupied by a single particle (ball). The
particles are indistinguishable. The number of sites is denoted by N = |Ω|,
and periodic boundary conditions are assumed.

Clusters are formed by sequentially occupied cells, and they are are sep-
arated by empty clusters. Size of a cluster (or an empty cluster) is equal
to the number of occupied (or empty) cells contained in it. The number of
clusters of size i in the system is denoted by ni, and the number of empty
clusters of size i by n0

i
. The density of the system ρ and the total number

of clusters n read

ρ =
1

N

∑

i≥1

ini, and n =
∑

i≥1

ni. (1)

The last one is equal to the total number of empty clusters n0, assuming
periodic boundary conditions and also, that there are at least one cluster
and one empty cluster present in the system.

There are three kinds of empty cells, distinguished according to the num-
ber of occupied nearest neighbors. An empty cell may be the nearest neigh-
bor for 0,1 or 2 occupied cells. Total numbers of empty cells of these three
kinds are denoted by x0, x1 and x2 respectively, and thus

∑

i≥1

in0

i = x0 + x1 + x2 = (1 − ρ)N. (2)

A given empty cell may change its state to occupied — depending on the
number of its occupied nearest neighbors, it creates a new cluster (of size
1), or enlarges an existing adjacent cluster, or merges two adjacent clusters.
Thus we call respective empty cells creating, enlarging and merging.

From the above definitions of xi, i = 0, 1, 2, it follows

x0 =
∑

i≥3

(i− 2)n0

i = (1 − ρ)N − 2n + n0

1, (3)

x1 = 2
∑

i≥2

n0

i = 2(n− n0

1), (4)

x2 = n0

1. (5)

The first equation 3 is a consequence of counting empty cells from ”interiors”
of empty clusters and the second one (4) follows from counting of remaining
edge cells. We point out the identity

n =
1

2
(x1 + 2x2) , (6)
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which reflects the simple fact, that each cluster has two empty cells as nearest
neighbors. These cells may be enlarging or merging cells only, and each
merging cell is a neighbor for two clusters. This constraint (6) follows from
equations (4) and (5).

Discrete time dynamics is defined as follows. In each time step a particle
is added to the system, and it hits one cell. Assume, that each cell —
occupied or not, and anywhere located — has the same probability to be
hit.

• If the site receiving a new particle is empty, then there three various
actions are possible: creation of a new cluster, or enlarging of adjacent
cluster, or merging two adjacent clusters, depending of the type of the
empty cell. We set constant values of probabilities for this actions: c0,
c1 and c2 accordingly. The incoming ball may be also scattered away
with probability (1 − c0), or (1 − c1), or (1 − c2), respectively.

• If the cell receiving the ball is occupied, and belongs to the cluster
of size i, the whole cluster is removed with probability µ(i) = µi

depending of the size i of the cluster. Otherwise the ball is scattered
with probability (1 − µi).

The dependence of the avalanche probability µi of the size of the hit cluster
distinguish essentially RDA from Drossel-Schwabl forest-fires model [4], and
consequences of this generalization are far reaching.

The RDA is a Markov chain, and its space of states is irreducible, aperi-
odic and recurrent. Thus statistically stationary state is well defined, and
it is possible to derived respective balance equations by using ”flow in = flow
out” principle and counting respective probabilities. Below we present the
balance equations for ρ, n, xi and ni for statistically stationary state of the
automaton in mean field approximation for the special choice c0 = c1 = c.

The balance equation for density ρ is

cx0 + cx1 + c2x2 =
∑

i≥1

µinii
2. (7)

The balance equation for n is

cx0 − c2x2 =
∑

i≥1

µinii. (8)

These two equations are exact. The following equations: for creating
cells x0, enlarging cells x1 and merging cells x2 use the mean field approxi-
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mation and are

3cx0 =
∑

i≥1

µinii
2 +

x1
n

∑

i≥1

µinii, (9)

2cx0 − 2cx1 =
x1 − 2x2

n

∑

i≥1

µinii, (10)

cx1 − c2x2 =
2x2
n

∑

i≥1

µinii. (11)

Remark 1. Not all of the equations derived above are independent. Because
of the relation (2), a combination of equations (9), (10), (11) gives the
equation (7) for the density ρ. The relation (6), imply that a combination
of equations (10) and (11) must be consistent with the equation (8) for the
total number of clusters n.

The balance equations for ni’s are

n1 =
1

µ1 + Y
(c0x0) , (12)

n2 =
1

2µ2 + Y

(

c1x1
n1

n

)

, (13)

ni =
1

iµi + Y

(

c1x1
ni−1

n
+ c2x2

i−2
∑

k=1

nk

n

ni−k−1

n

)

for i ≥ 3, (14)

where

Y =
1

n
(c1x1 + 2c2x2) .

Remark 2. Equations (12)–(14) sum up to balance equation (7) for ρ.

3 The inverse problem for RDA

The inverse problem for RDA is to find the rebound parameters (prob-
abilities µi and ci) that result in the given stationary distribution wi of
avalanches. Here wi is relative frequency of appearance of an avalanche of
a given size i depending of its size.

The probability of avalanche of size i is proportional to the number
of cells contained in clusters of size i (i.e. i · ni) and respective rebound
parameter µi, thus

wi ∼ µinii, or wi :=
µ̂in̂ii

∑

i
µ̂in̂ii

, (15)

where we assume a normalization
∑

i
wi = 1.

A key observation for solving this problem is, that it is possible to express
parameters µi as functions of ni, ci and xi, as can be seen from the form of
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equations (12)–(14). Also removing fractions from these equations leads to
relation between wi and ni.

The details of solving inverse problem will be presented in another pa-
per. Here we present just an example of the application of the developed
procedure for an exponential distribution of avalanches in the form

wi :=
1

2
·

(

2

3

)i

. (16)

The coefficient 1/2 is normalization constant,
∑

wi = 1, and average size
of avalanche η =< iw >= 3. The value of I is set to 1. The density is
ρ ≈ 0.41289, and x̂0 = 1.4, x̂1 = 0.8, x̂2 = 1.2. The Figure 1 presents
calculated distributions of n̂i and µ̂i. The value of ĉ is equal to 1. All
the calculations performed for this example were exact, and reconstructed
distribution of wi from calculated values of µ̂i and ĉ coincide with (16)
exactly. The procedure is working exactly.
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Figure 1: Inverse problem for an exponential distribution of avalanches. For
the given distribution of avalanches (left), it was reconstructed the distri-
bution of clusters (middle) and respective rebound parameters (right), that
produce exactly the staring distribition of avalanches — these two curves
overlap.

4 Conclusion

The developed procedure of reconstruction of rebound parameters based on
a distribution of avalanches proved to work exactly in the simple case of
exponential distribution. Nevertheless, the procedure is general and works
also for other distributions, like resembling Gutenberg-Richter law, which
will be presented in detail in the future.
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