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-A Note on the Initial Value of Kalman Filter Algorithm-

Kosuke Oya 

After briefly reviewing some aspects of economic structural change 

analysis with linear regression model, a simple linear regression model 

with time varying parameters that is supplement of structural change 

analysis is discussed. Specially, the problems relating to the initial 

value of Kalman Filter algorithm used for the recursive estimation of 

linear regression model recursively is discussed. 

1. Introduction 

There are many works on economic structural change analysis with 

linear regression model. These works have made the relation of varia­

bles in the model fixed during periods in which data are available. 

Namely, structural parameters in the model are constant. The reason 

why we have taken such treatment is that we have to specify the 

model, that is a replication which reflects a real structure or an 

approximation of it, to extract the economic mechanism from data and 

realize the relation of economic variables. Even if the model including 

the mechanism of structural change could be specified, the model 

itself is still fixed. Therefore the analysis with linear regression mo­

del is valid only when structure of the model coincides with a real 
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economic structure or is an approximation of it. Further, prediction 

with that model is valid, only when the same prerequisite is satisfied 

during prediction term. 

The problem is which kind of economic structural changes have oc­

curred. The · economic structural change has two contrastfoe types. 

One is a qualitative economic structural change. Generally the model 

used for the analysis about quailtative one is thought that variables in 

the model should be changed, if the model doesn't reflect a real economic 

structure well. The other is a quantitative one. The model used for 

the analysis about quantitative one is thought that variables in the mo­

del should not be changed, even if it doesn't reflect well. The former 

model has fixed parameters, the latter model has variable parameters 

(time varying parameter regression model). 

r----------- ------1 I I 

l REAL ECONOMIC l I I 

-------- : ECONOMETRIC : 
: STRUCTURE· : -------- MODEL : 
I I I I 
\ _________________ - - - _\ L ___________________ J 

Modeling 
with Theoritical and Empirical 

knowledge 

Figure 1 

See following Figure 1. If some structural change occur es after 

the modeling of the real economic structure has been completed, the 

econometric model that has been constructed with the knowledge of 

the real economic structure before some economic structural change 

occures is no longer valid. In view of the qualitative economic structural 

change, the variables in the model should be changed. In view of the 

quantitative one, they should not be changed, the parameters(coefficients) 

of variables in the model should be changed. In this paper, an approach 

to the quantitative economic structural change will be given based upon 
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a linear regression model with time varying parameters. In section 2, 

the model will be presented and discussed. Section 3 will discusse a 

method for avoiding the initial value problem of Kalman Filter algorithm. 

Section 4 will give a simple economic application. The final section 

gives summary. 

2. General formulation of the model 

An approach to analyze the quantitative economic structural change 

regarding econometric model is based upon recursive estimation or 

Bayesian analysis.D In this paper, recursive estimation is discussed. 

Recursive estimation for the quantitative economic strucutrual change 

analysis can be derived as the state space model by Kalman Filter 

algorithm. The Kalman Filter algorithm was derived in Kalman 

(1960) and has been an important technique in modern control theory. 

Linear econometric regression models with time varying parameters can 

be viewed as a special case of state space model as will be shown below. 

The state space model consists of two sets of equations: 'transition' 

equations and 'measurement' equations. The linear regression equations 

are viewed as 'measurement' equations. The equations of time varying 

parameters are viewed as 'transition' equations. To facilitate analysis, 

a simple regression equation is considered as follows: 

Yt =XtiSt +et, t=l,2, ... ,T (2.1) 

where y t is a scalar endogenous variable, X t is a k-vector of exogen­

ous variables, et is a scalar disturbance term and iS t is a k-vector of 

unknown parameters. /3t is supposed to follows as AR(l) process scheme 

i8t=<Pi8t-1+Ut (2.2) 

where Ut is a k-vector of disturbance term, <I> is a transition(k x k)ma­

trix that its i-th diagonal element is <pi i, I cpi i I ~12> and all off-diagonal 



- 56 -

elements are zero. Assumptions on the disturbances are as follows : 

et,..._,N(0,R) 

Ut,..._,N(o,Q) 

E(etes) =0, t::l=s 

E(etUt) =o 

E(utuD =O,t::l=s 

O is the k x k zero matrix, o is the k x 1 zero vector. 

The 'measurement' equation(2.1) and the 'transiton' equation(2.2) con­

tain unknown parameters as follows : 

.Bt;k-vector of coefficients of exogenous variables 

R ; variance of et 

<I> ; transi ton matrix 

Q ; variance matrix of u t 

To estimate the unknown parameters, Generalized Least Squares 

(GLS) method3> is basically used, because Q-the variance matrix of the 

error term-has no longer homoscedasticity. Then recurcive estimation 

is derived as Kalman Filter algorithm which produces recursive vari­

ance of the estimation error of the state variables and recursive 

estimators of the coefficients of exogenous variables {3t (the esti­

mators of the state variables). This equivalance between GLS and 

Kalman Filter algorithm was discussed in Sant (1977). A method for 

avoiding the estimation of the initial value of Kalman Filter algorithm 

is presented in the next section. 

3. Kalman Filter algorithm and its initial value 

problem 

Let us consider .Bt-the k-vector of unknown coefficients-as a state 

variable. The Kalman Filter algorithm can be specified as follows. 



A Simple Liner Regression Approach to Structural Change - 57 -

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

bt/t =bt/t-1+Ktµ,t 

bt / t-1 =<I>bt-v t-1 

JLt =y t -Xt bt/t-1 

St =XtPt/t-1X~ + R 

Kt =Pt/t-1XfS-;1 

Pt/t = [I-KtXt]Pt/t-1 

Pt/t-1 =<I>Pt-vt-1<I>+Q, t=l,2, ... ,T 

bt/s; the minimum mean square estimator of f3t at period s, 

given by the conditional expected value of /3 t, 

E[/3 t I Y1,Yz, ... ,y s] 

Kt ; the kalman gain at period t 

JLt ; the innovation at period t 

St ; the variance of the innovation at period t 

Pt/ s ; the variance matrix of the estimation error of /3 t at 

period s 

I ; the k x k identity matrix 

Problem of adapting Kalman Filter algorithm to recursive estima­

tion of unknown parameter vector ~t is that the hyper-parameters 

(initial values of this algorithm, i.e. the values of the variance of the 

disturbance term of 'measurment' equation (2 .1) and 'transition' equation 

(2.2), the transition matrix of (2.2)) are unknown. 

For using the Kalman Filter algorithm to estimate the unknown 

parameter vector ~t recursively, the hyper-parameters should be given. 

To identify this algorithm, we should estimate the hyper-parameters 

using data information without arbitrariness. The likelihood function 

is used to estimate the hyper-parameters. Adapting the Kalman Filter 

algorithm to the recursive estimation of unknown parameter vector /3 t; 

we can get the log likelihood function as follows.4> 

1 T ( 2] L(0) =constant-2 Ei log St+;: (3.1) 
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where 0 is unknown hyper-parameters, <I>,R,Q,b0/ 0 and Po/O• 

By maximuizing (3.1) with respect to the unknown hyper-parameters, 

we can get the maximum likelihood estimators of them to identify the 

Kalman Filter algorithm. And the estimator of the state variable bt/t 

can be derived from that algorithm. Among the hyper-parameters, bo/o 

and Po/o -the initial values of the algorithm-are necessary only to 

derive the estimator of the state variable bt/t And the estimator of 

the state variable bt/t is very sensitive to the initial values. Hence 

in this paper, regarding the initial values of the Kalman Filter algorithm 

as the 'nuisance' parameters, the approach without the estimators of the 

initial values is specified.5> 

To carry out this approach, the log likelihood function (3 .1) is 

concentrated with respect to bo/o• Ignoring the constant term and 

rewriting (3. 1) as (3. 2) 

(yt-Xtbt/t-1) 2
] ( 3_2) 

(XtPt/t-1Xf + R) 

From the Kalman Filter algorithm (1), (2), (3) 

bt/t-1=At +Bt<I>bo/o,6) t=l,2, ... ,T 
t-1t-l 

where At =<I>Kt-1Yt-1 +~(II <I>(I-KMXM)<I>KL-1YL-1) 
L=2 M=L 

t-1 
Bt =II <I>(I-KMXM) 

M=l 

t-1 
~( ·) =o, for t-1<2 

L=2 

T 

(3.3) 

II(·); a premultiplying operator in ascending subscript order. 
M=l 

T 
e.g. II ZM=ZTZT-1···Z1 

M=l 

Inserting (3.3) into (3.2) and differentiating (3.2) with respect to bo/o 

yields 
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S(b )-~- f [ <I>BfXfXtAt 
O/O -abo/O- -t-1 (XtPt/t-1Xi +R) 

+ <I>BfXfXtBt<I>bo/o _ <I>BfXfYt J 
(XtPt/t-1Xi + R) (XtPt/t-1Xf +R) 

The ML estimator bo/o can be obtained as a solution of s(bo/o) =O. 

Hence, we have (3. 4) as 
-1 

£ =<I>-i[f BfXfXtBt J [f <I>BfXf (Yt-XtAt)J (3 4) 
O/O t=1(XtPt/t-1Xi+R) t=l (XtPt/t-1Xf+R) . 

Inserting (3. 4) into (3. 3), we have 

(3.5) 

Inserting (3. 5) into (3. 2) yields the concentrated log likelihood func­

tion (3. 6) as follows : 

where 0* is <I>, R, Q and Po/o• 

Here regarding bo/o as an unknown constant, P0/ 0-the variance matrix 

of estimation error of ,80-can be equal to zero matrix.7> The derived 

concentrated log likelihood function (3. 6) is function of <I>, R and Q. 

Therefore we can get the estimators of unknown hyper-parameters except 

for the initial values of the Kalman Filter by maximizing the concentrated 

log likelihood function (3.6) with respect to the initial values and derive 

the estimator of the state variable ,St from the Kalman Filter algorithm. 

4. Economic application 

In this section, the approach discussed above will be applied to the 

recursive estimation of the Phillips curve in Japan. This application 

is only to illustrate the behavior of recursive estimates of the cofficie:rits 

of exogenous variables not to test the model, namely not to test the 

natural rate of unemployment hypothesis. 

Let us consider the Phillips curve model in Japan as 
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(4.1) 

where Wt, Ut and CPit are rate of change of wage index (all industry), 

unemployment rate and. rate of change of consumer price index. Type of 

data is annual. See following Table 1. 

1 . 
Table :i Data ofwt, 7h and CPit 

YEAR I Wt 1/Ut I CPit YEAR wt 1/Ut CPit 

1953 15.33 0.54 6.69 1970 16.86 0.87 7.71 
1954 7.63 0.44 6.42 1971 14.74 0.82 6.09 
1955 · 4.65 0.40 -1.07 1972 15.89 0.72 4.52 
1956 7.59 0.44 0.30 1973 21.72 0.79 11.77 
1957 4.23 0.52 3.23 1974 26.62 0.73 24.44 
1958 3.12 0.49 -0.47 1975 13.95 0.53 11.81 
1959 6.06 0.45 1.05 1976 12.45 0.50 9.33 
1960 7.33 0.62 3.64 1977 8.59 0.49 7.99 
1961 11.09 0.70 5.34 1978 6.23 0.45 3.86 
1962 9.98 0.78 6.74 1979 6.33 0.48 3.56 
1963 10.46 0.78 7.66 1980 6.65· 0.50 8.05 
1964 10.19 0.85 3.82 1981 5.59 0.45 4.92 
1965 9.43 0.82 6.69 1982 4.45 0.43 2.63 
1966 10.69 0.76 5.06 1983 3.85 0.38 1.83 
1967 11.87 0.79 3.96 1984 4.53 0.37 2.26 
1968 13.74 0.85 5.37 1985 3.59 0.38 2.02 
1969 15.72 0.89 5.18 

Note: Wt=wageindex, Wt=(Wt-Wt-1)/Wt-1, CPit=consumer price 
index, CPit = (CPit -CPit-1)/CPit-i• Wt, Ut and CPit are taken from 
NEEDS (brought out by the NIHON KEIZAI). 

To compare the analysis by the time varying parameter regression 

model with the analysis by a linear regression with constant parameters, 

we estimate the equation (4.1) by ordinary least squares method as 

follows: 

Wt=-2.503 + 13.813(JJ+o.754 CPit 
(-1.57) (5.07) (7.19) 

(4.2) 

R2 =0.802,SE=2.524, 
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where R2 =adjusted coefficient of determination, SE= standard error, 

t-value in parenthesis. 

We regard the equation (4.1) as the 'measurement' equation and 

postulate that the coefficients of the equation (4.1) follow an AR(l) 

process as the 'transition' equation. To facilitate this analysis, the 

transition matrix is supposed to be equal to identity matrix. Hence 

although the stochastic process of the coefficients is non-stationary, 

it can be considered as stationary, if we think that the stochastic 

process starts nearly before the observations are availab}e. 

In the concentrated log likelihood function (3. 6), the unknown 

hyper-parameters are R and Q. Note that the equation (4.1) has an 

intercept term. The disturbance term of the equaton (4.1) can be 

combined with the disturbance term of the intercept term to form a 

disturbance term. Therefore it is sufficient for us to estimate its 

variance. So we can get R, that is variance of the disturbance term of 

the equation (4.1), equal to zero. 

Firstly, we estimate the unknown hyper-parameter Q using the 

concentrated log likelihood function (3. 6). Secondly the Kalman Filter 

algorithm is identified and the state variables, namely the coefficients 

of exogenous variables are derived from that algorithm. 

The estimated hyper-parameter Q is as follows: 

-2.73 

Q= 0 

0 

0 

1.71 

0 

0 

0 

0.02_ 

Table 2 shows the estimates of coefficients of exogenous variables. 

Using the estimates of the coefficients and hyper-parameters, we 

apply the well known method of smoothing8). The method applied in 

this section is called the fixed-interval smoothing algorithm. This alga-
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Table 2 The estimates of coefficients 

YEAR at /3 t 'Y t YEAR I at f3t 'Y t 

1953 4.56 13.11 0.55 1970 4.14 12.35 0.26 
1954 -0.16 12.07 0.38 1971 3.17 12.16 0.27 
1955 0.19 12.14 0.36 1972 6.37 11.93 0.21 
1956 1.92 12.73 0.39 1973 6.04 12.08 0.52 
1957 -1.71 10 .. 77 0.11 1974 6.04 12.31 0.48 
1958 -2.04 10.68 0.13 1975 1.29 13.52 0.47 
1959 0.86 11.03 0.24 1976 1.35 13.53 0.47 
1960 0.36 10.28 0.17 1977 -1.09 12.85 0.42 
1961 1.61 11.33 0.29 1978 -1.12 12.85 0.42 
1962 0.65 10.34 0.19 1979 -1.26 12.73 0.42 
1963 0.80 10.41 0.20 1980 -1.70 12.53 0.26 
1964 0.65 10.25 0.22 1981 -1.33 12.53 0.25 
1965 0.16 10.14 0.14 1982 -1.56 12.51 0.26 
1966 2.04 10.52 0.12 1983 -1.31 12.44 0.26 
1967 2.70 11.01 0.11 1984 -0.72 12.50 0.28 
1968 3.11 11.52 0.17 1985 -1.59 12.08 0.28 
1969 3.84 12.30 0.18 

Table 3 The estimates of the coefficients by the smoother 

YEAR I at f3t 'Y t YEAR at f3t 'Y t 

1953 2.89 12.82 0.82 1970 0.50 11.29 0.85 
1954 -1.56 11.32 0.65 1971 0.44 11.28 0.84 
1955 0.71 11.82 0.7,3 1972 3.76 11.94 0.79 
1956 2.11 12.12 0.65 1973 2.75 12.01 0.81 
1957 -2.98 10.40 0.56 1974 2.96 11.92 0.61 
1958 -1.94 10.96 0.64 1975 2.96 13.26 0.34 
1959 0.33 11.59 0.50 1976 2.67 13.34 0.34 
1960 -1.31 11.39 0.44 1977 -0.12 13.07 0.28 
1961 -0.55 12.54 0.54 1978 -0.59 12.94 0.27 
1962 -1.80 11.50 0.42 1979 -0.89 12.94 0.28 
1963 -1.76 11.53 0.42 1980 -1.68 12.30 0.27 
1964 -1.45 11.66 0.45 1981 -1.56 12.35 0.32 
l965 -2.81 10.25 0.57 1982 -1.64 12.35 0.32· 
1966 -1.40 10.56 0.79 1983 -1.37 12.37 0.31 
1967 0.15 10.87 0.78 1984 -0.66 12.17 0.30 
1968 0.30 10.98 0.77 1985 -1.59 12.08 0.28 
1969 0.88 11.70 _0.86 
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rithm gives better estimators than the estimators by Kalman Filter al­

gorithm, if the model which these algorithms are applied to is valid. 

Table 3 shows the estimates of the parameters by the smoother. The 

rate of change of wage index and its estimate by the Kalman Filter 
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algorithm are presented in Figure 2-1. Figure 2-2, Figure 2-3 and 

Figure 2-4 show the two kinds of estimates of the intercept of the 

equation (4.1), the coefficient of the reciprocal of unemployment rate and 

the coefficient of the rate of change of consumer price index by the 
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Kalman Filter algorithm and smoother respectively. Both estimates by 

the Kalman Filter algorithm and smoother are appropriate for illustrating 

the behavior of coefficients of the exogenous variables in the equation 

(4.1). 

In this paper, concerning to find the maximum likelihood estima­

tors of the hyper-parameters, we use the optimization of nonlinear 

programming using penalty functions and complex method9). 

5. Summary and Conclusions 

We have divided the economic structural change into two types, one 

is the qualitative economic structural change and the other is the quan­

titative one. Although both types of economic structural change have 

been analyzed with usual regression model that has constant coefficients, 

the quantitative economic· structural change should not be analyzed with 

usual regression model because the usual regression model can not 

capture the change of parameters in the model. For analyzing the 

quantitative economic structural change, we have derived the recursive 

estimation method by Kalman Filter algorithm without estimation of 

its initial values. 

We obtain the following conclusions. 

(1) There are two types of economic structural change. Specially 

for the analysis of quantitative economic structural change the 

recursive estimation method or the Bayesian method is suitable. 

(2) The initial values of the Kalman Filter algorithm are unnecce­

ssary for. the quantitative economic structural change analysis, 

because we can specify the concentrated log likelihood function 
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with respect to those values. 

(3) We should derive a criterion to distinguish between the 

qualitative economic structural change and the quantitative one. 

Notes 

1) See reference ( 3 ) , ( 7 ) , ( 9 ) . 

2) If !¢i i I =1, then the stochastic process of /31t, i.e. the i-th element 

of /3t, is non-stationary. 

3) The unknown parameter vetor f3t of the equation (2.1), (2.2) is taken to 

be stochastic, not constant. Hence GLS estimator is the best within the class 

of estimators which are linear and unconditionally unbiased. 

An estimator is unconditionally unbiased Cu-unbiased) if its estimation error 

has zero. expectation. 

4) The likelihood function of the unknown parameters as shown in Harvey 

0981) can be specified as constitution of the decomposed joint distribution 

of 'T independent ·prediction errors (innovations) . 

. 5) The hyper-parameters .estimation method using panel data was suggested in 

Rosenberg (1973), Liu and Tiao (1980). 

6) See appendix of reference ( 6 ) . 

·· 7) The concentrated log likelihood function (3.6) is exact unless Po/o is equal 

to zero matrix. 

8) See reference ( 1 ) . 

9) See reference ( 5 ) . 
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