
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Instance Based Table Integration Algorithm for
Multilingual Tables on the Web

Ikeda, Daisuke
Computing and Communications Center, Kyushu University

https://hdl.handle.net/2324/2816

出版情報：DOI Technical Report. 217, 2003-06. Department of Informatics, Kyushu University
バージョン：
権利関係：

Instance Based Table Integration Algorithm
for Multilingual Tables on the Web

Daisuke Ikeda∗

Abstract

We present an instance based table integration algorithm.
A table is a set of instances of a record which consists of
fields. A field is a pair of an attribute name and a sequence
of attribute values of the same type. Given tables, the al-
gorithm calculates two numerical features for each field
using character codes and then finds correspondence be-
tween fields among tables. The novelty of the algorithm
is that it uses the character code chart for the language in
which the contents of the tables are written. This enables
that a field can be represented by only two types of fea-
tures. The algorithm requires neither an attribute value
contained in all input tables nor attribute names. So, the
algorithm is suitable for tables obtained from Web data,
as long as they are written in the same language. Ap-
plying the algorithm for real Web data written in many
languages, we demonstrate that the algorithm yields the
accurate results and is robust for errors. The languages
are Chinese, English, Germany, Japanese, and Korean.

1 Introduction

An important feature of the Web is its diversity. There are
a lot of types, purposes, and qualities of Web pages and
they are written in many different kinds of languages. The
diversity causes difficulties when we try to find, compare,
and utilize wide variety of informations on the Web.

In the chaotic World Wide Web, however, many sites
provide a series of informations of the same type. For
example, search facilities, which are provided at many
Web sites, return a list search results. An online news
outlet publishes article pages on the Web with the same
style and structure. Many efforts have been paid to extract
contents from such sites semi- or full-automatically [1, 7,
9, 18, 19]. A wrapper is a procedure which extracts the
contents and generates tables from Web pages. We call
such a table awrapper table.

Once a wrapper table is created, the next problem is
to aggregate wrapper tables even though they are created
from different sources. We can use integrated tables as
a single database. Imagine that we have an integrated
table of cars of various makers and that you want to buy
a sedan. All you need is just to search the table.

∗Computing and Communications Center, Kyushu University
daisuke@cc.kyushu-u.ac.jp

In this paper, we present an algorithm to integrate
wrapper tables gathered from the Web. The algorithm is
very simple and utilizes only basic techniques, but ample
enough to integrate diverse tables on the Web written in
many languages.

1.1 Related Works

A table can be seen as a simple database. The database
integration problem has been paid many attention in the
field of database over the years. However, there are sev-
eral essential difference between databases and wrapper
tables. A database is well-structured and a schema is ex-
plicitly given. Therefore, most of integration algorithms
are based on or require schema [3, 4, 14, 15]. On the other
hand, a wrapper table does not have explicit schema. The
original sources of the tables are markuped in HTML and
do not have schema or attribute names. Therefore, meth-
ods developed in the database field are not applicable to
this situation.

Many query based integration systems have been pro-
posed [3, 5, 6, 11, 15, 16] as well. Such a system re-
ceives a query, decomposes it into sub-queries for indi-
vidual database, and joins results. Therefore, a schema
of each database must be given to the system. In [6], the
target of integration are usual Web sites instead of rela-
tional database, but the schema of a site must be described
by a user. The main problem to integrate results is to
determine whether two instances from different database
are the same entity or not. Similarity measures are pro-
posed [3, 16] based on the edit distance, vector space
model, etc.

The recent upsurge of semi-structured data poses the
necessity of database integration in the new context [2,
6, 17, 20]. It is the integration of databases on the Web.
The purpose seems to be similar to this paper, but the
target and setting of their integration is completely dif-
ferent. In [2, 17], the main target is XML collections.
In the viewpoint of a user, he/she can view HTML files
whose original structured are destroyed even if their orig-
inal sources are well-structure XML files (or relational
database). In [20], the target is a usual HTML file but the
proposed algorithm requires for input files to contain at-
tribute names and for the contents to be formatted in table
tags. However, there are many pages which looks like a
list or table without table tags and does not have attributes
names. If pages have attribute names, notations might be
different from other sources.

1.2 Instance Based Algorithm

We need an instance based integration algorithm be-
cause wrapper tables do not have any schema and at-
tribute names. However, very few effort have been paid
for instance based integration algorithms in the field of
database. The algorithm in [4] uses attribute values to
train a learning algorithm which learns the correspon-
dence of schemata. SEMINT [12] uses partly numerical
features of attribute values. Numerical features are cal-
culated by the number of upper/lower case letters, digit,
punctuation, and so on. The algorithm concludes that two
fields contains the same type of data if their attribute val-
ues look like similar.

Ideally, for an instance based algorithm, it would be
the best way to find semantics of each field first and then
to match fields using semantics instead of numerical fea-
tures. For example, an algorithm judges the field contain-
ing “Daisuke Ikeda” to be the field for the persons names
and the field containing “daisuke@cc.kyushu-u.ac.jp” to
be one of their mail addresses. It seems, however, to be
difficult especially in multilingual situations. Therefore,
like SEMINT, it is reasonable for instance based algo-
rithms to treat attribute values as just strings even if some
of them are digit, and utilize numerical features of strings.
One superiority of such numerical features is the indepen-
dence from the domain of target databases.

In the fields of clustering and machine learning, there
are many algorithms based on numerical features [8, 10,
13]. Numerical features are used to learn classes of
fields [10] and cluster documents [13]. In [10], Ler-
man and Minton introduced the syntactic token hier-
archy, whose root has three children “PUNCT,” “AL-
PHANUM,” and “HTML.” And, for example “AL-
PHANUM” have two children, “ALPHA” which is the
class for usual letter and “NUMBER” which is the class
of digits. Kushmerick [8] formulate the wrapper verifi-
cation problem which is, given two wrapper tables, to
decide whether they contains data of the same type. If
not, the algorithm concludes that the source site changed
the format. To solve the problem, Kushmerick adopted
nine features, such as digit/letter density, upper/lower-
case density, punctuation density, length, and so on. As
an an application of the algorithm, the wrapper main-
tenance problem is discussed in [8]. A Web site often
changes its page style, so we need to find correspondence
of fields between before and after the change. Ma et
al. [13] also calculate a vector for each input document
using the features, such as isUpperCaseLine (all alpha-
betics are upper case), isFirstUpperCaseLine (each word
starts with upper case), startsWithDigit, and so on. They
cluster documents with vector representation in a domain
independent manner. These algorithms using numerical
features are in fact domain independent but obviously
heavily depend on languages. In described algorithms,
only two types of letters, upper and lower case letters, are
considered. However, in Japanese for example, we have
two types of letters, Hiragana and Katakana, and one type

of Chinese characters instead of upper and lower cases.

1.3 Our Contribution

In this paper, we define the table integration problem.
The problem is, given tables, to find a mapping of fields
among them. Then, we present an instance based table
integration algorithm to solve the problem. We represent
a field of a table as a vector in two dimensional space,
which we call thefeature space. The novelty of the rep-
resentation is its low dimensionality. This gives a unified
view of heterogeneous tables.

SEMINT [12] used a feature space to represent a field
by a vector in 20 statistical characteristics of a database.
Only 5 of them are instance based. They are minimum,
maximum, average, coefficient of variance, standard de-
viation for non-blanks for sizes1 of all attribute values in a
field. Using these characteristics, a field is converted to a
vector in 20 dimensional space. Then, the algorithm clus-
ters vectors in the space with respect to their Euclidean
distance.

Like SEMINT, the proposed algorithm also calculates
a feature vector of a field. But, in calculation, we make
use of the character code chart2 of the language used in
input tables instead of sizes of attribute values. Any at-
tribute value is treated as a string even if it is a digit
and represented by the sum of all code numbers of it.
“daisuke” is, for example in the ASCII (American Stan-
dard Code for Information Interchange) code, represented
by 64, 61, 69, 73, 75, 6B, and 65 in hexadecimal. This
representation is very natural. In fact, the programming
language C does not distinguish a char (character) and an
int (integer). Therefore, any languages are acceptable for
input tables if the wrapper tables are written in the same
language (character code chart) at a time.

A character code chart is a gold mine of information.
The characters of the same type occupy a successive area.
The areas for different types are completely distinct. In
the ASCII code, the digits occupy the area from 31 to
39, upper case letters from 41 to 5A, and lower case let-
ters from 61 to 7A. Hiragana letters occupy from 3040
to 309F in Unicode3 and Katakana from 30A0 to 30FF.
Therefore, character codes are expressive for character-
istics of fields. Thus, our representation of field even in
a low dimensionality works well to integrate wrapper ta-
bles.

We evaluate the effectiveness and limit of the presented
algorithm by experiments on 10 tables. 9 of them are
wrapper tables created from real data on the Web. The
other table is created from an XML collection. They
are written in 5 languages, Chinese, English, Germany,
Japanese, and Korean.

For most datasets, the presented algorithm achieves
100% accuracy if enough instances are given. In our

1A size is in byte.
2More precisely, a character code chart is a character encoding

scheme.
3http://www.unicode.org/

experiments, less than 50 instances are enough. Exper-
iments show that the accuracy value is not affected by the
contents language. Some experiments show that a limit of
the algorithm. That is, the algorithm fails to match fields
whose attribute values are semantically different but look
similar. For example, in the list of tennis players, we
have two such fields “Name” which is the field for tennis
player names and “Coach” which contains also person’s
(coach for a player) names.

This paper is organized as follows: First of all, we de-
fine notations and the key representation of fields in Sec-
tion 2. Then, we present the main algorithm in Section 3.
In Section 4, we show experiments using wrapper table
created from practical data written in Chinese, English,
German, Japanese, and Korean.

2 Table Integration Problem

A table consists of instances of arecord. A record in-
stance contains different types of data, each of which is
called afield. A field is a pair of anattribute nameand
a sequence4 of attribute valuesof the same type. For a
field f , we denote the number of all attribute values inf
by | f |. For a table and any two fieldsf1 and f2, | f1| = | f2|.

Table 1 is a sample of table. Each column contains

Table 1: Sample Table
Name Phone Email

D. Ikeda 2298 daisuke@cc.kyushu-u.ac.jp
S. Hirokawa 2301 hirokawa@cc.kyushu-u.ac.jp
Y. Yamada 2296 yshiro@cc.kyushu-u.ac.jp
...

data of the same type, and a column corresponds to a
field. In this table, each field has an attribute name such
as “Name,” “Phone,” and “Email.” Our algorithm does
not require attribute names. Attribute names in Table 1
are only for expository purpose.

In out algorithm, an attribute value is treated as a string
even if it consists of only digits. For an attribute valuee,
|e| denotes the length ofe5 and [e] i the i character ofe,
where 1≤ i ≤ |e|.

Without loss of generality, we can assume that the
number of input tables are restricted to be two. If three or
more tables are given, first we apply an integration algo-
rithm to any two of them, then the iteratively application
to an integrated table and another input table leads to the
integration of all input tables.

For a tableT, F(T) denotes the set of all fields inT. We
do not require any restriction onF(T1) andF(T2). We do
no assume that tables such thatF(T1) ⊂ F(T2) or that
F(T1) and F(T2) are comparable might be input tables.

4That is, multiple values with the same value are allowed.
5This notation is the same as the number of all attribute values of a

field f . However, the difference is clear from the context.

We assume that for any field inT1, there exists at most
one correspondent field inT2.

Now, we define the table integration problem formally
as follows:

Definition 1 (Table Integration) The table integration
problem is, given two tables T1 and T2, to find the cor-
respondence(f1, f2) between f1 ∈ F(T1) and f2 ∈ F(T2),
where f1 and f2 are fields containing data of the same
type.

3 Algorithm

Our algorithm receives two tablesT1,T2 and a character
code chartC(·) as an input, whereC(·) is a function from
characters to integers. The algorithm first transforms all
fields into vectors in 2 or 3 dimensional space using the
code chartC(·). The space is called thefeature space.
Then, it calculates distances for all pairs of fields among
the tables and finds iteratively nearest pairs of fields with
respect to the Euclid distance between them.

3.1 Field Representation

The algorithm utilizes a function fieldval() which returns
the vector in the feature space for a given field. This func-

function fieldval(f : filed, C: code chart): vector
begin

for e in all instances off
do

ve :=
∑|e|

i=1 C([e] i)
end
a := average value of allve’s
s := standard deviation of allve’s
return (a, s)

end

Figure 1: Pseudo code to calculate the vector of a field

tion is the key representation of the proposed algorithm.
fieldval() treats an attribute valuee of a field as a string
and calculates the sum of character codesC(·) for all char-
acters ine. We call this sum thefeature valuefor an at-
tribute value. Now, we extend the domain ofC from a
character to a string. For a stringx, C(x) is defined to∑|x|

i=1[x] i . Then the feature value for an attribute valuee is
C(e).

The vector v for a field is v = (x, y), wherex and y
are the average and standard deviation value of all feature
values in the field.

This representation exhibits characteristics of an at-
tribute value’s appearance. For an attribute valuee, ve

contains informations about both lengths and character
types used ine, but omits the order of characters. There-
fore, the substring information is ignored. Table 2 shows
vectors for sample instances in Table 1. Note that special

Table 2: Attribute values and their feature values by the ASCII code chart
Name C(·) Phone C(·) Email C(·)
D. Ikeda 624 2298 213 daisuke@cc.kyushu-u.ac.jp 2399
S. Hirokawa 980 2301 198 hirokawa@cc.kyushu-u.ac.jp2511
Y. Yamada 850 2296 211 yshiro@cc.kyushu-u.ac.jp 2811

...

characters, such as a space and punctuation, are used as-
is. For example, “D. Ikeda” is translated asC(D) + C(.) +

C()+C(I)+· · ·+C(a) = 68+46+32+73+· · ·+97 = 6246.
Note that a feature value only depends on one attribute
value, it is not necessary for an integration algorithm to
see all attribute values in a field. In this sense, a vector in
this 2D feature space is locally definable.

All attribute values in a field of Table 1 are basically
different from each other. In general, however, there are
fields containing some fixed optional values. For exam-
ple, a sex is either male or female and a job title is se-
lected from some fixed number of candidates. The stan-
dard deviation for such a field is expected to be low. It
seems to be difficult distinguish such a field from another
field which contains wide variety of attribute values but
its standard deviation happens to be low.

Here, we introduce another numerical feature for ex-
perimentally purpose. Letm be the number of different
attribute values in a fieldf . Then, the vectorv for a
field f is v = (x, y, z), wherex andy are the same as the
2D case, andz = | f |/m. We use| f |/m instead ofm as-is
because the difference ofm between fields are important
especially whenm is too small. Note that this new feature
is not defined for an attribute value. So, a vector in this
new feature space isnot locally definable.

3.2 Mapping by Distance

The main part of the proposed algorithm is to calculate
distances between vectors in the feature space and map
close two vectors among two input tables as correspon-
dent fields. The pseudo code for the algorithm is illus-
trated in Fig. 2.

For each fieldf1 of T1, the algorithm calculate the Eu-
clidean distance betweenf1 and f2 for any f2 of T2, and
then selects iteratively a pair (f1, f2) providing the small-
est distance among all pairs of fields.

As the similarity of vectors, the cosine value of the vec-
tors. If the vecoters are nomalized, we can see that the co-
sine value are equivalent to the Euclidian distance. But,
by the preliminari experiments, normalization of vectors
decrease accuracy values for matching fields. Thus, we
do not adopt nomalization.

Let N be the maximum number of attribute values for a
field, n be the maximum length of an attribute value, and
m = max{|F(T1)|, |F(T2)|}. Then, fieldval() runs inO(nN)
time. It takesO(m2) time to calculate distances for all

6A code number is in decimal.

procedureTableIntegrate(T1, T2: tables,C: code chart)
begin

foreach f1 ∈ F(T1)
do

v1 := fieldval(f1,C)
foreach f2 ∈ F(T2)
do

v2 := fieldval(f2,C)
d := distance betweenv1 andv2

h(v1, v2) := d
end

end
l := sorted list of all pairs (v1, v2)

by d(= h(v1, v2)) in increasing order
for (v1, v2) ∈ l

report (f1, f2) are correspondent
delete (p′1, p

′
2) ∈ l if p′1 = v1 or p′2 = v2

end
end

Figure 2: Pseudo code of the algorithm

pairs and (m2 logm) time to sort all distances. Therefore,
the algorithm totally runs inO(nN + m2 logm) time.

4 Experiment

We implement the algorithm described in the previous
section in Python and apply it to tables written in vari-
ous languages. Table 3 lists all datasets with brief de-
scriptions, where the fourth and fifth columns show the
number of instances and fields in dataset, respectively.

For the implemented program, tables written in any
language are applicable if they are encoded in UTF-87.

4.1 Search Engines

Dataset 1 are collected from 4 major search engines, Al-
taVista8, Excite9, Lycos10, and Yahoo!11. A page pro-
duced by a search engine contains multiple instances. An
instance consists of titles of Web pages, URLs, and short
descriptions for the pages. Therefore, the result of search

7This is an character encoding scheme of Unicode.
8http://www.altavista.com/
9http://www.excite.com/

10http://www.lycos.com/
11http://www.yahoo.com/

Table 3: Datasets used in experiments
ID Description Language # instances # fields

1 Search results from 4 major search engines. English 4721 3
2 Search results Yahoo! Korea. Korean 671 4
3 Search results Yahoo! China. Chinese 1773 3
4 XML database of academics in Kyushu university.Japanese 497 6
5 Yellow Pages. Japanese 1000 3
6 Yahoo! Auction Korea. Korean 2908 4
7 List of tennis players. German 227 13

result looks like a table containing 3 fields. From each
of 4 search engines, we gather about 1,000 search results
(about 100 pages), and totally 4721 record instances are
obtained.

We collected 410 category names in advance from Ya-
hoo! and the pages linked from the top page. We use
these names as query words. When we gathered search
results, we randomly chose keywords from the category
names.

For any combination of 4 search engines, we made a
series of experiments as the number of instances are in-
creasing. We evaluate the experiments by accuracy, that
is, the number of matched field to the number all fields.
The total number of fields is 18 since there are 6 combi-
nations and each dataset has 3 fields. Table 4 shows all

Table 4: Accuracy for integration tables among any two
search engines in Dataset 1

size accuracy size accuracy
10 16/18 60 18/18
20 14/18 70 18/18
30 16/18 80 18/18
40 18/18 90 16/18
50 18/18 100 18/18

accuracy values, where “size” denotes the the number of
files. Basically, a file in this dataset contains 10 found
pages, so 10 in the size column means that 100 instances
are included for both search engines of a combination.

The algorithm fails to match fields when the size is
small and it almost succeed for larger sizes. However,
when the size is 90, the algorithm fails to match between
URL and title fields. Apparently, the difference between
URLs and page titles is easy for us because most URLs
of found pages begin with “http://.” The algorithm folds
all character codes of a string into one value when it cal-
culates a feature value. This means that the algorithm ig-
nores any properties of substrings appearance and their
appearance orders. Nevertheless, the algorithm works
very well for many data sizes.

This dataset does not show any difference between 2
and 3 dimensional feature spaces.

For Dataset 1, we integrate wrapper tables created from
different sites. We need to see source files and define the
correct mapping in advance. However, it is impossible to

construct such correct mapping for multilingual inputs.
So, in the sequel, we use two tables whose instances are
randomly selected from the same table. In this case, it is
easy to check the correctness.

Dataset 2 and 3 are also search result pages gathered
from Yahoo! Korea12 and China13, respectively. Both
datasets have the same 3 fields of Dataset 1. Dataset 2
has another field14.

Table 5 shows accuracy values as the number of in-
stances are increasing, where “size” is the number of files.
Basically, each file contains 20 instances. Each size, we

Table 5: Accuracy for integration tables of Dataset 2
size accuracy size accuracy

1 11/20 6 20/20
2 14/20 7 20/20
3 18/20 8 20/20
4 20/20 9 20/20
5 20/20 10 20/20

size accuracy size accuracy
1 8/20 6 20/20
2 12/20 7 20/20
3 20/20 8 20/20
4 20/20 9 20/20
5 18/20 10 20/20

do experiments iteratively 5 times15. Now, accuracy is de-
fined to bem/(N × 5), wherem is the number of matched
fields during all 5 times iterations andN is the number of
fields in the dataset.

The above table of Table 5 is the result when the al-
gorithm uses 2 dimensional feature space and the bellow
one for 3 dimensional case.

For both feature spaces, the algorithm increases accu-
racy values and achieves 100%. For this dataset, the new
added feature slow the converge speed.

For Dataset 3, the algorithm shows 100% accuracy if
the input file size is greater than 3 if in the 2D feature
space (see the above table of Table 3) and 2 in the 3D
feature space (see the below of Table 3).

12http://kr.search.yahoo.com/
13http://cn.search.yahoo.com/
14But, the author does not know what the field is.
15In the sequel, we make experiments in a similar manner for other

datasets.

Table 6: Accuracy for integration tables of Dataset 2
size accuracy size accuracy

1 12/15 6 15/15
2 13/15 7 15/15
3 15/15 8 15/15
4 15/15 9 15/15
5 15/15 10 15/15

size accuracy size accuracy
1 12/15 6 15/15
2 15/15 7 15/15
3 15/15 8 15/15
4 15/15 9 15/15
5 15/15 10 15/15

Table 7 shows all points for fields in two tables ran-
domly extracted from Dataset 3 when the file is 10.

Table 7: Points and distances for Dataset 3
Field Point

URL = (2618.95, 948.87)
Summary= (582382.92, 222902.47)

Title = (207781.26, 114893.04)
URL = (2595.70, 1018.10)

Summary= (585820.57, 266668.74)
Title = (225597.73, 104127.19)

4.2 XML Database of Academics

Dataset 4 consists of 497 XML files, each of which is a
record instance of an academic in Kyushu University. A
record contains “ID” which is a unique number, email ad-
dress, phone, URL, job title, academic degree, and so on.
Basically, contents are written in Japanese. An ID num-
ber is automatically generated and a job title is selected
from options, so data in these two fields are clean. On the
other hand, other fields are basically filled by hand. There
are some blank fields, irregular data, and multiple values.

Important differences from Dataset 1 are that contents
are basically written in Japanese and selective fields exist
such as the job title. Table 8 shows accuracy values as

Table 8: Accuracy for integration tables with the same
number of fields extracted from Dataset 2

size accuracy size accuracy
10 20/30 60 30/30
20 26/30 70 30/30
30 28/30 80 30/30
40 28/30 90 30/30
50 30/30 100 30/30

the number of instances are changing, where “size” is the
number of instances.

As the number of instances are increasing, the accu-
racy are increasing and converges to the perfect when the

number of instances is 50.
In Dataset 4, several outliers of feature values are

found. They are included in the fields of email address
and phone number. Although almost all attribute values
in these fields are written in the ASCII code, few of them
are written in double-byte characters, like “ｄａｉｓｕ
ｋｅ16.” The feature value, for example, for “daisuke” is
100+ 97+ 105+ 115+ 117+ 107+ 101= 74217, while
one for “ｄａｉｓｕｋｅ” is 65348+ 65345+ 65353+

65363+ 65365+ 65355+ 65349= 457478 in Unicode.
The values for such outliers are very huge. Thus, both
the average and the standard deviation heavily affected
by these outliers. In the above experiments, we use data
cleaned by hand. We need some algorithm that eliminates
automatically such outliers.

We compare accuracy values between 2 and 3 dimen-
sional feature spaces (see Table 9). The convergence size

Table 9: Experiments using 3 dimensional feature space
on Dataset 4

size accuracy size accuracy
10 26/30 60 30/30
20 26/30 70 30/30
30 28/30 80 30/30
40 30/30 90 30/30
50 30/30 100 30/30

is a bit smaller than 2D case. But, on the whole, the di-
mensionality does not affect accuracy values.

4.3 Yellow Pages

Dataset 5 are HTML files each of which contains 20 in-
stances. A record instance has the company name in
Japanese, its phone number, and its address in Japanese.
We gather randomly 50 files from Yahoo! PHONE-
BOOK18 and totally this dataset has 1,000 instances. The
accuracy converges to 100% after the number of instances
is just 20 and after that the algorithm keeps the accuracy
value as 100%.

4.4 Auction Lists

Dataset 6 are HTML files gathered from the auction site
of Yahoo! Korea19. An instance consists of 4 fields20.

Table 10 shows the result for this dataset. This table
shows that the accuracy values in the 3 dimensional fea-
ture space converges into 100% faster than those in 2 di-
mensional feature space and the 3D feature space shows
high accuracy values for many sizes.

16For all alphabets and digits in the ASCII code, we have correspon-
dent double-byte characters in Japanese major character code charts.

17A code number is in decimal.
18http://phonebook.yahoo.co.jp/
19http://kr.list.auctions.yahoo.com/
20The author does not read Korean Hangeul sentences, but maybe,

they are “Title,” “Price,” “Bids,” and “Time Left” likehttp://list.
auctions.shopping.yahoo.com/.

50

55

60

65

70

75

80

85

90

95

100

0 20 40 60 80 100 120 140 160 180 200

ac
cu

ra
cy

the number of instances

2D
3D

Figure 3: Accuracy for integration tables extracted from Dataset 7

Table 10: Accuracy for integration tables extracted from
Dataset 6 in 2D (above) and 3D (bellow) feature spaces

acc. # acc. # acc. # acc.
1 14/20 6 20/20 11 20/20 16 20/20
2 18/20 7 20/20 12 20/20 17 20/20
3 19/20 8 20/20 13 20/20 18 20/20
4 19/20 9 16/20 14 20/20 19 20/20
5 19/20 10 20/20 15 20/20 20 20/20

acc. # acc. # acc. # acc.
1 14/20 6 20/20 11 20/20 16 20/20
2 19/20 7 20/20 12 20/20 17 20/20
3 20/20 8 20/20 13 20/20 18 20/20
4 20/20 9 20/20 14 20/20 19 20/20
5 20/20 10 20/20 15 20/20 20 20/20

4.5 List of Tennis Players

Dataset 7 are HTML files21 each of which contains data
of a tennis player. This datasets consists of 13 fields. Fig-
ure 3 shows the result for this dataset for the 2 and 3 di-
mensional spaces. We can not see clear disparity between
two spaces.

Accuracy values are relatively low in both dimensions
compared to other datasets. This is because there are
fields whose attribute values look similar, such as, “the
date of birth” and “professional since” both including
year, and “Name” and “Coach” both of which are names
for a person. Their meanings are different but they look
similar.

21http://www.tennis-center.de/atp_loader.php?

content=profile

5 Conclusion

We proposed a simple representation based on a charac-
ter code chart for a field of the table. This representa-
tion enables to see fields in a unified view even they are
from heterogeneous sites. Once we translate fields into
the proposed representation, we can use any clustering
algorithms to find correspondence among fields. A field
is represented as a vector in just 2 or 3 dimensional space.
This few dimensionality contrasts to the representation in
20 dimensional space [12].

For some datasets, 2 dimensional space achieves good
accuracy, for other datasets, 3 dimensional space is bet-
ter. But, on the whole, results of both spaces are similar.
In other words, newly added feature,| f |/m, does not im-
prove accuracy.

We developed an algorithm that, given tables, finds
correspondence fields among them. The algorithm sim-
ply maps two vectors if they are the nearest. In spite of
the simplicity, the algorithm exhibits multilingual capa-
bility, domain independence, and high accuracy for ta-
bles on the Web due to the representation based on a code
chart. For most cases, less than 50 instances are enough
for the algorithm to achieve 100% accuracy.

Tables used in experiments have simple and flat struc-
tures. The simplicity does not decrease the difficulties
to integrate tables because they do not have any schema
and attribute names, and contents are written in many lan-
guages. Instead of schema and attribute names, presented
algorithm utilized only attribute values. This shows that
it is applicable for tables on the Web, especially those
created by wrapper (semi-)automatically.

Obviously, there are tables which are not available for

the presented algorithm. In fact, the algorithm failed to
find the correct mapping for some tables. There are two
types of such failures including potential ones: One is the
case that seems to be impossible for instance based algo-
rithms. Consider two fields, one contains phone numbers
and the other do fax numbers. For us human beings, it is
impossible to distinguish them without attribute names.

The other one is the case that would be improved by
adding other features, that is increasing the dimension-
ality, or using other methods. Especially, we can expect
that to find common substrings in a field would drasti-
cally improve the accuracy since our representation ig-
nores the order of characters in a string. For a stringsand
its shuffled strings, they are transformed into the same in-
teger. Thus, the proposed algorithm can not distinguish
these strings. However, we must be cautious to add ad-
hoc functions to the algorithm because to find common
substrings or patterns is one of the main target of the Web
mining and requires high computational costs. Instead, it
is an interesting and important future work to find another
numerical future that preserves (partially) information of
the characters’ order.

In the current implementation, the algorithm always
maps fields even if two tables have nothing to do with
each other. Therefore, another important future work is
to find a good threshold for distances to refute some cor-
respondence of fields if they do not contain the same data.

References

[1] N. Ashish and C. A. Knoblock, Wrapper Genera-
tion for Semi-structured Internet Sources, Proc. of
Workshop on Management of Semistructured Data,
1997.

[2] B. Chidlovskii, Schema Extraction from XML col-
lections, International Conference on Digital Li-
braries, pp. 291–292, 2002.

[3] W. W. Cohen, Integration of Heteroge-
neous Databases Without Common Domains Using
Queries Based on Textual Similarity, Proc. ofthe
1998 ACM SIGMOD International Conference on
Management of Data, pp. 201–212, 1998.

[4] A. Doan, P. Domingos and A. Y. Halevy, Reconcil-
ing Schemas of Disparate Data Sources: A Machine
Learning Approach, Proc. ofthe 2001 ACM SIG-
MOD International Conference on Management of
Data, pp. 509–520, 2001.

[5] M. R. Genesereth, A. M. Keller and O. Duschka,
Infomaster: An Information Integration System,
Proc. of the 1997 ACM SIGMOD International
Conference on Management of Data, pp. 539–542,
1997.

[6] C. A. Knoblock, S. Minton, J. L. Ambit, N. Ashish,
P. J. Modi, I. Muslea, A. G. Philpot and S. Tejada,

Modeling Web Sources for Information Integration,
Proc. ofthe 15th National Conference on Artificial
Intelligence, pp. 211–218, 1998.

[7] N. Kushmerick, D. S. Weld and R. B. Dooren-
bos, Wrapper Induction for Information Extrac-
tion, Intenational Joint Conference on Artificial
Intelligence, pp. 729–737, 1997.

[8] N. Kushmerick, Regression Testing for Wrapper
Maintenance, Proc. ofthe 16th National Confer-
ence on Artificial Intelligence (AAAI-99), pp. 74–
79, 1999.

[9] K. Lerman, C. A. Knoblock and S. Minton, Au-
tomatic Data Extraction from Lists and Tables in
Web Sources, Adaptive Text Extraction and Mining
workshop, 2001.

[10] K. Lerman and S. Minton, Learning the Com-
mon Structure of Data, Proc. ofthe 17th National
Conference on Artificial Intelligence (AAAI-2000),
pp. 26–30, 2000.

[11] A. Levy, A. Rajaraman and J. Ordille, Querying
Heterogeneous Information Sources Using Source
Descriptions, Proc. ofthe 22nd International Con-
ference on Very Large Data Bases (VLDB), pp. 251–
262, Sep. 1996.

[12] W. -S. Li and C. W. Clifton, SEMINT: A Tool for
Identifying Attribute Correspondences in Heteroge-
neous Databases Using Neural Networks, Data
and Knowledge Engineering, 33(1), 49–84, Elsevier
Science, Amsterdam, April 2000.

[13] L. Ma, J. Shepherd and A. Nguyen, Document
Classification vis Structure Synopses, Proc. ofthe
14th Australasian Database Conference, 2003.

[14] J. Madhavan, P. Bernstein and E. Rahm, Generic
Schema Matching with Cupid, Proc. ofthe 27th
International Conference on Very Large Data Bases
(VLDB), pp. 49–58, Sep. 2001.

[15] R. J. Miller, L. M. Haas and M. A. Hernández,
Schema Mapping as Query Discovery, Proc. ofthe
26th International Conference on Very Large Data
Bases (VLDB), pp. 77–88, Sep. 2000.

[16] A. E. Monge and C. P. Elkan, The Field Matching
Problem: Algorithms and Applications Proc. of
the Second International Conference on Knowledge
Discovery and Data Mining, pp. 267–270, 1996.

[17] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernan-
dez and R. Fagin, Translating Web Data, Proc.
of the 28th International Conference on Very Large
Data Bases (VLDB), pp. 598–609, Aug. 2002.

[18] Y. Yamada, D. Ikeda and S. Hirokawa, SCOOP:
A Record Extractor without Knowledge on Input,
Proc. of the Fourth International Conference on
Discovery Science, Lecture Notes in Artificial In-
telligence, Vol. 2226, pp. 428–487, 2001.

[19] Y. Yamada, D. Ikeda and S. Hirokawa, Auto-
matic Wrapper Generation for Multilingual Web
Resources, Proc. ofthe 5th International Confer-
ence on Discovery Science, Lecture Notes in Com-
puter Science, Vol. 2534, pp. 332–339, 2002.

[20] M. Yoshida, K. Torisawa and J. Tsujii, A Method to
Integrate Tables of the World Wide Web, Proc. of
the 1st International Workshop on Web Document
Analysis (WDA 2001), pp. 31–34, 2001.

[21] M. Yoshida, Extracting Attributes and Their Val-
ues from Web Pages, Proc. ofthe ACL-02 Student
Research Workshop, pp. 72–77, 2002.

