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INTRODUCTION

Hanwoo is a breed of cattle that is native to Korea 
and has been in use as draft animals for 5,000 years.  
Compared to Japanese Black cattle, the Hanwoo breed is 
known for their high marbling, having 15%–23% intra-
muscular fat (IMF) at final slaughter age (Kim et al., 
2005).  With regard to carcass value, the marbling score 
(MS), carcass weight (CWT), eye muscle area (EMA) 
and back fat thickness (BF) have the greatest influence 
on profit in the Korean beef industry.  The current 
Hanwoo breeding program has achieved significant rates 
of genetic gain.  For example, an estimate of annual gain 
over the last 10 years was 8 kg for CWT (2.6% of the 
average phenotype) and 2.9 cm2 (3.8%) for EMA (NIAS, 
2009).  The rate of improvement for CWT was 0.4 based 
on genetic standards of deviation per year, which is 
much higher than the gains in MS (0.04 of a genetic 
standard deviation).  Several factors contribute toward 
the low rate of gain for MS (Lee, 2011, PhD. thesis).  
Firstly, MS is estimated using a subjective score rather 
than an objective measurement such as chemical fat per-
centage.  Secondly, candidate bulls (n=400) are selected 

based on live weight (LWT) and average daily gain (ADG) 
through performance tests.  Both LWT and ADG traits 
are highly correlated with CWT and EMA, but not with 
MS.  Finally, marbling is a late maturing trait in cattle 
(Pethick et al., 2005).  The premiums for high MS are 
prompting Korean farmers to extend the finishing period 
for Hanwoo beyond 30 months to further improve mar-
bling scores.  However, Korean proven (KPN) bulls are 
selected based on the breeding value estimated from 
carcass data slaughtered at 24 months of age from prog-
eny tests.  This may explain why genetic progress in CWT 
and EMA is much greater than in MS. 

Currently, the progeny testing evaluation for the 
selection of KPN occurs every 6 months, and these bulls 
are distributed across the entire country.  It is a well–
structured Hanwoo beef production system such as large 
scale of farm based progeny test that could be re–evalu-
ated breeding value for KPN bulls and cows at different 
age structure.

In the United States of America, most breed associa-
tions currently adjust carcass traits to a constant age 
when computing breeding value, but age is seldom the 
primary criterion determining slaughter date in the cur-
rent production systems (Shanks et al., 2001).  It could 
be argued that the estimated carcass quality grade and 
external fat more closely represent the slaughter criteria.  
As for the genetic evaluation at different age structures, 
Cundiff et al. (1969) reported that carcass traits are 
known to be differently evaluated with different indirect 
genetic responses according to slaughter end–points, and 
Koch et al. (1995) reported that slaughter end–points 
can affect the expression of genetic and environmental 
differences.  Because estimated breeding value is cur-
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rently adjusted to an end–point that does not closely 
match slaughter criteria, breeders need to know whether 
sires rank differently at alternative end–points (Shanks 
et al., 2001).

The objective of this study was to estimate genetic 
parameters and breeding value for carcass traits at differ-
ent slaughter end–points and to determine whether the 
ranks of sires and cows vary in EBV when computed at 
different slaughter end–points.

MATERIALS AND METHODS

Animals
Carcass records for 10,442 steers born from 2003 to 

2008 were made available by the Pyengchang Youngwal 
Jungsun Livestock Cooperative.  Summary statistics for 
the data are provided in Table 1.  The completeness of 
pedigree information for up to 4 generations of 
Pyeongchang steers are provided in Figure 1.  Going fur-
ther back, the amount of ancestry information dramati-
cally decreases. 

Carcass traits analyzed were back fat thickness 
(BF), cold weight (CWT), ear muscle area (EMA) and 
marbling score (MS).  CWT was measured after over-
night chilling.  EMA (cm2) and BF (mm) were measured 
between the 12th–13th ribs.  MS (graded on a scale from 1 
to 9 where 1 is no intramuscular fat particles found, and 
9 is abundant fat particles found) was subjectively evalu-
ated by skilled practitioners at each of the slaughter 
houses.

Statistical Models
Genetic parameters were estimated for BF, CWT, 

EMA and MS using an animal model.  Before variance 
component analyses, the GLM procedure of SAS (SAS 
Inst. Inc., Cary, NC) was used to test the significance of 
the fixed effects of year of slaughter, month of slaughter, 
owner, and the linear and quadratic effect of age (covari-
ate).  Data for each trait were adjusted to each of the 5 
end–points: age (EPA), back fat (EPB), carcass weight 
(EPC), eye muscle area (EPE), and marbling score 
(EPM).  Adjustments were made by fitting a linear cov-
ariate for the chosen end–point.  For BF, CWT, EMA and 
MS were not undertaken when the adjustment was the 
trait itself. 

The data were analyzed using an animal model.  For 
calculation of genetic parameters, the model used was:

y = Xβ + Za + e,

where y is the vector of the observed phenotypes; 
β is the vector of fixed effects, which included the con-
temporary group (year of slaughter, month of slaughter, 
owner); a is the vector of additive genetic effects; e is 
the vector of random error effects; X is the known inci-
dence matrix associating fixed effects in β with pheno-
types in y; and Z is the known incidence matrix associat-
ing random effects with phenotypes in y.

Furthermore,

Fig. 1.	 Completeness of pedigree information for up to 4 generations of Pyeong Chang steer.  S stands 
for sire and D for Dam.

Table 1.  Simple statistics for carcass traits

n Mean S.D. Min Max

AGE1 10,442 929.65 56.13 701.00 1263.00

BF2 10,442 13.66 5.31 1.00 49.00

CWT3 10,442 424.47 43.81 172.00 614.00

EMA4 10,442 92.01 10.01 9.00 141.00

MS5 10,442 5.71 1.83 1.00 9.00

1Age=slaughter day; 2BF=back fat thickness; 3CWT=carcass weight; 4EMA=eye muscle area; 
5MS=marbling score
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E[y]=Xβ ; and
 

where A is the numerator relationship matrix of the 
21,711 animals included in the pedigree, I is the identity 
matrix of proper order σ2

a is the variance due to additive 
genetic effects, and σ2

a is the variance due to random 
error.

Genetic parameters were estimated using ASREML 
(Gilmour et al., 2006), which uses an average informa-
tion algorithm.  The program routinely reports log–likeli-
hood statistics, which were used for model comparison, 
whereas variance components were used to estimate phe-
notypic and genetic parameters.  The animal variance 
component represented an estimate of the additive 
genetic variance (σ2

a), whereas the phenotypic variance 
(σ2

p) was obtained from the sum of all variance compo-
nents.  Heritability (h2) was computed as the ratio 
between the additive genetic and phenotypic variances. 

To measure agreement between the carcass trait BV 
computed at different slaughter end–points, Spearman 
rank correlations (SAS Inst. Inc., Cary, NC) were com-
puted among BV values estimated for the same trait at 
different slaughter end–points.  This was done two ways 
using BV of the sire and dam.

RESULTS AND DISCUSSION

Fixed Effect
The source of the variation, degree of freedom, mean 

square and test of significance for each trait are shown 
in Table 2.  The year of birth, month of birth and owner 
of farm were significant (P<0.05) for all traits.  The lin-
ear and quadratic covariate for slaughter age was only 
non–significant for MS.  Because the fixed effect and 
covariate were significant except for place of EMA and 
SD1 and SD2 of MS, the year of birth, month of birth, 
place, owner, linear covariate for slaughter age and quad-
ratic covariate for slaughter age were included in the 
model.

Heritability
Heritability estimates for carcass traits at different 

slaughter end–points are shown in Table 3.  At different 
slaughter end–points, heritability estimates for BF, CWT, 
EMA and MS ranged from 0.41 to 0.42, from 0.25 to 0.37, 
from 0.17 to 0.33 and from 0.40 to 0.45, respectively.  
Differences between heritabilities for carcass traits based 
on age and weight covariates were smaller than other 
end–points.  Heritability estimates for BF and MS differed 
slightly; however, those for CW and EMA differed greatly.  
This difference may be due to the effect of slaughter 
day, which ranged from 701 to 1,263 days.  Heritability 
of BF and MS may have a smaller effect than CWT and 
EMA on day of slaughter.  Our heritability estimates of 

Table 2.  Source of variation, degrees of freedom, mean square and test of significance for each trait

Source d.f BF CW EMA MS

Year1 6 890.81** 86,761.89** 3,189.48** 23.65**

Month2 11 268.13** 2,952.50* 264.68** 6.27*

Place3 2 148.21** 6,192.12* 45.27 31.73**

Owner4 66 161.11** 15,956.18** 396.93** 17.78**

SD5 1 735.09** 366,412.06** 5,402.79** 1.12

SD26 1 616.79** 299,234.90** 4,721.84** 0.21

Error 10,354 26.24 1542.37 93.19 3.19

1AYear=year of birth; 2Month=month of birth; 3Place=Pyengchang, Youngwal, Jungsun; 4SD=slaughter day (linear); 
5SD2=slaughter day (quadratic); *=p<0.05; **=p<0.01

Table 3.  Heritability estimates for carcass traits at different slaughter end–points

End point
Trait

BF CWT EMA MS

EPA1 0.42 0.32 0.26 0.44

EPB2 – 0.25 0.20 0.42

EPC3 0.42 – 0.33 0.45

EPE4 0.41 0.37 – 0.40

EPM5 0.41 0.28 0.17 –

1EPA=end point adjusted to age; 2EPB=end point adjusted to backfat; 3EPC=end point adjusted to 
carcass weight; 4EPE=end point adjusted to ear muscle area; 5EPM=end point adjusted to 
marbling score

Var
a

e
=

Aσa
2

0

0 Iσe
2
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MS were higher than in other studies of Hanwoo cattle 
(Lee et al., 2000; Choy et al., 2005; Choy et al., 2008).  
This might have been due to scalar differences in MS; 
previous studies used a 1–5 or 1–7 scoring system, while 
we used a 1–9 scoring system.

When heritability estimates were computed at a con-
stant age, heritability of CWT (0.32) was similar to those 
(0.32 and 0.33, respectively) reported by Shanks et al. 
(2001) and Rumph et al. (2007), and heritability of EMA 
(0.26) was similar to those reported by Shanks et al. 
(2001), Ríos–utrera et al. (2005) and Rumph et al. (2007) 
(0.26, 0.24 and 0.26, respectively).  Choi et al. (2005), 
Choi et al. (2005) and Ríos–utrera et al. (2005) reported 
a heritability of 0.42, 0.45 and 0.40, respectively, which 
was similar to the heritability found in the present study 
(0.44).  However, heritability estimates computed at a 
constant age in this study were generally higher than 
those reported by other researchers (the difference was 
greater than 0.05). 

When adjusted to a constant BF, heritability esti-
mates for CW and EMA were lower than estimates previ-
ously reported (Choy et al., 2005; Shanks et al., 2001; 
Ríos–utrera et al., 2005; Rumph et al., 2007).  However, 
heritability for MS was higher than previously reported.  
There was no reported heritability adjusted to a constant 

EMA.  Heritability estimates computed at a constant 
weight were higher than those reported by Shanks et al. 
(2001), Ríos–utrera et al. (2005) and Rumph et al. 
(2007).  There were few reported carcass trait heritabili-
ties adjusted to a constant marbling.

Genetic, Phenotypic and Breeding Value 
Correlations

Genetic and phenotypic correlations among carcass 
traits at different slaughter end–points are shown in 
Table 4.  Genetic correlations between BF and CWT, EMA 
and CWT, and EMA and MS were positive, and genetic 
correlations between BF and EMA and BF and MS were 
negative.  The genetic correlation between CWT and MS 
yielded conflicting results.  The results of this study were 
similar to a genetic evaluation report of Hanwoo (NIAS, 
2011) but low to high in magnitude.  In comparison to 
several previous studies (Choy et al., 2005, Choy et al., 
2008, Lee et al., 2000, Ríos–utrera et al., 2005, Rumph et 
al., 2007, and Shanks et al., 2001), the genetic correlation 
between EMA and BF were equally negative, but other 
genetic correlations were conflicting.  These differences 
may be due to in breed groups, effects of the model, 
method of estimation, number of observations, measure-
ment errors, and so on.

Table 4.  Genetic and phenotypic correlations among carcass traits at different slaughter end–points 

Trait and end–point BF CWT EMA MS

BF

EPA – 0.3506 0.0714 0.0810

EPB – – – –

EPC – – –0.1380 0.0510

EPE – 0.3671 – 0.0585

EPM – 0.3259 0.0366 –

CWT

EPA 0.3053 – 0.5370 0.1077

EPB – – 0.5932 0.1215

EPC – – – –

EPE 0.5012 – – 0.0037

EPM 0.4331 – 0.5614 –

EMA

EPA –0.2892 0.3150 – 0.2156

EPB – 0.2473 – 0.2407

EPC –0.4345 – – 0.1858

EPE – – – –

EPM –0.1689 0.1704 – –

MS

EPA –0.2307 0.0671 0.6201 –

EPB – 0.0511 0.6057 –

EPC –0.2690 – 0.6128 –

EPE –0.1984 –0.2871 – –

EPM – – – –

phenotypic correlations=above the diagonal; genetic correlations=below the diagonal
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Correlations of breeding value for carcass traits at 
different slaughter end–points are shown in Table 5.  At 
different slaughter end–points, correlations of sire breed-
ing value for BF, CWT, EMA, and MS were in the range 
of 0.91 to 0.99, 0.75 to 0.93, 0.72 to 0.95, and 0.90 to 
0.99, respectively, and correlations of dam breeding 
value for BF, CWT, EMA, and MS were in the range of 
0.90 to 0.97, 0.73 to 0.94, 0.71 to 0.94, and 0.91 to 0.99, 
respectively.  Correlations of BV for the same trait 
adjusted to different end–points from the sire and dam 
were small in this study.  However, the correlation of CWT 
and EMA differed greatly with BF and MS.  This may be 
due to heritability estimations for CWT and EMA.

Few studies (Lee et al., 2000; Choy et al., 2005; 
Choy et al., 2008) have compared estimates of heritabil-
ity and genetic correlations for carcass traits adjusted to 
different slaughter end–points in Hanwoo cattle.  
Therefore, further study will be needed to determine 
whether these alternative end–points result in a better 
estimate of BV than the traditional age end–point.
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