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Abstract. The Gierer-Meinhardt system is a mathematical model describing
the process of hydra regeneration. The authors of [3] showed that if an initial
value is close to a spiky pattern and its peak is far away from the boundary,

the solution of the shadow Gierer-Meinhardt system, called a interior spike
solution, moves towards a point on boundary which is the closest to the peak.
However it has not been studied how a solution close to a spiky pattern with
the peak on the boundary, called a boundary spike solution moves along the

boundary. In this paper, we consider the shadow Gierer-Meinhardt system and
dynamics of a boundary spike solution. Our results state that a boundary spike
moves towards a critical point of the curvature of the boundary and approaches
a stable stationary solution.

1. Introduction. We consider the following Gierer-Meinhardt system:
At = ϵ2∆A − A +

Ap

Hq
, x ∈ Ω, t > 0,

τHt = d∆H − H +
Ar

Hs
, x ∈ Ω, t > 0,

∂νA = ∂νH = 0, x ∈ ∂Ω, t > 0,

(1)

where A and H represent the scaled activator concentration and inhibitor one,
respectively, Ω is a bounded domain in R2 with the smooth boundary ∂Ω, ϵ, d, and
τ are positive parameters, and the exponents p, q, r and s satisfy

p > 1, q > 0, r > 0, s ≥ 0, and γ :=
qr

p − 1
− s − 1 > 0,

ν is the inner normal unit vector on ∂Ω and ∂ν = ∂/∂ν is the directional derivative
in the direction of the vector ν. Under these assumptions, the Gierer-Meinhardt
system has the possibility to exhibit Turing’s instability, which means that a ho-
mogeneous state becomes unstable by the presence of diffusion (see [24]). Hence we
expect that a spatially inhomogeneous state (namely, a spatial pattern) will appear
in the Gierer-Meinhardt system. In fact, some mathematicians proved the existence
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of a stationary solution with some spiky pattern, which is the sharply localized con-
centration of the activator. This system seems to generate spiky patterns in a wide
range of parameters, as suggested in [16].

Here we take d → ∞ in the second equation of the Gierer-Meinhardt system (1)
and formally have

At = ϵ2∆A − A +
Ap

Ξq
, x ∈ Ω, t > 0,

τΞt = −Ξ +
1

|Ω|Ξs

∫
Ω

Ardx, t > 0,

∂νA = 0, x ∈ ∂Ω, t > 0.

(2)

This system is called the shadow Gierer-Meinhardt system, which was first intro-
duced in Nishiura [22] and has been studied by various authors as follows: In Wei
[25], it was shown that there exists a stationary solution of (2) with a boundary
spike layer such that the peak is close to a non-degenerate local maximum point of
the curvature of ∂Ω, where the curvature of ∂Ω is measured in the direction of ν.
One of the authors showed in [18] that if r = p+1 and τ is sufficiently small, a sta-
tionary solution with a boundary spike layer near a non-degenerate local maximum
point of the curvature of ∂Ω is stable. The problems of existence and stability of
spikes have large literature. If the readers are interested in these problems, see [5],
[12], [14], [15], [19], [21], [27], and [28], and references cited therein.

The authors of [3] considered the dynamics of a solution of (2) with a spike
located at an interior point of Ω and showed that the spike moves exponentially
slowly towards the point on the boundary that is the closest to the spike as long as
the distance between the spike and the boundary of Ω is larger than 2ϵ| log ϵ|. From
the stability result of [17], it is expected that after the spike reaches the boundary,
it moves towards a local maximum point of the curvature of ∂Ω. Indeed, it was
shown in [13] by formal analysis that the motion of boundary spike solutions is
determined by a reduced ordinary differential equation like (12) and occurs on a
slow time scale of O(ϵ3). However, this was not rigorously shown so far.

Similar dynamics of boundary spike solutions for various equations. In [1], some
free boundary problem in a 2-dimensional bounded domain, called Mullins-Sekerka
evolution problems, was considered. The authors of [2] studied the global dynamics
of spike state in the Allen-Cahn equation by the construction of an approximately
invariant manifold. Many results for the dynamics of boundary spike solutions imply
that the spike moves along the boundary on a slow time scale, and the motion is
generically governed by the curvature of the boundary.

Recently, (1) was investigated in [8] under special conditions. The technique
developed there for the proof is not applicable to (2) because of the non-local terms
in (2). Moreover, the dynamics of boundary spikes is quite different from each other
in (1) and (2). In fact, a boundary spike solution with multi-peaks can exist stably
in (1) while one with multi-peaks must be unstable as shown in Theorem 3.3.

In the present paper, we consider the dynamics of a boundary spike solution
with one peak on the boundary, called a single-spike boundary solution while we
call a single-spike interior solution as a spike solution with one peak interior of Ω.
Since a single-spike boundary solution moves along the boundary, we investigate
the motion of the peak on the boundary whose location on the boundary is denoted
by h(t) ∈ ∂Ω. As described in (12) or Theorem 3.1, h(t) moves towards a local
maximum point of the curvature of the boundary according to the gradient of the
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curvature. Moreover, we also know from (12) or Theorem 3.1, that the speed of
the motion of h(t) is ϵ3-order. Thus, we can say about the total dynamics of a
single-spike solution that any single-spike interior solution of (2) first approaches
the closest point of the boundary and after the spike reaches the boundary, it moves
to a local maximum point of the curvature of the boundary. Our result also implies
that any single-spike solution of (2) located near a local minimum point of the
curvature of the boundary is unstable.

This paper is organized as follows: In Section 2, we will give the formal derivation
of the motion of a single-spike boundary solution. Main results are mentioned in
Section 3, in which it is shown that the movement of a single-spike boundary solution
is essentially described by ht = ϵ3M0κσ(h) for a constant M0 > 0, where κ(σ) is the
curvature of the boundary with the arclength parameter σ of the boundary and h(t)
corresponds to the location of the peak on the boundary of a single-spike boundary
solution.

The spectrum of a linearized operator with respect to a single-spike boundary
solution is also given in the section because it is important in order to investigate
the motion of the peak according to Theorem 3.1.

If there exists a multi-spikes boundary solution with two peaks on the boundary,
it is strongly unstable because the linearized operator with respect to the solution
has positive eigenvalues, which is also mentioned in Theorem 3.3. This result em-
phasizes that only single-spike boundary solution can be stable for (2) and that
multi-spikes boundary solutions quickly collapse.

Proofs are given in Sections 4, 5 and 6.

2. Setting and the derivation of the motion of a boundary spike. In this
section, we rescale (2). Let A(t, x) = Ξ

q
p−1 (t)u(t, x). Then (2) becomes

∂u

∂t
= ϵ2∆u − u + up − q

τ(p − 1)

(
−1 +

Ξγ

|Ω|

∫
Ω

urdx

)
u,

τ
∂Ξ
∂t

=
(
−1 +

Ξγ

|Ω|

∫
Ω

urdx

)
Ξ,

∂νu = 0, x ∈ ∂Ω.

(3)

In (3), we again change the variable by Ξ(t) = ϵ−2/γ |Ω|1/γξ(t), we have
∂u

∂t
= ϵ2∆u − u + up − q

τ(p − 1)

(
−1 +

ξγ

ϵ2

∫
Ω

urdx

)
u,

τ
∂ξ

∂t
=

(
−1 +

ξγ

ϵ2

∫
Ω

urdx

)
ξ,

∂νu = 0, x ∈ ∂Ω.

(4)

In the remaining of this section, we will give the formal derivation of the motion
of a boundary spike. Mathematically rigorous results on it will be stated in next
sections.

We assume that the boundary ∂Ω of Ω is a sufficiently smooth closed curve given
by {Γ(σ) ∈ R2; 0 ≤ σ ≤ σ0} with Γ(0) = Γ(σ0), where σ is the arc length parameter
of ∂Ω. Then we can have a tubular neighborhood of ∂Ω as x = Γ(σ)+zν(σ), where
ν = ν(σ) is the inward normal unit vector of ∂Ω at Γ(σ). Here and hereafter, we
deal with the parameter σ as σ ( mod σ0), that is, any σ ∈ R is identified with
σ′ ∈ [0, σ0]. Let κ = κ(σ) be the curvature of ∂Ω at Γ(σ) measured in the direction
of ν. Now, we assume the mass of u concentrates at some point on the boundary
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∂Ω, say σ = h(t), and take the stretched coordinate z = ϵµ and σ = h(t)+ ϵl. Then
(4) is 

ut −
ht

ϵ
ul = uµµ − ϵκ

1 − ϵµκ
uµ +

1
1 − ϵµκ

(
1

1 − ϵµκ
ul

)
l

− u + up − q

τ(p − 1)
(−1 + ξγ 〈ur, 1 − ϵµκ〉)u,

τξt = (−1 + ξγ 〈ur, 1 − ϵµκ〉) ξ,

uµ = 0, µ = 0

(5)

for t > 0 and (l, µ) ∈ R2
+, where R2

+ := {(l, µ) ∈ R2; µ > 0}, 〈u, v〉 :=
∫

R2
+

uvdµdl,

and κ = κ(h(t) + ϵl), and we note that we take approximately
∫
Ω

fdx ∼ ϵ2
∫

R2
+

f ·
(1 − ϵµκ)dµdl.

Let U := (u, ξ) and write (5) by Ut − ht

ϵ Ul = F (U) + ϵB(ϵ)U + ϵG(U ; ϵ), where

F (U) :=

 ∆µ,lu − u + up − q
τ(p−1) (−1 + ξγ 〈ur, 1〉)u

1
τ

(−1 + ξγ 〈ur, 1〉) ξ

 ,

B(ϵ)U :=
(

B(ϵ)u
0

)
,

G(U ; ϵ) :=
( q

τ(p−1)ξ
γ 〈ur, µκ〉u

− 1
τ ξγ 〈ur, µκ〉 ξ

)
= ξγ 〈ur, µκ〉

( q
τ(p−1)u

1
τ ξ

)
and ϵB(ϵ)u := − ϵκ

1 − ϵµκ
uµ +

1
1 − ϵµκ

(
1

1 − ϵµκ
ul

)
l

− ull.

Theorem 2.1. ([25]) F (U) = 0 has a solution, say u = S(ρ) and ξ = ζ, where
ρ =

√
µ2 + l2. S(ρ) is positive and exponentially decaying with respect to ρ, that is,

S(ρ) → 1√
ρe−ρ as ρ → +∞.

Note that ζγ 〈Sr, 1〉 = 1 holds. Let S := (S, ζ) and ht

ϵ = H(h). Since ht = O(ϵ)
holds, we may assume Ut = ϵUT for T := ϵt. Expanding B(ϵ) = B1 + ϵB2 + · · · ,
G(U ; ϵ) = G1(U) + ϵG2(U) + · · · and substituting U = S + ϵU1 + ϵ2U2 + · · · ,
H(h) = H0(h) + ϵH1(h) + · · · into (5), we have H0 = 0 from the coefficients of ϵ0.
Hence we may assume Ut = ϵ2UT for T := ϵ2t by the redefinition of time scale.
Next considering terms of order ϵ1, we have

− H1Sl = LU1 + B1S + G1(S), (6)

where L := F ′(S), the linearized operator with respect to S. In fact, it is explicitly
expressed by

L :=
(

L − qr
τ(p−1)

〈
Sr−1, ·

〉
ζγS − qγ

τ(p−1)ζ S
r
τ

〈
Sr−1, ·

〉
ζγ+1 γ

τ

)
, (7)

where L := ∆ − 1 + pSp−1 with the Neumann boundary condition. We note that
LSl = 0 because F (U) is free from translation with respect to l. Moreover, it is
easily checked that the adjoint operator L∗ of L satisfies L∗Sl = 0. Hence, (6)
implies

− H1 〈Sl, Sl〉 = 〈B1S + G1(S), Sl〉 . (8)

Lemma 2.2. The right hand side of (8) is zero.
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Proof. κ = κ(h + ϵl) is expanded as κ = κ(h) + ϵlκσ(h) + · · · . Hence B(ϵ)u =
B1u + ϵB2u + · · · is given by B1u = κ(h){−uµ + 2µull} and B2u = κσ(h){µul −
luµ + 2µlull}+ κ2(h){−µuµ + 3µ2ull} and so on. Similarly, G1(U) = κ(h)ξγ 〈ur, µ〉

·
( q

τ(p−1)u
1
τ ξ

)
and G2(U) = κσ(h)ξγ 〈ur, µl〉

( q
τ(p−1)u,

1
τ ξ

)
hold.

Since Sl = (cos θSρ, 0), Sµ = (sin θSρ, 0) and

Sll =
sin2 θ

ρ
Sρ + cos2 θSρρ (9)

hold, the direct calculation of the right hand side of (8) gives this proof.

Thus, we get H1 = 0.
Next we shall consider H2. The coefficients of ϵ2 in (5) leads to

−H2Sl = LU2 + B1U1 + B2S + G′
1(S)U1 + G2(S) +

1
2
F ′′(S)(U1)2

and

− 〈Sl, Sl〉H2 = 〈B2S + G2(S), Sl〉 +
〈

B1U1 + G′
1(S)U1 +

1
2
F ′′(S)(U1)2, Sl

〉
. (10)

In order to obtain H2, we have to solve U1. Let E := KerL = span{Sl} and
E⊥ := {U ; 〈U, Sl〉 = 0}. Now we may assume Uj ∈ E⊥. Since U1 satisfies

0 = LU1 + B1S + G1(S), (11)

and Lemma 2.2 implies B1S + G1(S) ∈ E⊥, U1 is given by U1 = κ(h)Φ1, where
Φ1 ∈ E⊥ is the unique solution of

0 = LΦ1 +
(

−Sµ + 2µSll

0

)
+ ζγ 〈Sr, µ〉

( q
τ(p−1)S,

1
τ ζ

)
,

which shows Φ1 = Φ1(l, µ) is even with respect to l. Hence U1 is also even for l and

we have
〈

B1U1 + G′
1(S)U1 +

1
2
F ′′(S)(U1)2, Sl

〉
= 0 in (10). The direct calculations

give 〈Sl, Sl〉 = π
2

∫ ∞
0

ρ(Sρ)2dρ and

〈B2S + G2(S), Sl〉 = −2
3
κσ(h)

∫ ∞

0

ρ2(Sρ)2dρ.

Thus, (10) shows H2 = 2
3〈Sl,Sl〉

∫ ∞
0

ρ2(Sρ)2dρκσ(h), that is,

ht = ϵ3M0κσ(h), (12)

where M0 := 4
R ∞
0 ρ2(Sρ)2dρ

3π
R ∞
0 ρ(Sρ)2dρ

.

3. Main results. In this section, we use same notations and symbols as in Section
2.

Define Ω(δ) := {x = Γ(σ) + zν(σ), 0 ≤ σ ≤ σ0, 0 ≤ z < δ}. We fix sufficiently
small δ > 0 and represent Ω = Ω0 ∪ Ω1, where Ω1 := Ω(2δ) and Ω0 := Ω\Ω(δ).
Hereafter in this section, c and cj denote general constants independent of ϵ and δ.
Let χ0(x) and χ1(x) be cut-off functions such that 0 ≤ χj(x) ≤ 1, χ0(x)+χ1(x) = 1,
χ0(x) = 1 and χ1(x) = 0 for x ∈ Ω\Ω1, χ0(x) = 0 and χ1(x) = 1 for x ∈ Ω(δ).

In Ω1, we can define the tubular neighborhood σ = Σ(x) and z = Z(x) by x =
Γ(σ) + zν(σ). Define S(x; h) := χ1(x)S(ρ(x;h)

ϵ ) and S(x; h) := (S(x;h), ζ), where
ρ(x; h) :=

√
(σ − h)2 + z2 for σ = Σ(x) and z = Z(x). Here, we extend ρ(x;h) to
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the whole domain Ω so as to satisfy c1Dist{x,Γ(h)} ≤ ρ(x;h) ≤ c2Dist{x, Γ(h)}
for positive constants c1, c2.

Let Ω2 := Ω0 ∩ Ω1. Since S(ρ) satisfies S(ρ) → e−ρ/
√

ρ as ρ → +∞, S(x; h) ≤
O(e−δ/ϵ) holds in Ω2. Define a positive function χ2(ρ) satisfying χ2(ρ) = O(e−ρ/2)
as ρ → +∞ and X2(ρ) := diag(χ2(ρ), 1). Let X(h) := {u; u(x) = χ2(ρ(x; h)/ϵ)v(x),
v ∈ L∞(Ω)} and X(h) := {(u, ξ); u ∈ X(h), ξ ∈ R} with the norm ∥(u, ξ)∥X(h) :=
∥χ−1

2 (ρ(x;h)/ϵ)u(x)∥∞ + |ξ|.

Theorem 3.1. Let

ωa := {z ∈ C; Rez > −a}\{0},

ωa′,a1 := {beiθ ∈ C; |θ| < π/2 + a′, b > a1}.

Suppose that there are a0 > 0, a′
0 > 0, a1 > 0 such that the following hold: L has a

simple zero eigenvalue, the set ωa0 ∪ωa′
0,a1 is in the resolvent set of L, and there is

C > 0 such that
∥∥(λ − L)−1

∥∥ ≤ C/|λ| for λ ∈ ωa′
0,a1 . Then the solution U of (4)

satisfies
U(t, x) = S(x; h(t)) + X2(ρ(x; h)/ϵ)V (t, x)

uniformly for t > 0 and x ∈ Ω with ∥V (t)∥∞ = O(ϵ3) if an initial data U(0) ∈
X(h(0)) and ∥U(0) − S(·; h(0))∥X(h(0)) < δ for sufficiently small δ > 0. Moreover,

ht = ϵ3M0κσ(h) + O(ϵ4) (13)

holds.

Theorem 3.2. Assume that p = r − 1. If τ is small, then the assumptions in
Theorem 3.1 hold, i.e.,
( i ) 0 is a simple eigenvalue of L and there are a0 > 0, a′

0 > 0, a1 > 0 such that the
set ωa0 ∪ ωa′

0,a1 is in the resolvent set of L, and
(ii) there is C > 0 such that∥∥(λ − L)−1

∥∥ < C/|λ| for λ ∈ ωa′
0,a1 .

Hence, the conclusions in Theorem 3.1 hold.

Above results are of solutions with single peak on the boundary. If solution of
(2) has two peaks on the boundary, it is strongly unstable. We shall prove this
expectation.

In (2), we set A = ϵ−qn/(p−1)γu and Ξ = ϵ−n/γξ and consider
∂u

∂t
= ϵ2∆u − u +

up

ξq
,

τ
dξ

dt
= −ξ +

1
ϵnξs|Ω|

∫
Ω

urdx,

∂νu = 0.

(14)

In Theorems 3.1 and 3.2, Ω is just a two dimensional domain. On the other hand,
when we study the instability of two peaks, it is an n-dimensional domain for n ≥ 1.
Here we suppose that there is a stationary solution such as

u(x) ∼ ζ
q

p−1

{
S

(
x − h1

ϵ

)
+ S

(
x − h2

ϵ

)}
, ξ ∼ ζ,

where h1, h2 ∈ Ω, S is a unique positive radially symmetric solution of

∆S − S + Sp = 0 in Rn



DYNAMICS OF A BOUNDARY SPIKE 7

as given in Theorem 2.1, and

ζ =
(

|Ω|
2

∫
Rn Srdy

)1/γ

.

The function S is called ground state solution and it has an exponentially decaying
property.

In order to study the stability, we naturally introduce the following linearized
eigenvalue problem :

λφ = ϵ2∆φ − φ + p
up−1

ξq
φ − q

up

ξq+1
η,

τλη = −η +
r

ϵnξs|Ω|

∫
Ω

ur−1φdx − sη

ϵnξs+1|Ω|

∫
Ω

urdx,

∂νφ = 0.

(15)

We shall look for a positive eigenvalue of this problem and prove the instability of
two peaks.

Theorem 3.3. Let ∂Ω ∈ C2, r > 1. In addition, suppose that there is a stationary
solution (u, ξ) of (14) such that u has 2-spikes, i.e.,∥∥∥∥u(x) − ζ

q
p−1

{
S(

x − h1

ϵ
) + S(

x − h2

ϵ
)
}∥∥∥∥

L∞(Ω)

→ 0, |ξ − ζ| → 0

for hi ∈ Ω which satisfies (h1 − h2)/ϵ → ∞ as ϵ → 0. Then (15) has at least one
eigenvalue around λ = λ1, where λ1 is a unique positive eigenvalue of

λ1ψ = ∆ψ − ψ + pSp−1ψ in Rn. (16)

Thanks to λ1 > 0, this theorem says that any solution with two peaks in the
shadow Gierer-Meinhardt system is always strongly unstable. In fact, it seems
that any solution with K-peaks for K ≥ 2 is strongly unstable and the associated
linearized system has (K − 1) eigenvalues around λ1. Hence it is sufficient to study
the dynamics of a solution with single peak in the shadow Gierer-Meinhardt system.

4. Proof of Theorem 3.1. We write (4) as Ut = F(U), where U = t(u, ξ). Let
K1[ξ, u] := −1 + ξγ

ϵ2

∫
Ω

urdx. Now we consider functions u(x) = χ2(ρ(x; h)/ϵ)v(x)
for v ∈ L∞(Ω). Then

K1[ξ, u] = −1 +
ξγ

ϵ2

∫
Ω1

urdx + O(e−cδ/ϵ∥v∥r
∞)

= −1 +
ξγ

ϵ2

∫ σ0

0

∫ 2δ

0

ur(σ, z)(1 − κ(σ)z)dσdz + O(e−cδ/ϵ∥v∥r
∞)

= −1 + ξγ

∫ σ0/2ϵ

−σ0/2ϵ

∫ 2δ/ϵ

0

ur(σ, z)(1 − ϵκ(h + ϵl)µ)dldµ + O(e−cδ/ϵ∥v∥r
∞)

= K+
2 [ξ, u] − ϵK+

3 [ξ, u] + O(e−cδ/ϵ∥v∥r
∞)

holds for small δ > 0, where σ = h+ ϵl, z = ϵµ and K+
2 [ξ, u] := −1+ ξγ

∫
R2

+
urdldµ,

K+
3 [ξ, u] := ξγ

∫
R2

+
ur(σ, z)κ(h+ϵl)µdldµ. Here we assume u(x) = χ2(ρ(x; h)/ϵ)v(x)

= χ2(ρ(x;h)/ϵ)v(σ, z) in Ω1 is extended to R2
+ appropriately with respect to the

variables σ and z. Specifically, we extend v(σ, z) in Ω1 smoothly to ṽ(σ, z) in R2
+

such that ṽ(σ, z) = v(σ, z) in Ω1, ∥ṽ∥L∞(R2
+) ≤ ∥v∥L∞(Ω1) and ρ(x; h) is extended
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by ρ =
√

(σ − h)2 + z2 for (σ, z) ∈ R2
+ as it is. Throughout this paper, functions

are extended to those in R2
+ like this manner without notes.

Let U1 = U1(l, µ) = κ(h)Φ1(l, µ) and U2 = U2(l, µ) be the functions constructed
in Section 2, where σ = h + ϵl and z = ϵµ. Define Ψ(x; h) := X1(x){S(l, µ) +
ϵU1(l, µ) + ϵ2U2(l, µ)} = S(x; h) + ϵΨ1(x;h, ϵ), where X1(x) := diag(χ1(x), 1). Sub-
stituting U = Ψ(x; h)+ X2(ρ(x; h)/ϵ)V (t, x) into Ut = F(U), we have

ht∂h(Ψ + Y ) + Yt = F(Ψ) + F′(Ψ)Y + N(Y ) (17)

with |N1(Y )(x)| ≤ cχ2(ρ(x; h)/ϵ)∥V ∥2
∞ for Y = X2(ρ(x;h)/ϵ)V , where ∥V ∥∞ =

∥(v(x), ξ)∥∞ := ∥v∥∞ + |ξ| and N(Y ) = t(N1(Y ), N2(Y )). Here we note that
|∂2

uu(K1[ξ, S])u2(x)| ≤ cχ2(ρ(x; h)/ϵ)∥v∥2
∞ holds for u = χ2(ρ(x; h)/ϵ)v because of

the exponentially decaying properties of S. Since the first components of S, U1 and
U2 are O(e−cδ/ϵ) in Ω2, Ψ satisfies

F(Ψ) − ϵ3H2∂hΨ = ϵ3Ψ3 (18)

for some Ψ3 = Ψ3(x; h) = (ψ3(x; h), ξ3) ∈ X(h). Let L(h) := F′(S(x; h)). L(h) is
given by

L(h)
(

u
ξ

)

=


A(h)u − q

τ(p−1)

{
K1[ζ, S(;h)]u + rζγS(;h)

ϵ2

∫
Ω

S(x; h)r−1udx

+γζγ−1S(;h)
ϵ2

∫
Ω

S(x; h)rdxξ
}

1
τ

{
K1[ζ, S(;h)]ξ + rζγ+1

ϵ2

∫
Ω

S(x; h)r−1udx + γζγ

ϵ2

∫
Ω

S(x; h)rdxξ
}


(19)

for u ∈ X(h), where S(;h) = S(x;h) and A(h)u := ϵ2∆u − u + pS(;h)p−1u. Since
|S(x; h)| ≤ O(e−ρ(x;h)/ϵ) and K+

2 [ζ, S] = 0 hold, we have for small δ > 0

K1[ζ, S(; h)] = K+
2 [ζ, S] − ϵK+

3 [ζ, S] + O(e−cδ/ϵ)

= −ϵK+
3 [ζ, S] + O(e−cδ/ϵ)

= −ϵζγ 〈Sr, µκ〉 + O(e−cδ/ϵ),∫
Ω

S(x; h)r−1udx =
∫

Ω(δ)

S(x; h)r−1udx + O(e−cδ/ϵ)

= ϵ2
∫

R2
+

Sr−1(ρ)u(l, µ)(1 − ϵµκ)dldµ + O(e−cδ/ϵ)

= ϵ2
∫

R2
+

Sr−1(ρ)u(l, µ)dldµ

−ϵ3
∫

R2
+

Sr−1(ρ)u(l, µ)µκdldµ + O(e−cδ/ϵ)

= ϵ2
〈
Sr−1, u

〉
− ϵ3

〈
Sr−1µκ, u

〉
+ O(e−cδ/ϵ),∫

Ω

S(x; h)rdx = ϵ2
∫

R2
+

Sr(ρ)(1 − ϵµκ)dldµ + O(e−cδ/ϵ)

=
ϵ2

ζγ
− ϵ3

∫
R2

+

Sr(ρ)µκdldµ + O(e−cδ/ϵ)

=
ϵ2

ζγ
− ϵ3 〈Sr, µκ〉 + O(e−cδ/ϵ),



DYNAMICS OF A BOUNDARY SPIKE 9

where ρ =
√

l2 + µ2 and κ = κ(h + ϵl). Thus L(h) is represented as

L(h)U =


A(h)u − q

τ(p−1)

{
−ϵζγ 〈Sr, κ〉u + rζγS(

〈
Sr−1, u

〉
−ϵ

〈
Sr−1µκ, u

〉
) + γS

ζ (1 − ϵζγ 〈Sr, µκ〉)ξ
}

1
τ

{
−ϵζγ 〈Sr, µκ〉 ξ + rζγ+1(

〈
Sr−1, u

〉
−ϵ

〈
Sr−1µκ, u

〉
) + γ(1 − ϵζγ 〈Sr, µκ〉)ξ

}
 + O(e−cδ/ϵ)U

= A(h)U + K+
4 U + ϵK+

5 U + O(e−cδ/ϵ)U,

where U = t(u, ξ) and

A(h)U :=
(

A(h)u
0

)
,

K+
4 U :=

(
− q

τ(p−1) (rζ
γS

〈
Sr−1, u

〉
+ γS

ζ ξ)
1
τ (rζγ+1

〈
Sr−1, u

〉
+ γξ)

)
=

rζγ+1
〈
Sr−1, u

〉
+ γξ

τζ

(
− q

p−1S

ζ

)
,

K+
5 U :=

( q
τ(p−1) (ζ

γ 〈Sr, µκ〉u + rζγS
〈
Sr−1µκ, u

〉
+ γS

ζ ζγ 〈Sr, µκ〉 ξ)
− 1

τ (ζγ 〈Sr, µκ〉 ξ + rζγ+1
〈
Sr−1µκ, u

〉
+ γζγ 〈Sr, µκ〉 ξ)

)
= ζγ 〈Sr, µκ〉

( q
τ(p−1)u

− 1
τ ξ

)
−

rζγ
〈
Sr−1µκ, u

〉
+ γζγ−1 〈Sr, µκ〉 ξ

τ

(
− q

p−1S

ζ

)
.

Lemma 4.1. The spectral set, say I(h) of L(h) consists of I1(h) and I2(h) such
that I1(h) ⊂ {|λ| ≤ c

√
δ} and I2(h) ⊂ {Reλ < −α1} for a positive constant α1.

Proof. Let Ω′
1 := Ω(δ) and first consider L(h) in Ω′

1. Since A(h) is expressed as
A(h) = L + ϵB(ϵ) in Ω′

1 by using the tubular coordinate (l, µ), L(h) is represented
as L + ϵB(ϵ) + ϵK+

5 + K6 for 0 ≤ l ≤ σ0/ϵ and 0 ≤ µ ≤ δ/ϵ, where B(ϵ) and B(ϵ)
are in Section 2 and K6 is an operator with O(e−cδ/ϵ) operator norm. Note that

L =
(

L 0
0 0

)
+K+

4 . We may assume all of the above operators are appropriately

extended to those in R2
+. In fact, such extensions are trivially done for K+

j and K6

while the extension of B(ϵ) is not trivial. B(ϵ) is precisely expressed as B(l, z; h, ϵ).
Since the domain (l, µ) ∈ [0, σ0/ϵ] × [0, δ/ϵ] is connected at l = 0 and σ0/ϵ, we can
extend it to the operator with periodic coefficients with respect to l coordinate,
that is, the operator for (l, µ) ∈ (−∞,∞) × [0, δ/ϵ] satisfying B(l + σ0/ϵ, z; h, ϵ) =
B(l, z; h, ϵ). For z coordinate, by multiplying the cut-off function χ1(x), we have
the operator defined in R2

+. Moreover, |ϵB(ϵ)u| ≤ O(δ)∥u∥C2 for (l, µ) ∈ [0, σ0/ϵ]×
[0, δ/ϵ] holds and hence we may assume ϵB(ϵ) is extended to R2

+ satisfying this same
estimate, that is, |ϵB(ϵ)u| ≤ O(δ)∥u∥C2(R2

+) holds.
By the assumption of this theorem, the set ωa0 ∪ ωa′

0,a1 is in the resolvent set of
L. Then it is easily checked that

∥ϵ(λ − L)−1B(ϵ)∥ ≤ cδ(1 +
1
|λ|

) (20)

holds for λ ∈ ωa0 ∪ ωa′
0,a1 and a constant c > 0.

Define L1 := L+ ϵB(ϵ)+ ϵK+
5 +K6 and consider it as an operator in L∞(R2

+) in
the same manner as B(ϵ) above. That is, L1 is an operator with periodic coefficients
with respect to l.
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Suppose λ ∈ ωa0 ∪ ωa′
0,a1 and consider (λ − L1)U = g. Then (λ − L1)U = g

becomes

{Id − (λ − L)−1ϵB(ϵ) − ϵ(λ − L)−1K+
5 − (λ − L)−1K6}U = (λ − L)−1g. (21)

(20) implies

∥ϵ(λ − L)−1B(ϵ)∥ ≤ cδ(1 +
1
|λ|

) ≤ c′(δ +
√

δ)

for constants c, c′ > 0 if |λ| ≥ c′′
√

δ for c′′ > 0. Since K+
5 is bounded and

∥K6∥ ≤ O(e−cδ/ϵ), the operator in the left hand side of (21) is invertible, which
shows

∥(λ − L1)−1∥ ≤ c

|λ|
(22)

for λ ∈ ωa0∪ωa′
0,a1 with |λ| ≥ c′

√
δ, where c and c′ are positive constants. (22) holds

in L∞(R2
+) and if g ∈ L∞(R2

+) is periodic with respect to l argument, the function
U of the equation (λ−L1)U = g is also periodic with respect to l argument by the
periodicity of the operator L1 with respect to the same argument. Thus we may
also assume (22) in L∞(R′

+), where R′
+ := {0 ≤ l ≤ σ0/ϵ, 0 ≤ µ < ∞}. We denote

by L1(h) the operator corresponding to L1 expressed with the original coordinate
x ∈ Ω1. Multiplying S byχ1, we may assume L1(h) is defined in Ω3 := Ω(3δ) and
L1(h) = L(h) in Ω3.

Let A0u := ϵ2∆u−u, A0 :=
(

A0 0
0 0

)
and L0(h) := A0 +K0

4 + ϵK0
5 in L∞(Ω)

with the Neumann boundary condition, where

K0
4U :=

rζγ+1
〈
Sr−1, u

〉
+ γξ

τ

(
0
1

)
,

K0
5U := ζγ 〈Sr, κ〉

( q
τ(p−1)u

− 1
τ ξ

)
−

rζγ
〈
Sr−1µκ, u

〉
+ γζγ−1 〈Sr, µκ〉 ξ

τ

(
0
ζ

)
for U = t(u, ξ). L0(h) is clearly invertible in L∞(Ω) for sufficiently small ϵ > 0 and
the spectral set is in the left hand side uniformly apart from the imaginary axis.
Hence we assume I0(h) ⊂ {Reλ < −α2} for a positive constant α2, where I0(h) is
the spectral set of L0(h).

Define Ω′
0 := Ω\Ω1 and D(λ) := χ1(x)(λ−L1(h))−1χ̃1(x) + χ0(x)(λ−L0(h))−1

for λ ∈ ωa0 ∪ ωa′
0,a1 with |λ| ≥ c′

√
δ, where χ̃1(x) is a cut-off function satisfying

0 ≤ χ̃1(x) ≤ 1, χ̃1(x) = 1 for x ∈ Ω1 and χ̃1(x) = 0 for x ∈ Ω\Ω3. Here we can
assume a0 < α2. Then we have

(λ − L(h))D(λ) = Id + O(e−cδ/ϵ) (23)

in Ω′
1 ∪ Ω′

0 and therefore it suffices to consider D(λ) in Ω2 := Ω1 ∩ Ω0 because of
Ω = Ω′

1 ∪ Ω′
0 ∪ Ω2.

Let U1 = t(u1, ξ1) := (λ−L1(h))−1χ̃1g and U0 = t(u0, ξ0) := (λ−L0(h))−1g for
g ∈ L∞(Ω). In Ω2, |L1(h)U − L0(h)U | ≤ O(e−cδ/ϵ) holds. Let Ω1/2 := Ω( 1

2δ) and
Ω4 := Ω\Ω1/2.

Proposition 1. For λ with Reλ > −a2(> −α2),

∥U1 − U0∥C2(Ω2) ≤ cϵ2(∥U1∥C0(Ω3) + ∥U0∥C0(Ω4)),

where ∥Uj∥Ck(Ωj) := ∥uj∥Ck(Ωj) + |ξj |.
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Proof. Let Ω′′ := Ω3∩Ω4 and P (r0, x0) := {x ∈ Ω1; |x−x0| < r0}. Now we fix any
x0 ∈ Ω2 and consider two balls P (r0ϵ, x0) ⊂ P (r1δ, x0) ⊂ Ω′′ for positive constants
r0, r1.

In Ω2, L1(h) = L0(h) + C†(h) with ∥C†(h)∥ ≤ O(e−cδ/ϵ) for c > 0. Hence
(λ − L0(h))(U1 − U0) = C†(h)U1 in Ω2 holds, specially, in P (r1δ, x0). Let Ã0u :=

∆u − u and Ã0 :=
(

Ã0 0
0 0

)
. Taking the stretched coordinate y := (x − x0)/ϵ,

we see the equation (λ − L0(h))(U1 − U0) = C†(h)U1 in P (r1δ, x0) is

(λ − L̃0)(Ũ1 − Ũ0) = C̃†(h)Ũ1, y ∈ P̃1 (24)

with ∥C̃†(h)∥ ≤ O(e−cδ/ϵ), where L̃0 := Ã0 + K0
4 + ϵK0

5 , Ũj(y) := Uj(x) with
y := (x− x0)/ϵ and P̃1 := P (r1δ/ϵ, 0). Since ϵ is sufficiently small, P̃1 is nearly the
whole R2 and the invertibility of L̃0 in X0 := L∞(R2) is clear. We may assume
λ is in the resolvent set of L̃0 and Ũ0, Ũ1, C̃1(h) are extended to R2 with the
estimates ∥Ũj∥X0 ≤ ∥Ũj∥C0( eP1)

≤ ∥Uj∥C0(Ωj) and ∥C̃†(h)∥ ≤ O(e−cδ/ϵ). K0
4 and

K0
5 are considered in this case as functionals with respect to u ∈ X0. In fact,

they are O(ϵ2) functionals because 〈S, u〉 = O(ϵ2) for u ∈ L∞(R2
+). Let W̃ :=

(λ − L̃0)−1C̃†(h)Ũ1 ∈ X0. Then we have

∥W̃∥C2(R2) ≤ O(e−cδ/ϵ)∥Ũ1∥X0 ≤ O(e−cδ/ϵ)∥U1∥C0(Ω3)

and
(λ − L̃0)(Ũ1 − Ũ0 − W̃ ) = 0, y ∈ P̃1. (25)

Let Ṽ = t(ṽ, ξ) := Ũ1 − Ũ0 − W̃ and we show{
∥ṽ∥C2( eP0)

= ϵ2∥v∥C2(P0) ≤ O(e−cδ/ϵ)∥v∥C0(P1),

|ξ| ≤ O(ϵ2)∥V ∥C0(P1),
(26)

where P̃0 := P (r0, 0), P0 := P (r0ϵ, x0), P1 := P (r1δ, x0) and V = t(v(x), ξ) :=
t(ṽ(y), ξ).

Since (λ− L̃0)Ṽ = 0, (λ−Ã0)ṽ = 0 for y ∈ P̃1. Let ṽ(y) = Σ∞
n=−∞bn(ρ)einθ and

ṽ|∂ eP1
= Σ∞

n=−∞b∗neinθ for y = ρeiθ. Then each bn(ρ) satisfies b′′n +
1
ρ
b′n − n2

ρ2
bn − (λ + 1)bn = 0,

b′n(0) = 0, bn(r1δ/ϵ) = b∗n.
(27)

Solutions of (27) are given by the Bessel functions Zn(βρ), where Zn is a solution
of

Z ′′
n +

1
ρ
Z ′

n − (1 +
n2

ρ2
)Zn = 0

and β :=
√

λ + 1.
Now we shall show Reβ > c for a constant c > 0. We may assume Re(λ + 1) >

−a2 + 1 > c′ > 0 for a constant c′ > 0. Then Reβ =
√

|λ + 1| cos 1
2θ >

√
c′ 1√

2
> c

for c > 0, where −π
2 < θ := arg(λ + 1) < π

2 . Since Zn(ρ) = O( 1√
ρe±ρ) as ρ → ∞,

|bn(ρ)| ≤ O(e−cρ)|b∗n| ≤ O(e−cρ)∥v∥C0(P1). Then we have

∥ṽ∥C2( eP0)
≤ O(e−cδ/ϵ)∥v∥C0(P1).

Since ṽ ∈ X0, |ξ| ≤ O(ϵ2)∥V ∥C0(P1) is obvious by substituting ṽ in K0
4 and K0

5 .
This means (26).
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Thus, we see

∥U1 − U0∥C2(P0) = ∥V − W∥C2(P1)

≤ O(
1
ϵ2

e−cδ/ϵ + ϵ2)∥V − W∥C0(P1)

≤ O(ϵ2)(∥U1∥C0(Ω3) + ∥U0∥C0(Ω4)),

which gives the proof.

We can express U0 = U1 + C0(h)U0 + C1(h)U1 in Ω2 with ∥Cj(h)U∥C2(Ω2) ≤
O(ϵ2)∥U∥C0(Ω). Hence it follows in Ω2

(λ − L(h))(χ1U1 + χ0U0) = g + C2(h)g,

where

C2(h)g := ((λ − L(h))χ0{C0(h)(λ − L0(h))−1g + C1(h)(λ − L1(h))−1χ̃1g}
and ∥C2(h)g∥C0(Ω2) ≤ O(ϵ2)∥g∥C0(Ω) is satisfied. Since (λ−L(h))(χ1U1+χ0U0) = g
in Ω′

1 ∪Ω′
0 as in (23), we can assume C2(h) is defined in Ω with the same estimate.

Thus (λ− L(h))D(λ) = Id + C2(h) holds. Since ∥C2(h)∥ ≤ O(ϵ2), Id + C2(h) is
invertible and we have (λ − L(h))D(λ)(Id + C2(h))−1 = Id. This means

(λ − L(h))−1 = D(λ)(Id + C2(h))−1 = D(λ)(Id + C3(h)) (28)

with ∥C3(h)∥ ≤ O(ϵ2) and λ is in the resolvent set of L(h).

Noting L(h) is a sectorial operator, we define the projections

Q(h) :=
1

2πi

∫
Γ1

(λ − L(h))−1dλ,

R(h) := Id − Q(h) and the eigenspaces E(h) := Q(h)L2(Ω), E⊥(h) := R(h)L2(Ω),
where Γ1 is a closed circle surrounding I1(h) in the region {Reλ > −α1}. Let
Φ0(h)(x) := ∂hS(x; h) = (∂hS(x; h), 0), Φ∗

0(h)(x) := 1
R

Ω(∂hS(x;h))2dx
∂hS(x; h) =

1
<Sl,Sl>

∂hS(x; h) + O(e−cδ/ϵ) and Q0(h)U :=
∫
Ω

u(x)φ∗
0(x; h)dx∂hS(x;h) for U =

t(u, ξ), where Φ∗
0(h)(x) = (φ∗

0(x; h), 0).

Lemma 4.2. ∥Q(h) − Q0(h)∥ ≤ cϵ2 holds.

Proof. This is shown in quite a similar way to Lemma 5.2 in [7] by using (28).

Lemma 4.2 implies that I1(h) = {λ0} and E(h) = span{Φ(h)} for λ0 ∈ R and a
function Φ(h). The following lemma is also shown in quite a similar way to Lemma
5.2 in [7].

Lemma 4.3. λ0 = λ0(h, ϵ) = O(ϵ) and Φ(h)(x) = ∂hS(x; h) + O(ϵ) ∈ X(h) hold.

Let Φ∗(h) be the eigenfunction of L∗(h), the adjoint operator of L(h) such
that L∗(h)Φ∗(h) = λ0Φ∗(h) and < Φ(h), Φ∗(h) >Ω= 1, where < U,U ′ >Ω:=∫

Ω

u(x)u′(x)dx + ξξ′ = 1 for U = t(u(x), ξ) and U ′ = t(u′(x), ξ′). Note that

Φ∗(h)(x) = Φ∗
0(h)(x) + O(ϵ) ∈ X(h) and E⊥(h) = {U ; < U,Φ∗(h) >Ω= 0} hold.

Let ϵB∗(h)Y := F′(Ψ(x; h))Y −L(h)Y . Note that |(B∗
1(h)Y )(x)| ≤ cχ2(ρ(x; h)/ϵ)

·∥V ∥∞ holds for Y = X2(ρ(x; h)/ϵ)V and B∗(h) = t(B∗
1(h), B∗

2(h)). Then (17) is
now written as

ht∂h(Ψ + Y ) + Yt = F(Ψ) + L(h)Y + ϵB∗(h)Y + N(Y ) (29)
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for Y = X2(ρ(x; h)/ϵ)V . By (18), we have

(ht − ϵ3H2)∂h(S(h) + ϵΨ1) + htYh + Yt = ϵ3Ψ3 + L(h)Y + ϵB∗(h)Y + N(Y ) (30)

Let Xω be the fractional space with the norm ∥·∥ω of X := L∞(Ω) with the norm
∥ · ∥∞ for 1/2 < ω < 1 such that |∇U | ≤ c∥U∥ω. Define the set V (D1) := {V ∈
Xω; ∥V ∥ω ≤ D1ϵ

3}. Suppose Y = Y (t; h)(x) = X2(ρ(x;h)/ϵ)V (x; h) ∈ E⊥(h) for
V ∈ V (D1). Then taking the inner product of (30) with Φ∗(h), we have

(ht − ϵ3H2)(1 + O(ϵ)) + ht < Yh, Φ∗(h) >Ω + < Yt,Φ∗(h) >Ω (31)
= ϵ3 < Ψ3, Φ∗(h) >Ω + < L(h)Y + ϵB∗(h)Y + N(Y ), Φ∗(h) >Ω

= O(ϵ4)+ < Y, λ0(h)Φ∗(h) >Ω +ϵO(∥V ∥∞) + O(∥V ∥2
∞)

= O(ϵ4 + ϵ∥V ∥∞ + ∥V ∥2
∞).

Here we note that

< Ψ3, Φ∗(h) >Ω=< Ψ3, Φ∗
0(h) >Ω +O(ϵ) =

∫
Ω

ψ3(x; h)φ∗
0(x;h)dx + O(ϵ) = O(ϵ)

holds because |ψ3(x; h)|, |φ∗
0(x; h)| ≤ cχ2(ρ(x;h)/ϵ).

On the other hand, Y (t, h) ∈ E⊥(h) implies that < Yt, Φ∗(h) >Ω= 0 and <
Yh, Φ∗(h) >Ω = − < Y, Φ∗

h(h) >Ω= O(∥V ∥∞). Hence (31) is

ht(1 + O(ϵ + ∥V ∥∞)) = ϵ3H2(1 + O(ϵ)) + O(ϵ4 + ϵ∥V ∥∞ + ∥V ∥2
∞).

Let ht = J1 = J1(h, V ; ϵ). Then the above shows

J1(h, V ; ϵ) = ϵ3H2(h) + O(ϵ4 + ϵ∥V ∥∞ + ∥V ∥2
∞) (32)

holds for V ∈ V (D1).
Next, operating R(h) to (30), we have

(ht − ϵ3H2)O(ϵ)+htR(h)Yh +Yt = ϵ3R(h)Ψ3 +R(h)L(h)Y + ϵB∗(h)Y +R(h)N(Y )

by using R(h)∂hS(h) = O(ϵ). Let Yt = R(h)L(h)Y + J2(h, V ; ϵ). Then

∥J2(h, V ; ϵ)∥X(h) ≤ O(ϵ3 + ϵ∥V ∥∞ + ∥V ∥2
∞ + |J1(h, V ; ϵ)| · ∥Vh∥∞) (33)

holds for Y = X2(ρ(x; h)/ϵ)V and V ∈ V (D1).
Let Ê⊥(h) := {V ∈ Xω; X2(ρ(x; h)/ϵ)V ∈ E⊥(h)} and fix h0.

Lemma 4.4. There exist a map Π(h) such that Π(h) : Ê⊥(h0) → Ê⊥(h) and
∥Πh(h)W∥∞ ≤ C∥W∥ω for W ∈ Ê⊥(h0).

Proof. In Ω′
1 = Ω(δ), U = t(u, ξ) ∈ Xω is represented by u = u(σ, z). First we

define a map Π̂(h) by

(Π̃(h)U)(σ, z) := t(u(σ − h, z), ξ)

in Ω′
1. In Ω0 = Ω\Ω′

1, we define

(Π̃(h)U)(x) := U(x) + t(v(h)(x), ξ),

where v(h)(x) is a function satisfying

A0v = 0, x ∈ Ω0, v(x) = u(σ − h, z) − u(σ, z), x ∈ ∂Ω0 = ∂Ω′
1. (34)

We construct the map Π̂(h) : E⊥(h0) → E⊥(h) by Π̂(h) := R(h)Π̃(h). Then the
map Π(h) : Ê⊥(h0) → Ê⊥(h) is given by Π(h) := X−1

2 (ρ(x; h)/ϵ)Π̂(h)X2(ρ(x; h)/ϵ).
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For Y = X2(ρ(x; h)/ϵ)Π(h)W ,

Yt = htX2(ρ(x; h)/ϵ){−c∗(ρ(x; h)/ϵ)
ρh(x;h)

ϵ
Id0Π(h) + Πh(h)}W

+ X2(ρ(x;h)/ϵ)Π(h)Wt

holds since we may assume χ′
2(ρ) = −c∗(ρ)χ2(ρ) and X′

2(ρ) = −c∗(ρ)X2(ρ)Id0 for a
bounded positive function c∗(ρ) and a matrix Id0 := diag(1, 0). Then the equation
Yt = R(h)L(h)Y + J2(h, V ; ϵ) becomes

J1(h, V ; ϵ){−c∗(ρ(x; h)/ϵ)
ρh(x; h)

ϵ
Id0Π(h) + Πh(h)}W + Π(h)Wt

= X−1
2 (ρ(x; h)/ϵ)R(h)L(h)X2(ρ(x; h)/ϵ)Π(h)W + X−1

2 (ρ(x; h)/ϵ)J2(h, V ; ϵ)

and
Wt = L̂(h) + Ĵ2(h,W ; ϵ), (35)

where
L̂(h) = Π−1(h)X−1

2 (ρ(x; h)/ϵ)R(h)L(h)X2(ρ(x; h)/ϵ)Π(h)W,

Ĵ2(h,W ; ϵ) = −J1(h,Π(h)W ; ϵ)Π−1(h){−c∗(ρ(x; h)/ϵ)
ρh(x; h)

ϵ
Id0Π(h) + Πh(h)}W

+ Π−1(h)X−1
2 (ρ(x;h)/ϵ)J2(h, Π(h)W ; ϵ).

By (33), Ĵ2(h,W ; ϵ) is estimated by

∥Ĵ2(h,W ; ϵ)∥∞ ≤ O(
1
ϵ
|J1(h,Π(h)W ; ϵ)| · ∥W∥∞ + ϵ3 + ϵ∥W∥∞ + ∥W∥2

∞)

≤ O(
1
ϵ
∥W∥3

ω + ϵ3 + ϵ∥W∥∞ + ∥W∥2
∞).

(36)

Let Ŵ (D1) := {W ∈ Xω; ∥W∥ω ≤ D1ϵ
3} again instead of V (D1) and Ŵ (D1, D2) :=

{W ∈ C([0, σ0]; Ê⊥(h0)); ∥W (h)∥ω ≤ D1ϵ
3, ∥W (h)−W (k)∥ω ≤ D2ϵ|h−k|}. Then,

∥Ĵ2(h,W ; ϵ) − Ĵ2(h′,W ′; ϵ)∥∞ ≤ c1ϵ(|h − h′| + ∥W − W ′∥ω) (37)

holds for 0 ≤ h, h′ ≤ σ0 and W , W ′ ∈ Ŵ (D1, D2), where c1 = c1(D1, D2) is a
positive constant depending on D1, D2.

Now, L̂(h) is

L̂(h) = Π−1(h)R̂(h)L̃(h)Π(h)W,

where R̂(h) := X−1
2 (ρ(x; h)/ϵ)R(h)X2(ρ(x; h)/ϵ) and L̃(h) := X−1

2 (ρ(x; h)/ϵ)L(h)
X2(ρ(x; h)/ϵ). L̃(h) has the same properties as L(h), that is, the spectral set Ĩ(h) of
L̃(h) consists of Ĩ1(h) and Ĩ2(h) such that Ĩ1(h) ⊂ {|λ| ≤ c

√
δ} and Ĩ2(h) ⊂ {Reλ <

−α1} for a positive constant α1 as in Lemma 4.1. Projections and eigenfunctions
are given by Q̃(h) := X−1

2 (ρ(x; h)/ϵ)Q(h)X2(ρ(x;h)/ϵ), Φ̃(h) = X−1
2 (ρ(x;h)/ϵ)Φ(h)

and so on.
The following lemma is proved in a similar manner to [7].

Lemma 4.5.

∥(L̂(h1) − L̂(h2))W∥∞ ≤ c

ϵ
|h1 − h2|∥W∥∞

holds for W ∈ Ŵ (D1).
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Then, quite a similar manner to [7], we can construct an exponentially attractive
invariant manifold Λ := {(h, Λ(h)); 0 ≤ h ≤ σ0} of{

ht = J1(h, V ; ϵ),
Wt = L̂(h) + Ĵ2(h,W ; ϵ)

(38)

with W = Λ(h) ∈ Ŵ (D1, D2) by taking appropriate positive constants D1, D2 and
sufficiently small, but O(1) attractive region in (38). Thus, the solution U of (4) is
given by U(t, x) = Ψ(x; h(t)) + X2(ρ(x; h)/ϵ)Π(h) Λ(h(t))(x).

5. Proof of Theorem 3.2. In this section we prove Theorem 3.2. Only in this
section we denote the resolvent set (resp. the spectral set) of an operator by ρ( · )
(resp. σ( · )). Let S := (S, ζ) be the solution stated in Theorem 2.1, i.e., a boundary
one-spike layer in the stretched domain R2

+. Let L := F ′(S), i.e.,

L :=

 L − qr

τ(p − 1)
〈
Sr−1, ·

〉
ζγS − qγ

τ(p − 1)
〈Sr, 1〉 ζγ−1S

r

τ

〈
Sr−1, ·

〉
ζγ+1 γ

τ


with the Neumann boundary condition, where

L := ∆ − 1 + (p − 1)Sp−1

with the Neumann boundary condition. In this section we assume that p = r − 1.
The spectra of L may not consist only of eigenvalues, since the underlying set R2

+

is not bounded. In this case studying the resolvent set seems to be easier than
studying the spectral set. In order to study the resolvent set of L we will find the
set of λ ∈ C where the following problem has the unique solution (φ, η):

(L − λ)
(

φ
η

)
=

(
Φ
Y

)
in R2

+, ∂νφ = 0 on ∂R2
+. (39)

From the second equation of (39) we have

η =
γ

〈
Sr−1, φ

〉
τλ − γ

− τY

τλ − γ
, (40)

provided that λ ̸= γ/τ . Substituting (40) into the first equation of (39), we have

(L − λ)φ −
qr

〈
Sr−1, φ

〉
ζγS

τ(p − 1)

− qγ 〈Sr, 1〉 ζγ−1S

τ(p − 1)

(
r
〈
Sr−1, φ

〉
τλ − γ

ζγ+1 − τY

τλ − γ

)
= Φ.

Substituting ζ−γ =
〈
Sr−1, 1

〉
into this equation, we have

(L + Bλ − λ)φ = Φ − qγY

(p − 1)(τλ − γ)ζ
S, (41)

where

Bλ[φ] := −
qrλ

〈
Sr−1, φ

〉
(p − 1)(τλ − γ) 〈Sr, 1〉

S. (42)

If L + Bλ − λ is invertible, then it follows from (40) and (41) that (39) has the
unique solution, hence λ ∈ ρ(L). Therefore, we have obtained the following:

Lemma 5.1. Suppose that λ ̸= γ/τ . If L + Bλ − λ is invertible, then λ ∈ ρ(L).
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Here we recall the Sherman-Morrison formula [23] which is useful for the analysis
of the spectra of L. Let A be an invertible linear operator on L2(R2

+), and let B
be a rank-one operator on L2(R2

+) defined by B[ · ] := 〈Ψ1, · 〉Ψ2, where Ψ1,
Ψ2 ∈ L2(R2

+). Then the Sherman-Morrison formula is

(A + B)−1 =
(

I − A−1B

k

)
A−1,

where k = 1 +
〈
Ψ1, A

−1Ψ2

〉
(∈ R). Hence,

if k ̸= 0, then A + B is invertible. (43)

Before going to the next lemma, we recall a known result about the spectra of
L.

Proposition 2 ([20, Lemma C]). The problem

Lϕ = λϕ in R2
+, ∂νϕ = 0 on ∂R2

+ (44)

has the following set of eigenvalues: λ1 > 0, λ2 = 0, and other spectra are (real)
negative and bounded away from 0. Moreover, λ1 and λ2 are simple, and ker(L −
λ2) = span {Sl}. Here l denote the first argument of the coordinate of R2

+.

In this section we do not use µ for the second argument of the coordinate. We use
µ for eigenvalues of (44). Hereafter, by (λ1, ψ1) (resp. (λ2, ψ2)) we denote the first
(resp. the second) eigenpair of (44). Since we can take (0, Sl/ ∥Sl∥L2) as (λ2, ψ2),
we see

〈
ψ2, S

r−1
〉

= 〈ψ2, S〉 = 0.
We study the invertibility of L + Bλ − λ in order to study the resolvent set of

L. Assume that λ ̸∈ σ(L)∪ {γ/τ}. Since Bλ is a rank-one operator, it follows from
the Sherman-Morrison formula that

(L + Bλ − λ)−1 =
(

I − (L − λ)−1Bλ

k(λ)

)
(L − λ)−1, (45)

where

k(λ) := 1 −
qrλ

〈
Sr−1, (L − λ)−1[S]

〉
(p − 1)(τλ − γ) 〈Sr, 1〉

. (46)

From (43) we see that L + Bλ −λ is invertible, if k(λ) ̸= 0 and if λ ̸∈ σ(L)∪{γ/τ}.
Using

LS = (p − 1)Sp = (p − 1)Sr−1, (47)
we have〈

Sr−1, (L − λ)−1 [λS]
〉

=
〈
Sr−1, (L − λ)−1 [(λ − L)S + LS]

〉
= −

〈
Sr−1, S

〉
+

〈
Sr−1, (L − λ)−1 [LS]

〉
= −〈Sr, 1〉 + (p − 1)

〈
Sr−1, (L − λ)−1

[
Sr−1

]〉
. (48)

Substituting (48) into (46), we have

k(λ) =
τλ + s + 1 − k0(λ)

τλ − γ
, where k0(λ) = qr

〈
Sr−1, (L − λ)−1[Sr−1]

〉
〈Sr, 1〉

. (49)

Hence we see that k(λ) = 0, if

τλ + s + 1 = k0(λ). (50)

Therefore, we see by Lemma 5.1 that

λ ∈ ρ(L), if (50) does not hold and if λ ̸∈ σ(L) ∪ {γ/τ}. (51)
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When we check the invertibility of L− λ for λ ∈ {λ1, γ/τ}, we cannot use (51) and
use other methods.

First we study the non-real spectra of L.

Lemma 5.2. sup {Reλ; λ ∈ σ (L) \R} ≤ λ1/2 − (s + 1)/(2τ).

Proof. Let λ := λR + iλI (λI ̸= 0) be a spectrum of L. Then λ ̸∈ σ(L). From the
spectral decomposition we have

(L − λR − iλI)
−1 [

Sr−1
]

=
∫

σ(L)

dEµ

[
Sr−1

]
µ − λR − iλI

. (52)

Since λ is a spectrum, λ should satisfy (50), otherwise λ ∈ ρ(L). Substituting (52)
into (50), and taking the real and the imaginary parts of it, we have

τλR + s + 1 =
∫

σ(L)

(µ − λR)d
〈
Eµ

[
Sr−1

]
, Sr−1

〉
(µ − λR)2 + λ2

I

, (53)

τλI =
∫

σ(L)

λId
〈
Eµ

[
Sr−1

]
, Sr−1

〉
(µ − λR)2 + λ2

I

. (54)

Since λI ̸= 0, we multiply (54) by (λ1 − λR)/λI and subtract it from (53). Then

2τλR − τλ1 + s + 1 =
∫

σ(L)

(µ − λ1)d
〈
Eµ

[
Sr−1

]
, Sr−1

〉
(µ − λR)2 + λ2

I

. (55)

Since sup{Reλ; λ ∈ σ(L)} ≤ λ1, the right-hand side of (55) is non-positive, i.e.,
2τλR − τλ1 + s + 1 ≤ 0. This inequality proves the lemma.

The similar argument to the proof above appears in [29].

Lemma 5.3. Let Ωδ′,R be as in Theorem 3.1. There are δ′ > 0 and R > 0 such
that Ωδ′,R ⊂ ρ(L).

Proof. We see that there are c > 0, δ′ > 0, R > 0 such that Ωδ′,R ⊂ ρ(L) and∥∥(L − λI)−1
∥∥ ≤ C/|λ| for λ ∈ Ωδ′,R.

Because of (51), it is enough to show that k(λ) ̸= 0 for λ ∈ Ωδ′,R. Since

|
〈
Sr−1, (L − λ)−1[λS]

〉
≤

∥∥Sr−1
∥∥ ∥∥(L − λ)−1

∥∥ ∥λS∥
≤ (C/|λ|)|λ|

∥∥Sr−1
∥∥ ∥S∥ ≤ C,

we have

|k(λ)| ≥ 1 −

∣∣∣∣∣qr
〈
Sr−1, (L − λ)−1[λS]

〉
(p − 1)(τλ − γ) 〈Sr, 1〉

∣∣∣∣∣ ≥ 1 − C

|τλ − γ|
.

Thus, if R is large, then

|k(λ)| ≥ 1/2 for λ ∈ Ωδ′,R, (56)

hence k(λ) ̸= 0 if λ ∈ Ωδ′,R. The proof is complete.

From now on we study the real spectra of L.

Lemma 5.4. For small τ > 0, there is δ > 0 such that (−δ,+∞)\{0, λ1, γ/τ} ⊂
ρ (L).
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Proof. We use (50). Specifically, we will show that, if τ > 0 is small, there is δ > 0
such that τλ + s + 1 ̸= k0(λ) for λ ∈ (−δ,+∞)\{0, λ1, γ/τ}(⊂ ρ(L)). From the
spectral decomposition we have

k0(λ) =
qr

〈Sr, 1〉

(〈
ψ1, S

r−1
〉2

λ1 − λ
+

〈
ψ2, S

r−1
〉2

λ2 − λ

+
∫

σ(L)\{λ1,λ2}

d
〈
Eµ[Sr−1], Sr−1

〉
µ − λ

)
.

It follows from Proposition 2 that
〈
ψ2, S

r−1
〉

= 0 and there is δ0 > 0 such that
sup{λ; λ ∈ σ(L)\{λ1, λ2}} < −δ0. Hence, k0(λ) ∈ C0((−δ0, +∞)\{λ1}). More-
over,

lim
λ→λ1−0

k0(λ) = +∞, lim
λ→λ1+0

k0(λ) = −∞. (57)

Differentiating k0(λ) with respect to λ, we have

d

dλ
k0(λ) =

qr

〈Sr, 1〉

(〈
ψ1, S

r−1
〉2

(λ1 − λ)2
+

∫
σ(L)\{λ1,λ2}

d
〈
Eµ[Sr−1], Sr−1

〉
(µ − λ)2

)
> 0 (58)

for λ ∈ (−δ0, +∞)\{λ1}. Since L is invertible in span {Sl}⊥, we see by (47) that
L−1[Sr−1] = S/(p − 1). Therefore

k0(0) =
qr

〈
Sr−1, L−1[S]

〉
〈Sr, 1〉

=
qr

p − 1
. (59)

Combining (57), (58), and (59), we see that there is δ > 0 such that k0(λ) ̸= τλ+s+1
for λ ∈ (−δ,+∞)\{λ1, γ/τ}, if τ is small.

The similar proof to the above appears in [21].

Lemma 5.5. For small τ > 0, λ1 ∈ ρ (L).

Proof. Because of Lemma 5.1, it is enough to show that L + Bλ1 − λ1 is invertible.
We consider the problem

(L + Bλ1 − λ1)φ = Φ0. (60)

Let φ := αψ1 + φ⊥ (
〈
ψ1, φ

⊥〉
= 0). Let P be the projection operator onto

span {ψ1}⊥, i.e., P := I − 〈ψ1, · 〉ψ1. Then the equation on span {ψ1} and the
equation on span {ψ1}⊥ become

α 〈ψ1, Bλ1 [ψ1]〉 +
〈
ψ1, Bλ1 [φ

⊥]
〉

= 〈ψ1,Φ0〉 , (61)

(L − λ1)φ⊥ + αPBλ1 [ψ1] + PBλ1 [φ
⊥] = PΦ0, (62)

respectively. Since

〈ψ1, Bλ1 [ψ1]〉 =
qλλ1

〈
Sr−1, ψ1

〉
(p − 1)(τλ1 − γ) 〈Sr, 1〉

〈ψ1, S〉 ̸= 0,

we can solve (61) with respect to α. Substituting it into (62), we have

(L − λ1)φ⊥ = PΦ0 −
〈ψ1, Φ0〉
〈ψ1, S〉

PS. (63)
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Note that 〈ψ1, S〉 ̸= 0, because ψ1 > 0. The operator L − λ1 is invertible in
span{ψ1}⊥, and the right-hand side of (63) is in span{ψ1}⊥. Thus (63) can be
solved with respect to φ⊥. Let φ⊥

0 be the solution of (63), namely,

φ⊥
0 := (L − λ1)−1

[
PΦ0 −

〈ψ1, Φ0〉
〈ψ1, S〉

PS

]
.

Substituting φ⊥
0 into (61), we obtain the solution α0 of (61), namely

α0 :=
〈ψ1, Φ0〉 −

〈
ψ1, Bλ1 [φ

⊥
0 ]

〉
〈ψ1, Bλ1 [ψ1]〉

.

Then φ0 := α0ψ1 + φ⊥
0 is the unique solution of (60).

Lemma 5.6. For small τ > 0, γ/τ ∈ ρ (L).

Proof. Let λ = γ/τ . By D we define

Dφ := −
qr

〈
Sr−1, φ

〉
τ(p − 1) 〈Sr, 1〉

S. (64)

It is enough to show that (39) has the unique solution. The first equation of (39) is

(L + D − λ)φ = Φ +
qrη

τ(p − 1)ζ
S.

It follows from (43) that L + D − λ is invertible, if

(k1(λ) :=) 1 −
qr

〈
Sr−1, (L − λ)−1[S]

〉
τ(p − 1) 〈Sr, 1〉

̸= 0

and if λ ̸∈ σ(L). Using (48), we have

k1(λ) =
1
τλ

(
τλ +

qr

p − 1
− k0(λ)

)
.

We see by the graph of k0(λ) that k0(λ) ̸= τλ + qr/(p − 1), when τ is small. Thus
k1(λ) ̸= 0, and L + D − λ is invertible. Let K := (L + D − λ)−1. We have

φ = KΦ +
qrη

τ(p − 1)ζ
KS. (65)

Substituting (65) into the second equation of (39), we have

r

τ

〈
Sr−1, KΦ

〉
+

qr2η

τ2(p − 1)ζ
〈
Sr−1,KS

〉
= Y.

If
〈
Sr−1, KS

〉
̸= 0, then this equation has the unique solution with respect to η,

hence the pair φ, which obtained by (65), and η is the unique solution of (39) and
λ ∈ ρ(L). We will show that

〈
Sr−1,KS

〉
̸= 0. We see by a direct calculation that

KS = (L − λ)−1[S]/k1(λ), where we use k1(λ) ̸= 0. Using (48), we have〈
Sr−1,KS

〉
=

〈
Sr−1, (L − λ)−1[S]

〉
k1(λ)

=
−〈Sr, 1〉
λk1(λ)qr

(qr − k0(λ)) .

We see by the graph of k0(λ) that k0(λ) ̸= qr. Thus
〈
Sr−1, KS

〉
̸= 0.

Lemma 5.7. For small τ > 0, 0 is a simple eigenvalue of L.
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Proof. It follows from a direct calculation that 0 is an eigenvalue of L and that
(Sl, 0) is a corresponding eigenvector.

We will show that dimkerL = 1. It is enough to show that there is no eigen-
vector corresponding to 0 perpendicular to (Sl, 0) in the L2 sense. Let (φ, η) ∈
span{(Sl, 0)}⊥. Specifically, φ ∈ span{Sl}⊥. We consider the problem

L
(

φ
η

)
= 0. (66)

Solving the second equation of (66) with respect to η, and substituting it into the
first equation of (66), we have (L + D)φ = 0, where D is defined by (64). Since L

is invertible in span {Sl}⊥, we see by (43) that L + D is invertible, if

1 −
qr

〈
Sr−1, L−1[S]

〉
τ(p − 1) 〈Sr, 1〉

̸= 0. (67)

Since L is self-adjoint, we have〈
Sr−1, L−1[S]

〉
=

〈
LL−1[Sr−1], L−1[S]

〉
=

〈
L−1[Sr−1], S

〉
= 〈S, S〉 /(p − 1).

The second term of the left-hand side of (67) goes to −∞ as τ → 0, and it is not
0 when τ is small. Therefore, (67) holds provided that τ is small. 0 is the unique
solution in span {Sl}⊥ of (L+D)φ = 0. It follows from the second equation of (66)
that η = 0, hence (φ, η) = (0, 0). We have shown that dimkerL = 1.

Next, we will show that kerL2 = kerL. We consider the problem

L
(

φ
η

)
=

(
Sl

0

)
.

Solving the second equation with respect to η, and substituting it into the first
equation, we have

(L + D)φ = Sl. (68)
Calculating 〈(68), Sl〉, we have

0 = 〈φ,LSl〉 + 〈Dφ,Sl〉 = 〈Lφ + Dφ,Sl〉 = 〈Sl, Sl〉 ̸= 0,

which is a contradiction. The proof of the lemma is complete.

Proof of Theorem 3.2. It follows from Lemmas 5.2 and 5.3 that (Ωδ′,R ∪ Ωδ)\R ⊂
ρ(L). Combining Lemmas 5.4, 5.5 and 5.6, we see that (−δ,+∞)\{0} ⊂ ρ(L).
Lemma 5.7 says that 0 is a simple eigenvalue. We have proven (i).

We will prove (ii). Hereafter we assume that λ ∈ Ωδ′,R. By (42) we have

∥Bλ[φ]∥ ≤ C|λ|
|τλ − γ|

∥φ∥ ≤ C ∥φ∥ . (69)

By (56) we see that (L + Bλ − λ) is invertible if λ ∈ Ωδ′,R. Using (45), (69) and
(56), we have∥∥(L + Bλ − λ)−1[φ]

∥∥ ≤
∥∥(L − λ)−1[φ]

∥∥ +
1

|k(λ)|
∥∥(L − λ)−1Bλ

[
(L − λ)−1[φ]

]∥∥
≤ C

|λ|
∥φ∥ +

C

|λ|
∥∥Bλ

[
(L − λ)−1[φ]

]∥∥
≤ C

|λ|
∥φ∥ +

C

|λ|
∥∥(L − λ)−1[φ]

∥∥
≤ C

|λ|

(
1 +

1
|λ|

)
∥φ∥ . (70)
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We consider the solution (φ, η) of (39). By (41) and (70), we have

∥φ∥ ≤
∥∥(L + Bλ − λ)−1[Φ]

∥∥ +
C

|τλ − γ|
|Y |

∥∥(L + Bλ − λ)−1[S]
∥∥

≤ C

|λ|
∥Φ∥ +

C

|λ||τλ − γ|
|Y |. (71)

Using (40), we have

|η| ≤ C

|τλ − γ|
(∥φ∥ + |Y |) ≤ C

|τλ − γ|
(∥Φ∥ + |Y |) +

C

|τλ − γ|
|Y |. (72)

We obtain the conclusion by (71) and (72).

Lemma 5.8. Let µ > 0 be a small and let φ be a solution of

λφ − Lφ = ge−µ|x| in R2. (73)

Then there is θ ∈ (π/2, π) such that

|φ(x)| ≤ C

|λ|
∥g∥L∞ e−µ|x| for x ∈ R2 and λ ∈ Sθ, (74)

where Sθ := {λ ∈ C; |arg λ| ≤ θ}.

Proof. SInce ge−µ|x| ∈ L2(R2), (73) has a solution of φ ∈ H2(R2) such that

∥φ∥L∞ ≤ c ∥φ∥H2 ≤ c

|λ|

∥∥∥ge−µ|x|
∥∥∥

L2
≤ c

|λ|
∥g∥L∞ . (75)

We choose large R > 0. Then (74) holds for |x| ≤ 2R.
We will show that (74) holds for |x| ≥ 2R. Let δx0 be the Dirac delta function,

and let Gλ(x, x0) be the Green function of

−∆ϕ + (λ + 1)ϕ = δx0 in R2.

Then φ satisfies

φ(x) =
∫

R2
Gλ(x, y)

{
g(y)e−µ|y| + pSp−1(y)φ(y)

}
dy

=
∫

R2
Gλ(0, y)

{
g(x − y)e−µ|x−y| + pSp−1(x − y)φ(x − y)

}
dy. (76)

The Green function has an explicit which satisfies

z2 d2K

dz2
+ z

dK

dz
− z2K = 0.

Let z ∈ C. K satisfies

K(z) =
1

Γ
(

1
2

)√
π

2
e−z

∫ +∞

0

e−te−
1
2

(
z +

t

2

)− 1
2

dt.

See [10, Appendix C] for more details. Then

Gλ(0, y) =
1

Γ
(

1
2

)√
π

2
e−

√
1+λr

∫ +∞

0

e−tt−
1
2

(√
1 + λr +

t

2

)− 1
2

dt,

where r = |y|. We consider the case where r is large. Since∣∣∣∣∣
(√

1 + λr +
t

2

)− 1
2

∣∣∣∣∣ ≤ 1
√

r |1 + λ|
1
4

and
∣∣∣e−√

1+λr
∣∣∣ ≤ e−Re

√
1+λr,
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we have
|Gλ(0, y)| ≤ ce−Re

√
1+λr. (77)

We consider the case where r is small. Let r0 > 0 be fixed. Then∫ r0

0

∣∣∣e−√
1+λr

∣∣∣ ∫ +∞

0

e−tt−
1
2

∣∣∣∣∣
(√

1 + λr +
t

2

)− 1
2

∣∣∣∣∣ dtrdr

=
∫ +∞

0

e−tt−
1
2

∫ r0

0

∣∣∣∣∣e−√
1+λr

(√
1 + λr +

t

2

)− 1
2

∣∣∣∣∣ rdrdt.

Since ∫ r0

0

∣∣∣∣∣e−√
1+λr

(√
1 + λr +

t

2

)− 1
2

∣∣∣∣∣ rdr ≤ 1

|1 + λ|
1
4

∫ r0

0

e−Re
√

1+λr
√

rdr,

we have∫ r0

0

∣∣∣K (√
1 + λr

)∣∣∣ rdr ≤ c

|1 + λ|
1
4

∫ r0

0

e−Re
√

1+λr
√

λdr

∫ +∞

0

e−tt−
1
2 dt ≤ c.

(78)
We will estimate (76). If µ is small, then Re

√
1 + λ > µ for λ ∈ Sθ. Using (77),

(78) and −|y − x| + |x| ≤ |y|, we have∣∣∣∣∫
R2

Gλ(0, y)g(x − y)e−µ|x−y|dy

∣∣∣∣ ≤ c ∥g∥L∞ .

We divide R2 into three regions:

I1 := {y ∈ R2; |y − x| ≤ R}, I2 := {y ∈ R2; |y| ≤ R} and I3 := R2\(I1 ∪ I2).

Because of (75) and the boundedness of S, we have∣∣∣∣∫
I1

Gλ(0, y)Sp−1(x − y)φ(x − y)dy

∣∣∣∣ eµ|x| ≤
c ∥g∥L∞

|λ|
,

where we use (77) and −|y − x| + |x| ≤ |y|.
We will estimate (76) on I2. There is α > 0 such that

Sp−1(x − y) ≤ ce−α|x−y| ≤ ce−α|x|+α|y|. (79)

Using (75) and |y| ≤ R, we have∣∣∣∣∫
I2

Gλ(0, y)Sp−1(x − y)φ(x − y)dy

∣∣∣∣ eµ|x| ≤
c ∥g∥L∞

|λ|

∫
|y|≤R

|Gλ(0, y)| dy =
c ∥g∥l∞

|λ|
,

where we choose µ such that α > µ > 0.
We will estimate (76) on I3. We can choose α > 0 such that Re

√
1 + λ > α.

Combining (77) and (79), we have∣∣∣∣∫
I2

Gλ(0, y)Sp−1(x − y)φ(x − y)dy

∣∣∣∣ eµ|x| ≤
c ∥g∥L∞

|λ|

∫
R2

e−Re
√

1+λ|y|+α|y|dy

=
c ∥g∥L∞

|λ|
.

Summing the estimates on I1, I2 and I3, we obtain the conclusion of the lemma.
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6. Proof of Theorem 3.3. Denote the eigenfunction of (16) corresponding to λ1

by ψ. It is well-known that ψ = ψ(y) is radially symmetric and decays exponentially
as |y| → ∞. In the proof of Theorem 3.3, we construct an eigenpair (λ, φ, η) which
satisfies

φ ∼ ψ1 + ψ2, η ∼ 0, λ ∼ λ1 (80)

as ϵ → 0, where

ψ1(x) =


ψ(

|x − h1|
ϵ

), h1 ∈ Ω,

2ψ(
|x − h1|

ϵ
), h1 ∈ ∂Ω

ψ2(x) =


− ψ(

|x − h2|
ϵ

), h2 ∈ Ω,

− 2ψ(
|x − h2|

ϵ
), h2 ∈ ∂Ω.

If there is an eigenpair (λ, φ, η) and η is close to 0, we rewrite (15) into
λφ ∼ ϵ2∆φ − φ + p

up−1

ξq
φ,∫

Ω

ur−1φdx ∼ 0.

From the first relation, the pair of the eigenvalue λ and the eigenfunction φ is close
to (λ1, ψ). Since u is close to the positive spiky solution ζq/(p−1)S in neighborhoods
of h1 and h2, φ needs to change the sign because of the second relation. This is
why we construct the pair of the eigenvalue and the eigenfunction (λ, φ, η) such as
(80), and ψ1 and ψ2 have the opposite sign. In fact, it seems that there is no pair
of the eigenvalue and the eigenfunction (λ, φ, η) such that φ is positive and λ tends
to λ1 as ϵ → 0. Namely, if φ is positive, λ is away from λ1, which is not shown in
this paper rigorously.

In the proof, we suppose that λ = λ1 is not an eigenvalue of (15) without loss
of generality. This assumption shall be used in the last part of the proof of Theo-
rem 3.3.

Now we define T = (T1, T2) by

T1(φ, η, λ, ϵ) = L(ψ1 + ψ2 + φ) − q
up

ξq+1
η − (λ1 + λ)(ψ1 + ψ2 + φ),

T2(φ, η, λ, ϵ) = −η +
r

ϵnξs|Ω|

∫
Ω

ur−1(ψ1 + ψ2 + φ)dx

− s

ϵnξs+1|Ω|

∫
Ω

urdx − τ(λ1 + λ)η,

where L = ϵ2∆−1+pup−1/ξq. This nonlinear functional T operates from H2
N,ϵ(Ω)×

R × R × (0, ϵ0) → L2
ϵ(Ω) × R, where L2

ϵ(Ω) and H2
N.ϵ(Ω) are defined by

L2
ϵ(Ω) =

{
ϕ ∈ L2(Ω)

∣∣∣∣ ∥ϕ∥2
L2

ϵ
≡ 1

ϵn

∫
Ω

|ϕ|2dx < ∞
}

,

H2
ϵ (Ω) = {ϕ ∈ H2(Ω) | ∥ϕ∥2

H2
ϵ
≡ ∥ϕ∥2

L2
ϵ
+ ϵ2∥∇ϕ∥2

L2
ϵ
+ ϵ4∥∇2ϕ∥2

L2
ϵ

< ∞},

H2
N,ϵ(Ω) =

{
ϕ ∈ H2

ϵ (Ω)
∣∣∣∣ ∫

Ω

(ψ1 + ψ2)φdx = 0, ∂νφ = 0 on ∂Ω
}

.

Here ∇φ and ∇2φ represent the gradient and the Hessian matrix, respectively. We
also define ∥ · ∥H1

ϵ
by ∥ϕ∥2

H1
ϵ
≡ ∥ϕ∥2

L2
ϵ

+ϵ2∥∇ϕ∥2
L2

ϵ
. When we fix ϵ, it is clear that

L2
ϵ(Ω) and H2

ϵ (Ω) are Hilbert spaces and each norms are equivalent to ones for the
usual spaces L2(Ω) and H2(Ω).
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We shall find a solution (φ, η, λ) of T = 0 by two facts. At first, we have the
following proposition.

Proposition 3. T (0, 0, 0, ϵ) tends to 0 in L2
ϵ(Ω) × R as ϵ → 0.

Proof. Straightforward calculation gives

T1(0, 0, 0, ϵ) = p

{
up−1

ξq
− S(

x − h1

ϵ
)p−1

}
ψ1 + p

{
up−1

ξq
− S(

x − h2

ϵ
)p−1

}
ψ2.

Since u is close to ζq/(p−1)S in neighborhoods of h1 and h2, and ψ1, ψ2 are exponen-
tially small with respect to ϵ outside the neighborhoods, T1(0, 0, 0, ϵ) → 0 in L2

ϵ(Ω)
as ϵ → 0.

We suppose that h1 ∈ ∂Ω and h2 ∈ Ω. Taking the limit of ϵ → 0 for T2(0, 0, 0, ϵ),
we have

T2(0, 0, 0, 0) =
rζ

q(r−1)−s
p−1

|Ω|

(
2

∫
Rn

+

Sr−1ψdy −
∫

Rn

Sr−1ψdy

)
= 0

because S and ψ are radially symmetric, where Rn
+ = {y = (y1, . . . , yn) ∈ Rn | yn >

0}. In the other cases, we can prove T2(0, 0, 0, 0) = 0 similarly. Hence we complete
the proof.

Next we study the invertibility of the linearized operator of T with respect to
(φ, η, λ) at (φ, η, λ) = (0, 0, 0).

Lemma 6.1. Suppose that λ=λ1 is not an eigenvalue of (15). Then T(φ,η,λ)(0, 0, 0, ϵ)
is invertible. Moreover, ∥T−1

(φ,η,λ)(0, 0, 0, ϵ)∥ ≤ M for a constant M > 0 independent
of ϵ > 0, where ∥ · ∥ is the usual norm for operators.

Proof. Put T(φ,η,λ)(0, 0, 0, ϵ)[φϵ, ηϵ, λϵ] = 0. Then,
Lφϵ − q

up

ξq+1
ηϵ − λ1φϵ − λϵ(ψ1 + ψ2) = 0,

− ηϵ +
r

ϵnξs|Ω|

∫
Ω

ur−1φϵdx − sηϵ

ϵnξs+1|Ω|

∫
Ω

urdx − τλ1ηϵ = 0.

(81)

It follows from the second equation that

ηϵ =
r

ϵnξs|Ω|(τλ1 + 1 + s
ϵnξs+1|Ω|

∫
Ω

urdx)

∫
Ω

ur−1φϵdx. (82)

Without loss of generality, we suppose that |λϵ| + ∥φϵ∥L2
ϵ

= 1. Then, it is easy
to see from (81) that ∥φϵ∥H2

ϵ
≤ c and |ηϵ| ≤ c for a constant c independent of ϵ.

Therefore, there are λ0, η0 ∈ R such that λϵ → λ0 and ηϵ → η0 as ϵ → 0. Although
we may need to take a subsequence of ϵ, we use the same notation.

Next we study the behavior of φϵ as ϵ → 0, which will determine η0 and λ0. Let
χ be a smooth cut-off function defined by

χ(r) =

 1, 0 ≤ r ≤ 1
2
,

0, r ≥ 1.

Set φϵ,R,i(x) = χi(x + hi)φϵ(x + hi) for i = 1, 2, and φϵ,R,0(x) = (1 − χ1(x) −
χ2(x))φϵ(x), where χi(x) = χ(|x − hi|/Rϵ) for i = 1, 2 for R sufficiently large
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independently of ϵ. Note that φϵ(x) = φϵ,R,0(x) +φϵ,R,1(x + h1) + φϵ,R,2(x + h2),
and

|∇χi| ≤
c

ϵR
, |∇2χi| ≤

c

ϵ2R2
(83)

hold true. The constant R will be determined later.
In the following, we just consider the case h1 ∈ ∂Ω and h2 ∈ Ω. Other cases are

shown by the same argument as this case. Let c be a constant independent of ϵ
and R. This constant shall appear several times in the proof and we use the same
notation unless readers are confused.

We estimate φϵ,R,0 in L2
ϵ(Ω). It follows from simple calculations that

ϵ2φϵ,R,0 − (1 + λ1)φϵ,R,0

= −p
up−1

ξq
φϵ,R,0 + λϵ(ψ1 + ψ2)(1 − χ1 − χ2) − 2ϵ2∇(χ1 + χ2) · ∇φϵ

− ϵ2∆(χ1 + χ2)φϵ + (1 − χ1 − χ2)q
up

ξq+1
ηϵ.

(84)

We multiply φϵ,R,0 to the both sides of this equality and integrate it by parts.
Then, the integral over ∂Ω ∩ BϵR(h1) naturally appears because φϵ,R,0 may not
satisfy the homogeneous Neumann boundary condition on ∂Ω ∩ BϵR(h1). By the
similar argument to the proof of Trace Theorem (see [9]), we readily see that

∥ϕ∥2
L2(∂Ω∩BϵR(h)) ≤ c(∥ϕ∥2

L2(Ω) + ∥∇ϕ∥L2(Ω)∥ϕ∥L2(Ω)) (85)

for ϕ ∈ H1(Ω) and h ∈ ∂Ω and a constant c independent of ϵ and R. Since h1 ∈ ∂Ω
and h2 ∈ Ω, we have∫

Ω

−∆φϵ,R,0φϵ,R,0dx =
∫

Ω

|∇φϵ,R,0|2dx −
∫

∂Ω∩BϵR(h1)

∂χ1

∂ν
χ1|φϵ|2dSσ

and

ϵ2

∣∣∣∣∣
∫

∂Ω∩BϵR(h1)

∂χ1

∂ν
χ1|φϵ|2dSσ

∣∣∣∣∣ ≤ ϵ2
∫

∂Ω∩BϵR(h1)

|∇χ1||φϵ|2dSσ

≤ cϵ

R
(∥φϵ∥2

L2(Ω) + ∥∇φϵ∥L2(Ω)∥φϵ∥L2(Ω)),

where Sσ represents the (n − 1)-dimensional surface measure. Since ∥φϵ∥H2
ϵ (Ω) ≤ c

and ∥φϵ,R,0∥L2
ϵ(Ω) ≤ 1, and ψ1, ψ2 and u is small outside BϵR(h1) ∪ BϵR(h2), it

follows from (84) that

ϵ2∥∇φϵ,R,0∥2
L2

ϵ
+ (1 + λ1)∥φϵ,R,0∥2

L2
ϵ
≤ δ

for small δ > 0.
Next we estimate φϵ,R,1. Without loss of generality, we suppose that h1 = 0

and the tangent space of ∂Ω at the origin corresponds to a (n − 1)-dimensional
hyper plane {x ∈ Rn | xn = 0}. Let z = Φ(x) be a diffeomorphism defined in a
neighborhood N of the origin such that

Φ(Ω ∩ N) ⊂ Rn
+, Φ(∂Ω ∩ N) ⊂ ∂Rn

+

and Φ(0) = 0, DΦ(0) = I, where Rn
+ ≡ {z ∈ Rn | zn > 0}, I is the unit matrix

on Rn and DΦ represents the Jacobian matrix of Φ. Since ∂Ω belongs to C2, Φ
also belongs to C2-class. We take the neighborhood N independently of ϵ and R.
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Roughly speaking, the mapping Φ(x) straightens out ∂Ω around the origin. Put
Ψ(z) = Φ−1(z) and φ̃ϵ,R,1(y) = φϵ,R,1(Ψ(ϵy)). Then,

∆φ̃ϵ,R,1 − φ̃ϵ,R,1 + p
ũp−1

ξq
φ̃ϵ,R,1 − λ1φ̃ϵ,R,1

= λϵχ̃1ψ̃1 + qχ̃1
ũp

ξq+1
ηϵ + 2∇χ̃1 · ∇φ̃ϵ + ∆χ̃1φ̃ϵ + O(ϵ)

(86)

where χ̃1(y) = χ1(Ψ(ϵy)), ũ(y) = u(Ψ(ϵy)) and ψ̃1(y) = ψ1(Ψ(ϵy)). Here we use
the Landau’s symbol O(ϵ), which means that ∥O(ϵ)∥L2(K) ≤ cϵ for any compact
subset K ⊂ Rn

+ independent of ϵ. Since φ̃ϵ,R,1 has a compact support in Rn
+, we

can extend φ̃ϵ,R,1 to the half space by a natural way, i.e., set φ̃ϵ,R,1 ≡ 0 outside
the support. From ∥φϵ,R,1∥H1

ϵ
≤ c, we obtain ∥φ̃ϵ,R,1∥H1(Rn

+) ≤ c. Then, there is
φ0,R,1 ∈ H1(Rn

+) such that

φ̃ϵ,R,1 → φ0,R,1 weakly in H1(Rn
+) as ϵ → 0.

Direct calculations give us

χ̃1(y) = χ1(Ψ(ϵy)) = χ(|Ψ(ϵy)|/ϵR) → χ(|y|/R) ≡ χR(y)

as ϵ → 0 because Ψ(0) = 0 and DΨ(0) = I. By (86), φ0,R,1 belongs to H2(Rn
+) and

satisfies
∆φ0,R,1 − φ0,R,1 + pSp−1φ0,R,1 − λ1φ0,R,1

= 2λ0χRψ − qχRζ
q+p−1

p−1 Spη0 + O(1/R).
(87)

Since ∥φ0,R,1∥H1(Rn
+) ≤ lim infϵ→0 ∥φ̃ϵ,R,1∥H1(Rn

+) ≤ c, there is a function φ1 ∈
H1(Rn

+) such that

φ0,R,1 → φ1 weakly in H1(Rn
+) as R → ∞.

Then φ1 belongs to H2(Rn
+) and satisfies

∆φ1 − φ1 + pSp−1φ1 = λ1φ1 + 2λ0ψ − qζ
q+p−1

p−1 Spη0 (88)

because of (83).
Now we see that ∂φ1/∂yn = 0 on yn = 0. Since φϵ satisfies the homogeneous

Neumann boundary condition, direct calculation gives us

−
∫

BK(0)∩Rn
+

∆φ0,R,1ϕdy =
∫

BK(0)∩Rn
+

∇φ0,R,1 · ∇ϕdy,

where ϕ ∈ C1
0 (BK(0)) with 0 < K < R/2 fixed independently of ϵ and R. It follows

from (83) and the above equality that

−
∫

BK(0)∩Rn
+

∆φ1ϕdy =
∫

BK(0)∩Rn
+

∇φ1 · ∇ϕdy.

Since K is arbitrarily fixed, the above equality holds true for any ϕ ∈ C1
0 (Rn),

which implies that ∂φ1/∂yn = 0 on yn = 0.
We can extend φ1 to the whole space by setting

φ1(y1, . . . , yn−1, yn) =

{
φ1(y1, . . . , yn−1, yn), yn > 0,

φ1(y1, . . . , yn−1,−yn), yn < 0.
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In the following, we do not distinguish the original function φ1 from the extended
one φ1, and use the same notation φ1. Then, the equation (88) holds in the whole
space. Similarly, for φϵ,R,2, there is a function φ2 ∈ H2(Rn) such that

∆φ2 − φ2 + pSp−1φ2 = λ1φ2 − λ0ψ − qζ
q+p−1

p−1 Spη0.

We set ϕ+ = φ1 + 2φ2 and ϕ− = φ1 − φ2. Then, ϕ+ and ϕ− satisfy{
∆ϕ+ − ϕ+ + pSp−1ϕ+ = λ1ϕ+ − 3qζ

q+p−1
p−1 Spη0,

∆ϕ− − ϕ− + pSp−1ϕ− = λ1ϕ− + 3λ0ψ.
(89)

Since φϵ is orthogonal to ψ1 + ψ2, we have∫
Rn

ψϕ−dy = 0. (90)

Multiplying ψ to the both sides of the first and second equations of (89) and inte-
grating by parts, we have λ0 = 0 and η0 = 0 because ψ is the eigenfunction of (16),
and ψ and S are positive functions. Since the eigenfunction of (16) is unique up
to multiplicities of constants, ϕ+ and ϕ− must be multiplicities of ψ. Then, (90)
implies ϕ− = 0. The second equation (81) implies that∫

Rn

Sr−1ϕ+ = 0,

from which we deduces that φ1 = φ2 = 0.
Now we show that φϵ,R,1 tends to 0 strongly in L2(Rn) as ϵ → 0 and R → ∞.

We set ϕ(y) =
√

1 + |y|2φ̃ϵ,R,1(y). Then ϕ satisfies

− ∆ϕ + (1 + λ1)ϕ

= p
ũp−1

ξq

√
1 + |y|2φ̃ϵ,R,1 − 2

y√
1 + |y|2

· ∇φ̃ϵ,R,1 −
1

(1 + |y|2) 3
2
φ̃ϵ,R,1

−
√

1 + |y|2(λϵχ̃1ψ̃1 + q
ũp

ξq+1
χ̃1ηϵ + 2∇χ̃1 · ∇φ̃ϵ + ∆χ̃1φ̃ϵ.

We multiplying ϕ to the both sides and integrating it over Rn
+ by parts. Calculating∫

Rn
+

−∆ϕϕdx =
∫

Rn
+

|∇ϕ|2dx +
∫

∂Rn
+

∂ϕ

∂yn
ϕdSσ,

we estimate the integral on the boundary of the right-hand side. Direct calculations
give us∫

∂Rn
+

∂ϕ

∂yn
ϕdSσ = ϵ

n∑
k=1

∫
∂Rn

+

∂Ψk

∂zn
(ϵy)

∂φϵ,R,1

∂xk
(Ψ(ϵy))

√
1 + |y|2ϕ(y)dSσ(y)

= ϵ

n∑
k=1

∫
∂Rn

+

∂Ψk

∂zn
(ϵy)

√
1 + |y|2ϕ(y)

·
(

χ1(Ψ(ϵy))
∂φϵ

∂xk
(Ψ(ϵy)) +

∂χ1

∂xk
(Ψ(ϵy))φϵ(Ψ(ϵy))

)
dSσ(y),
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where Ψk stands for the k-th component of Ψ. For k ̸= n, we have |∂Ψk/∂zn| ≤ cϵ

in the support of φ̃ϵ,R,1 so that∣∣∣∣∣ϵ
∫

∂Rn
+

∂Ψk

∂zn
(ϵy)χ1(Ψ(ϵy))

∂φϵ

∂xk
(Ψ(ϵy))

√
1 + |y|2ϕ(y)dSσ(y)

∣∣∣∣∣
≤ cR2ϵ3−n∥∇φϵ∥L2(∂Ω)∥φϵ∥L2(∂Ω) ≤ cR2ϵ

by (85) and ∥φϵ∥H2
ϵ
≤ c. Similarly,∣∣∣∣∣ϵ

∫
∂Rn

+

∂Ψk

∂zn
(ϵy)φϵ(Ψ(ϵy))

∂χ1

∂xk
(Ψ(ϵy))

√
1 + |y|2ϕ(y)dSσ(y)

∣∣∣∣∣ ≤ cR2ϵ

by (83), (85) and ∥φϵ∥H2
ϵ
≤ c.

Next we estimate the boundary integral for k = n. Since ∂φϵ/∂ν = 0, and
|νk| ≤ cϵ, |νn − 1| ≤ cϵ as ϵ → 0 on BϵR(0) ∩ ∂Ω, it holds that ν∂φϵ/∂xn =
−

∑n−1
k=1 νk∂φϵ/∂xk, and then∣∣∣∣ ∂φϵ

∂xn

∣∣∣∣ ≤ cϵ

∣∣∣∣∣
n−1∑
k=1

∂φϵ

∂xk

∣∣∣∣∣ ≤ cϵ|∇φϵ|,

where we denote the normal outer vector by ν = (ν1, . . . , νn). On the other hand,
thanks to |xn| ≤ cϵ2R2 and |x| ≥ cRϵ for x ∈ (BϵR(0)\BϵR/2(0)) ∩ ∂Ω,∣∣∣∣∂χ1

∂xn

∣∣∣∣ =
1

Rϵ

|xn|
|x|

|χ′| ≤ c.

From these estimates, we know that the boundary integral for k = n tends to 0 as
ϵ → 0 by the similar argument to the previous paragraph.

Noting that |ũ|p−1(1 + |y|2) ≤ c and ∥φ̃ϵ,R,1∥L2(Rn
+) ≤ 1, we have

∥∇ϕ∥2
L2(Rn

+) + (1 + λ1)∥ϕ∥2
L2(Rn

+) ≤ c.

For K > 0 arbitrarily fixed, we obtain

1
ϵn

∫
Ω

|φϵ,R,1|2dx ≤ c

∫
Rn

+

|φ̃ϵ,R,1|2dy

≤ c

∫
BK(0)

|φ̃ϵ,R,1|2dy +
c

K2

∫
Rn

+\BK(0)

(1 + |y|2)|φ̃ϵ,R,1|2dy

≤ c

∫
BK(0)

|φ̃ϵ,R,1|2dy +
c

K2
.

From Rellich’s theorem, φ̃ϵ,R,1 tends to φ0,R,1 strongly in L2(BK(0)) as ϵ → 0.
Similarly, φ0,R,1 tends to 0 strongly in L2(BK(0)) as R → ∞. Then,

lim sup
R→∞

lim sup
ϵ→0

1
ϵn

∫
Ω

|φϵ,R,1|2dx ≤ c

K2
→ 0

as K → ∞. Similarly, ∥φϵ,R,2∥L2
ϵ
→ 0 as ϵ → 0 and R → ∞. In the end, ∥φϵ∥L2

ϵ
→ 0

and λϵ → 0 as ϵ → 0, which contradicts ∥φϵ∥L2
ϵ

+ |λϵ| = 1. Hence Tt(0, 0, 0, ϵ) is
injective.
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Define L between H2
N,ϵ(Ω) × R → L2

ϵ(Ω) × R by

L
(

φ
η

)
≡

 Lφ − q
up

ξq+1
η − λ1φ

−η +
r

ξsϵn

∫
Ω

ur−1φdx − sη

ξs+1ϵn

∫
Ω

urdx − τλ1η

 .

Since Tt(0, 0, 0, ϵ) is injective and ψ1 + ψ2 ∈ L2
ϵ(Ω), the following equation

L
(

φ
η

)
=

(
ψ1 + ψ2

0

)
does not have a solution (φ, η) ∈ H2

N,ϵ(Ω) × R. This implies that

R(L) ⊂ L2
N,ϵ(Ω),

where L2
N,ϵ(Ω) is defined by

L2
N,ϵ(Ω) =

{
ϕ ∈ L2

ϵ(Ω)
∣∣∣∣ ∫

Ω

(ψ1 + ψ2)ϕdx = 0
}

.

So we regard L as an operator between H2
N,ϵ(Ω) × R → L2

N,ϵ(Ω) × R. If L is
not surjective, there is a solution (φ, η) ∈ H2

N,ϵ(Ω) × R of L(φ, η)t = 0, where the
superscript t stands for transpose. However, this contradicts the assumption that
λ = λ1 is not an eigenvalue of (15). Hence, by taking any (f, ζ) ∈ L2

ϵ(Ω) × R and
putting

λ =
1

∥ψ1 + ψ2∥2
L2

ϵ
ϵn

∫
Ω

f(ψ1 + ψ2)dx, F = f − λ(ψ1 + ψ2),

there is a unique solution (φ, η) ∈ H2
N,ϵ(Ω) × R such that

L
(

φ
η

)
=

(
F
ζ

)
.

Therefore Tt(0, 0, 0, ϵ) is invertible.
Also, the last part of the lemma can be shown by the same argument as above.

Hence we complete the proof.

Now we are in position to prove Theorem 3.3. Define a map between H2
N,ϵ(Ωϵ)×

R × R × (0, ϵ0) by

G(φ, η, λ, ϵ) = −T−1
(φ,η,λ)(0, 0, 0, ϵ){T (0, 0, 0, ϵ) + R(φ, η, λ, ϵ)},

where

R(φ, η, λ, ϵ) = T (φ, η, λ, ϵ) − T (0, 0, 0, ϵ) − T(φ,η,λ)(0, 0, 0, ϵ)[(φ, η, λ)] = −
(

λφ
τλη

)
.

From Proposition 3 and Lemma 6.1, it holds true that

∥G(0, 0, 0, ϵ)∥ ≤ δ, ∥G(φ, η, λ, ϵ) − G(φ̃, η̃, λ̃, ϵ)∥ ≤ δ

for sufficiently small δ independent of ϵ and any (φ, η, λ), (φ̃, η̃, λ̃) ∈ H2
N,ϵ(Ω)×R×R

satisfying ∥φ∥H2
ϵ (Ω) + |η|+ |λ| ≤ δ and ∥φ̃∥H2

ϵ (Ω) + |η̃|+ |λ̃| ≤ δ, respectively. Hence
there is a fixed point of G, which complete the proof.
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