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Abstract 

Cathepsin E is an intracellular aspartic proteinase of the pepsin superfamily, which is 

predominantly expressed in certain cell types, including the immune system cells and 

the rapidly regenerating gastric mucosal and epidermal keratinocytes. The intracellular 

localization of this protein varies with different cell types; i.e., the presence in 

endosomal organelles, plasma membranes, the endoplasmic reticulum, Golgi complex 

and the cytosol. The enzyme is also secreted by activated immune system cells and 

cancer cells. Its strategic expression and localization suggests the association of this 

enzyme with specific biological functions of the individual cell types. Recent genetic 

and pharmacological studies have particularly suggested that cathepsin E plays an 

important role in host defense against cancer cells and invading microorganisms. This 

review focuses emerging roles of cathepsin E in immune system cells and skin 

keratinocytes, and in host defense against cancer cells. 
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1. Introduction 

Cathepsin E is an intracellular aspartic proteinase of the pepsin superfamily, which 

is predominantly expressed in certain cell types, including the immune system cells 

(1-10) and rapidly regenerating gastric mucosal cells (10-14) and epidermal 

keratinocytes (15-17). Unlike other analogous aspartic proteases, cathepsin E has 

several notable properties, besides its restricted expression. Differing from the definite 

localization of other related aspartic proteases, the intracellular localization of cathepsin 

E varies with different cell types. In antigen presenting cells, such as macrophages, 

microglia and dendritic cells (2-8), and gastric cells (10-14), the enzyme mainly 

localized in the endosomal compartments as a mature form. The association of 

cathepsin E with plasma membrane is observed in erythrocytes (18, 19), intracellular 

canaliculi of gastric parietal cells (14), renal proximal tubule cells (14), bile canaliculi 

of hepatic cells (14), intestinal and tracheobranchial epithelial cells (15, 20) and 

osteoclasts (21). Cathepsin E is also found in the endoplasmic reticulum and Golgi 

complex (3, 14) and the cytosol (14, 22) of various cell types. Besides its intracellular 

localization, cathepsin E is also secreted by certain cell types such as activated 

macrophages (23). Moreover, it has been demonstrated that the expression of cathepsin 

E in mice varies with different strains (24). Specifically, both protein and message 
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levels of cathepsin E were profoundly decreased in hemopoietic cells from C57BL/6J 

mice, compared with 129S2/Sv and Balb/c mice, although the protein levels in gut were 

similar between C57BL/6J and the other strains. Based on analysis of the promoter 

region of cathepsin E, the tissue-specific deficiency of cathepsin E in C57BL/6J mice is 

likely due to the SNP within the PU.1 transcription binding consensus sequence. Taken 

together, the strategic expression and localization of cathepsin E suggests its important 

implications for tissue-specific biological functions, including antigen processing (1, 4, 

25), neuronal degeneration (26-31) and the generation of various secretory proteins 

(32-34). The studies from the 1980s have suggested that, overall, cathepsin E 

contributes to the maintenance of homeostasis by participating in host defense 

mechanisms. However, because physiologic substrates of cathepsin E have not yet 

well-defined in vivo, precise physiologic functions of this protein remains speculative.  

Recent genetic studies using mice lacking or over-expressing cathepsin E have 

subsequently confirmed and extended these early observations (7, 8, 10, 35-38). As 

these studies were directed towards identifying the mechanism(s) of the cathepsin E 

function, the findings obtained might be worthy of remark. In this review, we will focus 

mainly upon several important points of cathepsin E in considering its physiological 

functions and possible mechanisms. Besides, compared with cathepsin E, the relevant 
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analogous cathepsin D studies will also be discussed in terms of biological functions. 

 

2. Cathepsin E in antigen presenting cells 

2.1 Roles of cysteine cathepsins and aspartic proteinases in MHC class II-mediated 

antigen presentation 

There is increasing evidence that two classes of intracellular lysosomal proteases, 

cysteine and aspartic proteases, are involved proteolytic processes required for MHC 

class II-mediated antigen presentation. Functional studies using specific inhibitors or 

mice lacking individual cathepsins strongly suggest that the two cysteine cathepsins, 

cathepsins L and S, are responsible for the terminal degradation of Ii to generate class 

II-associated Ii peptide (CLIP) during maturation of MHC class II molecules in the 

thymus and the peripheral lymphoid organs, respectively (39-45). The cysteine protease 

cathepsin F is also implicated in CLIP generation in peripheral macrophages (46). In 

addition to the cysteine cathepsins, the two endolysosomal aspartic proteinases, 

cathepsin D and cathepsin E, were shown to be required for the initial stages of Ii 

processing, using a series of potent inhibitors (47). Several early studies demonstrated 

that cathepsin D generated in vitro antigenic peptides from ovalbumin (OVA) and hen 

egg lysozyme that could be presented to T cells (48-50). However, shortly afterward, 
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studies with splenocytes and macrophages from cathepsin D-deficient (CatD-/-) mice 

have revealed that cathepsin D is dispensable for degradation of Ii and processing of a 

number of exogenous and endogenous antigens (40, 51). By contrast, the experiments 

using macrophages from cathepsin E-deficient (CatE-/-) mice have concluded that this 

proteinase is indispensable for the generation of an antigenic epitope from intact OVA to 

present to cognate T cells (7, 8). These results are well consistent with those from the 

previous experiments with microglia from CatD-/- mice (4) and with the murine 

antigen-presenting B cell lymphoma, A20, treated with the cathepsin E-specific Ascaris 

inhibitor (1).  

2.2 Cathepsin E in macrophages 

   Recently, cathepsin E deficiency has been shown to lead to a novel form of 

lysosome storage disorder in macrophages, manifesting the accumulation of major 

lysosomal membrane sialoglycoproteins, LAMP-1, LAMP-2 and LIMP-2, and the 

elevation of lysosomal pH (7). These striking features were also observed with 

wild-type macrophages by treatment with pepstatin A or cathepsin E-specific Ascaris 

inhibitor. These lysosomal membrane proteins represent more than 50% of the total 

membrane proteins of endolysosomes (52, 53), and their glycosylation constitutes about 

60% (LAMP-1 and LAMP-2) and 20% (LIMP-2) of the total mass of the respective 
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molecules and the most part is present on the luminal side of endosomes and lysosomes. 

It is thus believed that these membrane proteins play an important role in the protection 

of the membrane from degradation by lysosomal hydrolases. Because there was no 

difference in the vacuolar-type H+-ATPase activity between wild-type and CatE-/- 

macrophages (7), the elevated lysosomal pH was likely due to the accumulation of these 

membrane proteins. In this connection it is interesting to note that some types of 

lysosomal storage disorders including neuronal ceroid lipofuscinosis are associated with 

the accumulation of lysosomal membrane proteins and/or the elevation of lysosomal pH 

(54-57). Given that pH is essential for the maintenance of the nature and function of 

endolysosomal organelles including the normal processing and targeting events of 

lysosomal proteins, it is most likely that the elevated lysosomal pH interferes with the 

maturation and fusion events of the organelles involved. Therefore, cathepsin E 

deficiency appears to result in the impairment of the structural and functional integrity 

of macrophages. Indeed, cathepsin E deficiency has shown to lead to a significantly 

increased secretion of soluble lysosomal hydrolases, including cathepsins B, D, S, L, 

α-mannosidase, β-glucuronidase and β-hexosaminidase (7, 8), and a marked reduction 

in degradation of phagocytosed OVA (8) and decreased chemotactic responses to 

MCP-1 and fMLP in macrophages (8, 38). Furthermore, CatE-/- macrophages showed a 



 9

significant decreased in the cell surface levels of TLR2 and TLR4, which recognize 

specific components of Gram-positive and –negative bacteria, respectively, despite no 

significant difference in the total cellular expression levels of these receptors between 

the wild-type and CatE-/- macrophages (36). Additionally, CatE-/- macrophages showed 

a significant decrease in responses to TLR3 ligand (Poly I:C) compared with the 

wild-type cells (36). Given the preferential localization of TLR3 receptor in endosomal 

compartments, the decreased responsiveness of CatE-/- macrophages to this ligand 

implies the impairment of early interactions between phagosomes and endosomes. 

These results thus suggest that cathepsin E deficiency results in the decreased 

bactericidal activity toward a variety of invading microbial pathogens in macrophages. 

The cell surface levels of the chemotactic receptors CCR-2 and FPRs, which are 

receptors for MCP-1 and N-formyl peptides, respectively, and the adhesion receptors 

CD18 (integrin β2) and CD29 (integrin β1) were also significantly decreased in CatE-/- 

macrophages compared with the wild-type cells (38). Taken together, these findings 

strongly suggest that cathepsin E deficiency induces profound trafficking defects in cell 

surface receptors in macrophages, most probably due to the elevation of lysosomal pH. 

It is thus concluded that cathepsin E in macrophages plays an essential role in immune 

defense against invading microbial pathogens, chemotaxis, and cell adhesion through 
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the maintenance of lysosomal pH and normal trafficking and fusion events. A schematic 

representation of the effects of cathepsin E deficiency on the nature and functions of 

macrophages is shown in Fig. 1. 

2.3 Cathepsin E in dentritic cells  

   Dendritic cells (DCs) are heterogenous, professional antigen presenting cells that 

play a central role in the initiation and control of immune responses and probably in the 

maintenance of tolerance (58, 59). Myeloid precursor cells differentiate into immature 

DCs, which efficiently engulf a variety of particulate antigens and then transport them 

into MHC class II endolysosomal compartments for degradation. Subsequently, the 

immature DCs migrate to the regional lymph nodes where they phenotypically mature 

and express a number of cell surface molecules for presentation to cognate T cells. It is 

also known that immature DCs efficiently process and present a variety of particulate 

antigens, thereby serving as sentinels to immunologic threats. In human myeloid DCs, 

cathepsin E is found in a perinuclear compartment, which is likely to be associated with 

the ER, and also a peripheral compartment just beneath the cell membrane (25). Chain 

and his colleagues have previously shown that cathepsin E has an important role in the 

MHC class II antigen processing pathway within both human and mouse myeloid DCs 

using a novel, targeted derivative of the aspartic proteinase inhibitor pepstatin (25).  
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Unexpectedly, differing from both peritoneal and myeloid macrophages, the nature 

and functions of both myeloid immature and mature DCs, including intracellular levels 

of soluble lysosomal hydrolases and lysosomal membrane sialoglycoproteins, lysosomal 

pH, the cell surface expression of TLRs, chemotactic and adhesion receptors, were not 

significantly changed by cathepsin E deficiency (8). In addition, there were no 

significant differences in the destructive potential for phagocytosed OVA between 

wild-type and CatE-/- DCs. Intriguingly, however, there was a marked difference in the 

capacity for presenting OVA to cognate T cells between wild-type and CatE-/- DCs. 

Whereas cathepsin E deficiency induced a marked decrease in the ability of 

macrophages to present intact OVA, as well as and its antigenic peptide, to cognate T 

cells, CatE-/- DCs inversely showed a significant increase in the ability of OVA 

presentation.     

Previously, Watts and his colleagues reported that the presentation of two different 

myoglobin T cell epitopes in DCs was enhanced rather than hindered by the lack of 

cathepsin D and the residual processing activity in the subcellular fraction of DCs 

deficient in cathepsin D was completely inhibited by pepstatin, and thereby suggested 

that aspartic protease(s) besides cathepsin D could be involved in myoglobin antigen 

presentation in DCs and/or that the reduced activity by cathepsin D deficiency would 
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produce optimal conditions for its processing and presentation (60). In this regard, it has 

been reported that the ability of DCs from not only wild-type but also CatD-/- mice to 

present intact OVA, but not an OVA-derived peptide, to cognate T cells is completely 

blocked by mannosylated BSA-conjugated pepstatin (25). On the basis of these findings, 

it is concluded that the reduced aspartic protease activity resulting from cathepsin E 

deficiency in DCs may be compensated by the related aspartic protease(s) or may confer 

to the optimum conditions for OVA antigen presentation. Given that cathepsin E 

deficiency did not significantly affect the ability of DCs, like macrophages, to present 

not only OVA but also its antigenic peptide to cognate T cells, however, it seems likely 

that cathepsin E is unlikely to be directly involved in antigen processing in these cells 

and rather plays a crucial role in controlling the endosomal/lysosomal 

microenvironment and the protein sorting into these compartments. Additional notable 

features for CatE-/- DCs are particularly noteworthy in connection with the enhanced 

OVA and its antigenic peptide. Namely, the phagocytic activity of both immature and 

mature DCs, but not myeloid and peritoneal macrophages, toward fluorescent latex 

particles was significantly increased by cathepsin E deficiency (8). Given that the 

internalization of particulate antigens by DCs is important for their processing and 

presentation, the enhanced phagocytic activity of CatE-/- DCs is more likely to 
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contribute to the stimulation of their OVA peptide presentation. In contrast to either type 

of macrophages, DCs have also revealed a significant increase in the cell surface 

expression of the costimulatory molecules CD86, CD80 and CD40, which can amplify 

the response of T cells, by cathepsin E deficiency (8). It is established that T cells 

require costimulatory signals for optimal activation (61-63). Given that, of the multiple 

costimulatory signals, the CD80/CD86-CD28 and CD40-CD154 interactions play a key 

role in the process of T cell priming by DCs (62), the increased expression of CD80, 

CD86 and CD40 on CatE-/- DCs is thus likely to contribute to the enhanced T cell 

activation. Although the precise mechanism for the increased phagocytic activity and 

the expression of costimulatory molecules in DCs by cathepsin E deficiency remains to 

be answered, these observations have provided new insight into the functional diversity 

of cathepsin E in immune responses of different types of antigen presenting cells. A 

schematic representation of the effects of cathepsin E deficiency on the nature and 

functions of DCs is shown in Fig. 2. 

   

3. Cathepsin E and cancer  

Recent evidence has demonstrated that the lysosomal proteolytic system, including 

autophagy, plays an important role in the control of cell death (64). Under physiological 
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conditions, autophagy especially is implicated in cell survival through the degradation 

of intra- and extracellular proteins and the removal of old/damaged cellular organelles 

within the tight compartment of the autolysosome. Autophagy also allows tumor cells to 

survive under certain stress conditions, including metabolic stress (65) and ER stress 

resulting from accumulating misfold proteins (66, 67). By contrast, it has also been 

demonstrated that autophagy induces cancer cell death, and thus defective autophagy is 

associated with cancer progression (68). Another notable characteristic of cancer cells is 

lysosomal alterations in connection with cancer cell death. The integrity of the 

lysosomal membrane in these cells is disrupted in response to various stresses, thereby 

resulting in the release of lysosomal hydrolases into the cytosol, where not only 

apoptosis but also apoptosis-like and necrosis-like cell death is induced. Indeed, recent 

studies have provided evidence that cathepsins released by increased lysosomal 

membrane permeabilization participate in the execution of cell death that is induced by 

classic apoptotic stimuli (64).  

A variety of intra- and extracellular proteases, including aspartic proteinases and 

cysteine cathepsins, are highly up-regulated in certain types of cancers (69-84). In 

addition, there is a change in the localization of the endolysosomal proteases to 

extracellular spaces. The substrates and functions of cathepsin E might thus change 
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along with its localization. The proteolytic activity of extracellular aspartic and cysteine 

cathepsins has long been associated with many types and stages of cancer (73-77, 

81-87). Cathepsin E is also known to be up-regulated and secreted in several forms of 

cancer and thus suggests their clinical utility as a potential biomarker for these cancers 

(69, 71-80, 88). However, the clinical significance of the increased cathepsin E 

expression in carcinogenesis has been controversial. For example, increased expression 

of cathepsin E in premalignant cervical epithelium (71), lung carcinoma (73), pancreatic 

ductal adenocarcinoma (69, 88) and colorectal sessile serrated adenomas (80) was found 

to be a marker for bad prognosis, whereas that in lung carcinoma (73), bladder cancer 

(74), hepatocellular carcinoma (76) is associated with survival as a marker for good 

prognosis. Additionally, it has been shown that while cathepsin E is normally expressed 

and localized in chronic the inflammation and ulcer lesions of human stomach, this 

protein disappeared in the incomplete type of intestinal metaplasia, dysplasia, and well 

differentiated adenocarcinoma and poorly differentiated adenocarcinoma in this tissue 

(89). On the other hand, the up-regulation and increased secretion of cathepsin D was 

observed with breast cancer and prostate cancer, and is associated with a poor prognosis 

(82-84). In breast cancer, cathepsin D is likely to act as a mitogen, because its promoter 

region is preferentially up-regulated by estrogen (90). Intriguingly, however, the 
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proteolytic activity of cathepsin D was dispensable for the progression of breast cancer, 

because a mutated form devoid of its proteolytic activity also stimulated cancer growth 

(91). This is likely due to the mitogenic and proliferative activity of the propeptide of 

cathpsin D (91, 92). In this connection, M6P/IGF-II receptor and low-density 

lipoprotein receptor-related protein-1 (LRP1) has been identified as a CD binding 

receptor (93).     

In contrast to cathepsin D and cysteine cathepsins, cathepsin E was recently found 

to have an antitumorigenic activity through the induction of growth arrest and apoptosis 

in various human prostate carcinoma cell lines without affecting normal cells (37). To 

determine how and to what extent cathepsin E exerts its antitumorigenic activity, this 

protein was manipulated in both in vitro and in vivo experiments using human cancer 

cell lines, nude mice bearing human cancer cells, and CatE-/- or cathepsin 

E-overexpressing transgenic mice (CatETg) bearing syngeneic mouse melanoma cells. 

These experiments have provided evidence that cathepsin E is a responsible enzyme for 

specific cleavage of tumor necrosis factor-related apoptosis ligand (TRAIL) at the 

surface of cancer cells and the consequent generation of a soluble trimeric form of this 

protein and thereby induces the growth arrest and apoptosis in cancer cells without 

harming normal cells. Unlike other TNF family members, TRAIL can induce apoptosis 
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in most transformed cells and some virally infected cells without affecting normal cells 

(94, 95). Moreover, administration of soluble recombinant TRAIL into mice bearing 

human tumor xenografts induces significant tumor regression without systemic toxicity 

(96, 97). Based on the efficacy and safety studies, potential clinical application of 

recombinant soluble TRAIL in cancer therapy is being explored. In addition, it has been 

suggested that the TRAIL may be used as an innate effector molecule involved in the 

elimination of spontaneously arising tumor cells. Although TRAIL has attracted intense 

interest in cancer therapy, however, an increasing number of cancer cells still remain 

resistant to TRAIL-mediated apoptosis. An additional problem with in vivo use of 

TRAIL is that a high concentration of this molecule is required to obtain definite 

therapeutic efficacy, probably owing to the short half-life of soluble TRAIL in plasma. 

Therefore, there is a need to search for new regimens to enhance sensitization of cancer 

cells to TRAIL-induced apoptosis. In this regard, cathepsin E appears to have an 

advantage over TRAIL in inducing apoptosis in cancer cells because this molecule is 

directly generated within or in the vicinity of tumors. In addition, given that several 

tumor effector cells including activated T cells, B cells, natural killer cells, DCs and 

monocytes are known to produce TRAIL, cathepsin E may generate TRAIL from these 

immune cells. Moreover, cancer cells are known to be eliminated by tumor-infiltrated 
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effector cells, particularly activated macrophages, through several kinds of mechanisms, 

e.g., killing by phagocytosis, antigen processing and presentation to T4 lymphocytes, 

and enhanced secretion of various cytokines that play a crucial role in non-specific host 

defense. Given the strong association of cathepsin E with the activation and functions of 

macrophages (7, 23) and the positive correlation of IFN stimulation with the enhanced 

expression of TRAIL and increased killing activity against cancer cells (98), this 

enzyme is more likely to exert antitumorigenic activity via not only TRAIL-dependent 

apoptosis but also tumor-infiltrated, activated macrophage-mediated cytotoxicity. In the 

meantime, accumulating evidence also shows that, in contrast to their beneficial 

antitumorigenic activity, many deleterious functions of tumor-infiltrated macrophages 

have been recognized, such as enhancement of cancer migration and invasion, 

facilitation of extracellular matrix breakdown and remodeling, promotion of cancer cell 

motility, and stimulation of angiogenesis (99, 100). These competing functions seem to 

arise from the pleiotropic nature of the macrophages that participate in immune 

responses in a polarized manner: classic M1 macrophages produce interleukin (IL) 12 to 

promote tumoricidal responses, whereas M2 macrophages produce IL10 to help tumor 

progression (101). In addition, cathepsin E appears to contribute to the inhibition of 

tumor growth and metastasis through the inhibition of tumor-induced angiogenesis, in 
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which the enzyme mediates a specific release of endostatin, a potent endogenous 

angiogenesis inhibitor, from human collagen XVIII (102). More recently, it has also 

been demonstrated that cathepsin E has a synergistic cytotoxic activity on cancer cells 

in combination with the anti-cancer agent, even though either of the agents by itself was 

unable to efficiently induce cell death in these cells, suggesting its therapeutic potential 

for clinical use (103). A common hurdle that almost all of the anticancer drugs have had 

not over is their severe side effects. Therefore, the observations that cathepsin E 

prevents tumor growth and metastasis in vivo through multiple mechanisms, including 

induction of TRIL-induced apoptosis, angiogenesis inhibition, enhanced immune 

responses and synergistic effects with anticancer drugs may provide a promising 

strategy for cathepsin E-based cancer therapy. A schematic representation of the 

multiple mechanisms for the antitumorigenic activity of cathepsin E is shown in Fig. 3. 

 

4. Cathepsin E in skin  

   The epidermis is a stratified and keratinized epithelium mainly composed of 

keratinocytes. Epidermal differentiation results in formation of several distinct cell 

layers characterized by their ultrastructure, mitotic state and expression of specific 

epidermal differentiation markers. Recent evidence has shown that dermatological 
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disorders ranging from minor cosmetic problems to life-threatening conditions are 

commonly due to abnormal differentiation of keratinocytes. Therefore, elucidation of 

the intracellular molecules involved in the cellular differentiation processes and the 

regulation of epidermal homeostasis is of special importance for understanding and 

therapy of these disorders. In human and rat epidermis, cathepsin E is expressed and 

localized mainly in keratinocytes and in close vicinity to the inner root sheath of hair 

follicles (104). While cathepsin D is localized mainly on desmosomes of human stratum 

corneum, cathepsin E is present within the squames (17), suggesting that these two 

enzymes have different functions in dermal differentiation processes. Cathepsin E 

deficiency in mice induced abnormal keratinocyte differentiation in the epidermis and 

hair follicle characterized by the significant expansion of corium and the reduction of 

subcutaneous tissue and hair follicles (104). In a model of skin papillomas formed in 

three different genotypes of syngeneic mice, CatE-/-. CatE+/+ and CatETg, cathepsin E 

deficiency induced the significantly reduced expression and altered localization of the 

keratinocyte differentiation-induced proteins keratin 1 and loricrin. Using primary 

cultures of keratinocytes from each genotype of mice, cathepsin E deficiency resulted in 

the delayed differentiation accompanying the reduced expression or the ectopic 

localization of these differentiation markers, whereas over-expression of this protein 
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enhanced the rate of keratinocyte terminal differentiation. These findings suggest that 

cathepsin E in keratinocytes functionally links to the expression of the epidermal 

differentiation markers, thereby regulating the formation and homeostasis of the 

epidermis. On the other hand, cathepsin D-deficient mice (CatD-/-) showed reduced 

transglutaminase activity 1 activity and reduced protein levels of the cornified envelop 

proteins involucrin and loricrin (105). Amount and distribution of cornified 

envelopproteins involucrin, loricrin, filaggrin, and of the keratins K1 and K5 were 

significantly altered in CatD-/- mice. Therefore, both cathepsin E and cathepsin D appear 

to regulate differentially and cooperatively the formation and homeostasis of the 

epidermis. 

 

5. Conclusion remarks 

A rapidly growing body of evidence demonstrates that cathepsin E is implicated in a 

variety of immune responses. A wide range of studies have characterized cathepsin E as 

an indispensable molecule for exogenous antigen processing and presentation. It is of 

special importance to note that cathepsin E differentially regulates the nature and 

functions of macrophages and DCs, especially with regards to the cellular levels of 

major lysosomal membrane sialoglycoproteins, lysosomal pH, and OVA processing and 
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presentation. In regard to cancer cells, cathepsin E also has some notable difference 

from other cathepsins. Unlike cathepsin D and cysteine cathepsins, cathepsin E has a 

potent antitumorigenic activity, which is displayed by multiple mechanisms, including 

induction of TRIL-induced apoptosis, angiogenesis inhibition, enhanced immune 

responses and synergistic effects with anticancer drugs. Most strikingly, cathepsin E has 

no detectable deleterious effect on normal cells. This selectivity may provide a 

promising strategy for cathepsin E-based cancer therapy. More recently, it has also been 

demonstrated that cathepsin E in keratinocytes functionally links to the expression of 

the epidermal differentiation markers, thereby suggesting that this protein may regulate 

the formation and homeostasis of the epidermis. The recent development in chemical 

activation of cathepsin E may prove a new therapeutic paradigm in the treatment of 

dermatological disorders ranging from minor cosmetic problems to life-threatening 

conditions. One of the most important questions yet to be answered is: what are the 

specific substrates of cathepsin E predominantly expressed in certain cell types? 

Knockout or knockdown and drug screens that conducted to identify molecules that 

interact with cathepsin E might prove effective in identifying its substrates. For further 

knowledge on, we would like to suggest referring to other previous reviews detailing 

basic aspects of cathepsin E, including enzymatic properties, regulation of gene 
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expression, biosynthesis, processing and intracellular trafficking, and role associated 

with neuronal degeneration, and the references cited therein (106-110).   
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Figure legend 

Fig. 1. A schematic representation for the conditions manifested in macrophages by 

cathepsin E deficiency. 

 

Fig. 2. A schematic representation for the conditions manifested in dendritic cells by 

cathepsin E deficiency. 

 

Fig. 3. A schematic representation of the multiple mechanisms for the antitumorigenic 

activity of cathepsin E. 
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Fig. 1 Yamamoto et al.
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Fig. 2 Yamamoto et al.
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