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Abstract

We developed an iterative method for determining the three-dimensional

temperature distribution in a spherical spinning body that is irradiated by

a central star. The seasonal temperature change due to the orbital motion

is ignored. It is assumed that material parameters such as the thermal con-

ductivity and the thermometric conductivity are constant throughout the

spherical body. A general solution for the temperature distribution inside a

body is obtained using spherical harmonics and spherical Bessel functions.

The surface boundary condition contains a term obtained using the Stefan–

Boltzmann law and is nonlinear with respect to temperature because it is

dependent on the fourth power of temperature. The coefficients of the gen-

eral solution are fitted to satisfy the surface boundary condition by using the

iterative method. We obtained solutions that satisfy the nonlinear bound-

ary condition within 0.1% accuracy. We calculated the rate of change in
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the semimajor axis due to the diurnal Yarkovsky effect using the linear and

nonlinear solutions. The maximum difference between the rates calculated

using the two sets of solutions is 13%. Therefore current understanding of

the diurnal Yarkovsky effect based on linear solutions is fairly good.

Keywords: Temperature, radiation, asteroids, small bodies, meteorites

1. Introduction

In planetary sciences, accurate determination of the temperature distri-

bution in a small body that is irradiated by a central star is important.

For example, the radiation reaction force acting on a spinning and revolving

body causes the time evolution of the orbital elements; this is known as the

Yarkovsky effect (Bottke et al., 2006). Models of the surface temperature are

also important in analyzing the observed thermal emission of asteroids and

asteroid-like objects.

In most calculations of the Yarkovsky effect, the temperature distri-

butions in small bodies were determined by linear approximation of the

Stefan–Boltzmann law (see Bottke et al. (2006) and the references therein).

The temperature T is expressed as the sum of the global average temper-

ature Tav and the difference between the temperature and the global aver-

age temperature ∆T . The fourth power of the temperature is expanded as

T 4 = T 4
av+4T 3

av∆T+6T 2
av∆T 2+4Tav∆T 3+∆T 4, and the second- and higher-

order terms of ∆T are omitted; a temperature distribution determined by

using this approximation is called a linear temperature distribution or a solu-

tion. On the other hand, a temperature distribution determined by including

the effects of the nonlinear terms of ∆T is called a nonlinear temperature
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distribution or a nonlinear solution.

Several authors have developed methods for determining the nonlinear

temperature distributions. Some examples of studies in which the tempera-

ture distributions were determined by using the nonlinear boundary condi-

tion and by employing analytical or semi-analytical theories are as follows:

Peterson (1976) developed a second-order theory in ∆T . Vokrouhlický and

Farinella (1999) developed a semianalytical-nonlinear theory of the seasonal

Yarkovsky effect. Breiter et al. (2010) developed a semianalytical method

based on plane–parallel geometry for a body with an arbitrary shape; non-

linear boundary conditions are handled by using an iterative, fast Fourier-

transform-based solver. There are also a lot of numerical works which include

the nonlinearity of thermal emission, 1D thermal conduction and the beam-

ing (i.e., excess emission to the solar direction compared to the Lambertian

surface) due to the surface roughness (e.g., Lagerros (1998); Spencer (1990);

Spencer et al. (1989)).

In this paper, we developed a simple iterative method for determining the

temperature distribution of a spinning spherical body that is irradiated by a

central star. The seasonal temperature change due to the orbital motion is ig-

nored. A body is assumed to be homogeneous, and it is assumed that thermal

conductivity, thermometric conductivity, and surface absorption and emis-

sion coefficients of the body remain constant. Using the method developed

by Vokrouhlický (1998), a general solution of the temperature distribution is

obtained analytically. The arbitrary constants of the general solution should

be determined by fitting the surface boundary condition, which is expressed

by the equilibrium of heating by the central star, cooling due to the thermal
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radiation and the thermal-conduction cooling (or heating) at the surface. The

cooling due to the thermal radiation is expressed by the Stefan–Boltzmann

law according to which the relationship between the energy flux radiated

and temperature is nonlinear. Vokrouhlický (1998) performed the fitting by

the linear approximation. On the other hand, the method developed in this

paper can be used to obtain the arbitrary constants of the general solution

that satisfies the nonlinear boundary condition with an arbitrary accuracy.

The results show that the maximum and minimum temperatures reached

in this study are significantly different from those in the case of the linear

solution for a large body. The maximum difference between the rates of

change of the semimajor axis due to the diurnal Yarkovsky effect determined

based on the linear and nonlinear solutions is 13%. Therefore current un-

derstanding of the diurnal Yarkovsky effect based on linear solutions is fairly

good. In this sense, the results of our calculation may not be so impor-

tant for the diurnal Yarkovsky effect. However, the method developed in

this paper would be applicable to any thermal problem concerning spherical

bodies that are irradiated from the outside and cool by thermal radiation.

The subtle surface-temperature difference of asteroids would be important

for observational astronomers.

2. Basic equations

We consider a spherical body that spins at a constant angular velocity ω̃ =

2π/P̃ , where P̃ is the spin period (hereafter, we use a tilde for dimensional

variables in order to distinguish them from the corresponding dimensionless

variables that will be introduced later). The orbital motion of the body is
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neglected, and the body is assumed to be irradiated by a parallel beam of

light traveling in a constant direction from a central star. In other words,

we neglect any seasonal effect. The luminosity of the central star, L̃∗, and

the orbital radius of the body, ã, are assumed to be constant; therefore,

the stellar flux F̃∗ = L̃∗/(4πã
2) will also be constant. All relevant physical

properties of a body, such as the absorption constant α and the emissivity ϵ

of the surface, thermal conductivity k̃T , and the thermometric conductivity

κ̃ = k̃T/(ρ̃C̃), where ρ̃ is the material density and C̃ is the specific heat, are

assumed to be constant throughout the object and to remain constant with

time.

Figure 1

We use a coordinate system (x̃, ỹ, z̃) with the origin at the center of the

body; the body spins around the z̃ axis, and the beam of the light from the

central star travels in the x̃-z̃ plane at an angle θ∗ from the z̃ axis, as shown

in Fig. 1. The thermal conduction equation is expressed as follows:

∂T̃

∂t̃
+ ṽ · ∇T̃ = κ̃∇2T̃ , (1)

where T̃ is the temperature, and the second term on the left-hand side (LHS)

represents the advection of the temperature with a velocity ṽ (e.g., Eq. (50.2)

of Landau and Lifshitz (1987)). If one uses a coordinate system that moves

with the body, the advection term will be equal to zero. However, in our

system, the body moves because it is spinning, and therefore the second

term remains. We ignore the revolutional motion around the central star,

and take only the spin motion of the body into account; we assume that the
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temperature distribution is steady, and therefore, the first term in Eq. (1)

will be equal to zero.

Now we use the spherical coordinates (r̃, θ, ϕ) shown in Fig. 1, where r̃

is the radial coordinate (r̃ = R̃ on the surface of a body). The thermal-

conduction equation for a steady temperature distribution is as follows:

ω̃
∂T̃

∂ϕ
=

κ̃

r̃2

{
∂

∂r̃

(
r̃2
∂T̃

∂r̃

)
+

[
1

sin θ

∂

∂θ

(
sin θ

∂T̃

∂θ

)
+

1

sin2 θ

∂2T̃

∂ϕ2

]}
, (2)

where the term on the LHS represents the advection due to the body’s spin.

The absorbed energy of the stellar radiation per unit time and per unit

surface area of the spherical body, which we call stellar heating rate in the

following, is given by

Γ̃(cosΘ) =

 αF̃∗ cosΘ for 0 ≤ Θ < π/2,

0 for π/2 ≤ Θ ≤ π,
(3)

where Θ is the angle between the direction of the central star and of a point

with the spherical coordinates (R̃, θ, ϕ) on the surface of the body when

viewed from the center of the body, as shown in Fig. 1.

The surface boundary condition is expressed as the energy balance of the

radiative cooling, thermal conduction, and heating by the central star per

unit time and per unit surface area of a body as follows:[
ϵσ̃T̃ 4 + k̃T

∂T̃

∂r̃

]
r̃=R̃

= Γ̃(cosΘ), (4)

where σ̃ is the Stefan–Boltzmann constant.

The total balance of the stellar heating rate and radiative cooling rate is

expressed as:

πR̃2αF̃∗ = 4πR̃2ϵσ̃ << T̃ 4 >ϕ>θ, (5)
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where <>ϕ≡ [1/(2π)]
∫ π

−π
dϕ is the mean with respect to the longitude, and

<>θ ≡ (1/2)
∫ 1

−1
d cos θ is the mean with respect to the colatitude. Note

that the global average of the heat conduction flux at the surface must be

zero for a steady state. We define the global average temperature as T̃av ≡

[<< T̃ 4 >ϕ>θ]
1/4 = [αF̃∗/(4ϵσ̃)]

1/4 = 280[(α/ϵ)(L̃∗/L̃⊙)]
1/4(ã/1AU)−1/2 [K],

where L̃⊙ is the solar luminosity.

In the following part of the paper, we use the dimensionless temperature

T ≡ T̃ /T̃av, radius r ≡ r̃/R̃, and angular velocity ω ≡ ω̃R̃2/κ̃. The global

average temperature can be considered to be Tav = 1. Using these variables,

the thermal conduction equation (Eq. (2)) is expressed as

ω
∂T

∂ϕ
=

1

r2

{
∂

∂r

(
r2
∂T

∂r

)
+

[
1

sin θ

∂

∂θ

(
sin θ

∂T

∂θ

)
+

1

sin2 θ

∂2T

∂ϕ2

]}
. (6)

By dividing Eq. (4) by 4ϵσ̃T̃ 4
av = αF̃∗, we get a dimensionless form of the

boundary condition: [
1

4
T 4 + qglobal

∂T

∂r

]
r=1

= Γ(cosΘ) (7)

where

Γ(cosΘ) ≡ Γ̃(cosΘ)

αF̃∗
=

 cosΘ for 0 ≤ Θ < π/2,

0 for π/2 ≤ Θ ≤ π,
(8)

is the dimensionless form of the stellar heating rate, and

qglobal ≡
k̃T T̃av/R̃

αF̃∗
(9)

is the dimensionless parameter that is a characteristic value of the global

thermal conduction flux for the temperature gradient T̃av/R̃ normalized by

the stellar heating rate αF̃∗. Note that qglobal was denoted as λ in Vokrouh-

lický (1998).
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Now, we develop an iterative method for determining the temperature

distribution that satisfies Eqs. (6) and (7). We choose T (0) = 1 as the zeroth

order solution that satisfies Eq. (6). The j-th order solution is expressed as

follows:

T (j) = T (j−1) + δT (j), (10)

where δT (j) is the difference between the j-th order and the (j − 1)-th order

solutions. We expect that |δT (j)|/|δT (j−1)| = O(ε), where ε is a positive

number smaller than unity. Then, |δT (j)| = O(εj) and the solution converges

as j → ∞.

Because Eq. (6) is linear in T , its difference δT (j) too must satisfy Eq.

(6). In order to solve Eq. (6) for δT (j), we expand δT (j) using spherical

harmonics

δT (j) =
∞∑
n=0

n∑
m=0

δT (j)
nm, (11)

where

δT (j)
nm = δC(j)

nm(r)P
m
n (cos θ) cos(mϕ) + δS(j)

nm(r)P
m
n (cos θ) sin(mϕ). (12)

Here, Pm
n (cos θ) is the associated Legendre function of the first kind, and

δC
(j)
nm(r) and δS

(j)
nm(r) are real functions of r, which will be determined as

shown below. Note that the spherical harmonics, Pm
n (cos θ) cos(mϕ) with

0 ≤ n and 0 ≤ m ≤ n and Pm
n (cos θ) sin(mϕ) with 1 ≤ n and 1 ≤ m ≤ n

form a complete orthogonal system for a continuous real function of (θ, ϕ) (we

do not need terms with m = 0 for Pm
n (cos θ) sin(mϕ), because sin(mϕ) = 0).

Because the thermal conduction equation is linear, we can solve each term

of the spherical harmonics separately. By substituting Eq. (12) into Eq. (6)
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and comparing each term proportional to cos(mϕ) and sin(mϕ), we get

d

dr

[
r2

d

dr
δC(j)

nm(r)

]
− n(n+ 1)δC(j)

nm(r)−mωr2δS(j)
nm(r) = 0, (13)

and
d

dr

[
r2

d

dr
δS(j)

nm(r)

]
− n(n+ 1)δS(j)

nm(r) +mωr2δC(j)
nm(r) = 0. (14)

When m = 0, the solution that is regular at r = 0 is

δC
(j)
n0 (r) = δC(j)

n rn, (15)

where δC
(j)
n is a constant real number that can be determined on the basis

of the surface boundary condition. When m > 0, it is convenient to define

a complex variable δE
(j)
nm(r) ≡ δC

(j)
nm(r)− iδS

(j)
nm(r), where i is the imaginary

unit. Equations (13) and (14) can be merged into one equation,

d

dr

[
r2

d

dr
δE(j)

nm(r)

]
− n(n+ 1)δE(j)

nm(r)− imωr2δE(j)
nm(r) = 0. (16)

A solution of this equation, which is regular at r = 0, is jn(βmr), where

jn is the spherical Bessel function of the first kind and βm ≡ (−imω)1/2

(Vokrouhlický, 1998). Because jn(βmr) and its derivative βmj
′
n(βmr) may

take very large or very small values, we multiply them byBn(βm), a coefficient

that is dependent on n and βm, as follows:

ĵn,m(βmr) ≡ Bn(βm)jn(βmr) (17)

and

ĵ′n,m(βmr) ≡ Bn(βm)βmj
′
n(βmr). (18)

Thus, we get appropriate values of ĵn,m(βmr) and ĵ′n,m(βmr) for computation.

The detailed procedures for determining these coefficients and for calculating
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these functions are given in Appendix A. We obtain a general solution that

is regular at r = 0,

δE(j)
nm(r) = δE (j)

nm ĵn,m(βmr), (19)

where δE (j)
nm is a constant complex number, and it will be determined on the

basis of the surface boundary condition. Thus, we get general solutions of

the thermal conduction equation, which are

δT
(j)
n0 (r, θ) = δC(j)

n rnPn(cos θ), (20)

and

δT (j)
nm (r, θ, ϕ) = ℜ

[
δE (j)

nm ĵn,m(βmr) exp(imϕ)
]
Pm
n (cos θ), (21)

where ℜ represents the real part. Equation (21) is used when 0 < m ≤ n.

Substituting Eq. (10) into Eq. (7), we get[
1

4

(
T (j−1) + δT (j)

)4
+ qglobal

(
∂T (j−1)

∂r
+

∂δT (j)

∂r

)]
r=1

= Γ(cosΘ). (22)

By expanding the nonlinear term using δT (j) and omitting the terms on the

order of o(εj), we get
(
T (j−1) + δT (j)

)4 ≈
(
T (j−1)

)4
+ 4δT (j). Thus, we get

the following boundary condition:[
δT (j) + qglobal

∂δT (j)

∂r

]
r=1

= Γ(cosΘ)− Λ(j−1)(θ, ϕ)− qglobal

[
∂T (j−1)

∂r

]
r=1

.

(23)

where we denote the dimensionless radiative-cooling-rate by Λ(j−1)(θ, ϕ) ≡[
1
4

(
T (j−1)

)4]
r=1

.

Because we have already obtained the general solutions of the thermal

conduction equation for δT (j) by performing the expansion on the basis of

spherical harmonics and because Eq. (23) is linear in δT (j), we can get a
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solution that satisfies Eq. (23) by expanding the right-hand side (RHS) of

Eq. (23) on the basis of spherical harmonics. The last term on the RHS of

Eq. (23) has been already obtained when we are going to calculate δT (j) by

employing the iterative method.

Figures 2 and 3

The first term on the RHS of Eq. (23) is written as

Γ(cosΘ) =
∞∑
n=0

Γn Pn(cosΘ), (24)

where each coefficient Γn is given by

Γn =
2n+ 1

2

∫ 1

−1

Γ(cosΘ)Pn(cosΘ)d cosΘ

=
2n+ 1

2

∫ 1

0

xPn(x)dx. (25)

The first three coefficients are Γ0 = 1/4, Γ1 = 1/2, and Γ2 = 5/16. We have

Γn = 0 for odd values of n ≥ 3, and

Γn =
2n+ 1

2

(−1)(n/2)−1(n− 3)!!

(n+ 2)!!
, (26)

for even values of n ≥ 4 (e.g., Eq. (8.14.15) of Abramowitz and Stegun

(1964)). It is convenient to use the recurrence formula,

Γn = −
(
2n+ 1

2n− 3

)(
n− 3

n+ 2

)
Γn−2, (27)

to perform the numerical calculation. We approximate the sum over 0 ≤

n ≤ ∞ in Eq. (24) by replacing ∞ with a large number nmax. As expected

from Eq. (27), Γn converges very slowly. However, nmax = 64 provides a
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sufficiently good approximation of Eq. (8), as seen in Figs. 2 and 3. Hence,

all the numerical values presented in this paper will correspond to nmax = 64.

The Legendre polynomial as a function of cosΘ is transformed to the frame

of reference drawn in Fig. 1 using the addition theorem (e.g., Eq. (12.201)

of Arfken, 1970)

Pn(cosΘ) = Pn(cos θ∗)Pn(cos θ)+2
n∑

m=1

(n−m)!

(n+m)!
Pm
n (cos θ∗)P

m
n (cos θ) cos(mϕ),

(28)

where θ∗ is the angle between the direction of the central star from the center

of the spinning body and the spin axis z̃. Thus, we get

Γ (cosΘ) =
nmax∑
n=0

Γn0Pn(cos θ) + ℜ

[
nmax∑
n=1

n∑
m=1

ΓnmP
m
n (cos θ) exp(imϕ)

]
, (29)

where

Γn0 = ΓnPn(cos θ∗), (30)

and

Γnm = 2Γn
(n−m)!

(n+m)!
Pm
n (cos θ∗). (31)

Next, we expand the second term of the RHS of Eq. (23), Λ(j−1)(θ, ϕ),

using spherical harmonics:

Λ(j) (θ, ϕ) =
nmax∑
n=0

Λ
(j)
n0Pn(cos θ)+ℜ

[
nmax∑
n=1

n∑
m=1

Λ(j)
nmP

m
n (cos θ) exp(imϕ)

]
, (32)

where Λ
(j)
n0 is a real number and Λ

(j)
nm is a complex number for m ≥ 1. These

coefficients are obtained by using the orthogonal relations of the associated

Legendre function (see Eqs. (8.14.11) and (8.14.13) of Abramowitz and Ste-

gun (1964)):

Λ
(j)
n0 =

2n+ 1

4π

∫ 1

−1

d cos θ Pn(cos θ)

∫ π

−π

dϕΛ(j)(θ, ϕ), (33)
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and

Λ(j)
nm =

2n+ 1

2π

(n−m)!

(n+m)!

∫ 1

−1

d cos θ Pm
n (cos θ)

∫ π

−π

dϕΛ(j)(θ, ϕ) exp(−imϕ).

(34)

Note that the denominator of the first term on the RHS of Eq. (34) is 2π

and not 4π, because we only use the terms with m ≥ 1. Further, note that

superscript j is used in Eqs. (32) – (34) to represent general relations, but

j should be replaced with j − 1 when Eqs. (33) and (34) are used in Eq.

(23). We perform these integrals numerically by the method of quadrature

by parts.

Thus, using spherical harmonics, we can expand all the three terms on

the RHS of Eq. (23). By comparing terms with m = 0 and m ̸= 0, we get

δC(j)
n = frelax

Γn0 − Λ
(j−1)
n0 − qglobalnC

(j−1)
n

1 + qglobaln
, (35)

and

δE (j)
nm = frelax

Γnm − Λ
(j−1)
nm − qglobalE (j−1)

nm ĵ′n,m(βm)

ĵn,m(βm) + qglobalĵ′n,m(βm)
, (36)

where C
(j−1)
n =

∑j−1
ℓ=1 δC

(ℓ)
n and E (j−1)

nm =
∑j−1

ℓ=1 δE
(ℓ)
nm. The factor frelax should

be equal to unity in order to satisfy Eq. (23). If δT (j) which satisfy Eq. (23)

is on the order of εj with ε < 1, the summation
∑∞

0 δT (j) would converges.

In practice, we use frelax = 1 at first to calculate the summation; if the sum-

mation converges, the converged value is considered the nonlinear solution

which we wish to obtain (i.e., we empirically know that ε < 1). However, if

the summation does not converge, and just oscillate around a value (see Fig.

17), we empirically know that ε ≈ 1. In this case, the values of δC
(j)
n and

δE (j)
nm given by Eqs. (35) and (36), respectively, with frelax = 1 are too large
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for reducing the error of the nonlinear boundary condition given by Eq. (7);

then we use a value of frelax smaller than unity in order for ε to be smaller

than unity. We could always find an appropriate value of frelax empirically

to attenuate oscillations; we have confirmed that the converged solution sat-

isfies the nonlinear boundary condition within a sufficiently small error. In

principle, we can obtain a solution that satisfies the nonlinear boundary con-

dition with an arbitrary accuracy by using a large value of nmax, using a

large number of meshes for performing numerical integration of Eqs. (33)

and (34), and repeatedly using the abovementioned recurrence formulas as

many times as needed.

3. Results and Discussion

The dimensionless temperature distribution (i.e., the dimensional tem-

perature distribution normalized by the average temperature) is determined

on the basis of the following three dimensionless parameters: (1) qglobal, which

indicates a characteristic value of the global conductive flux relative to the

stellar heating rate, (2) ω, the dimensionless angular velocity, which shows

the angle of spin during the thermometric diffusion time R̃2/κ̃, and (3) θ∗,

the angle between the direction of the central star and the spin axis of a

body.

Although, these three parameters are sufficient for mathematically deter-

mining a solution, the thermal parameter, defined as qthermal ≡ (k̃T T̃av/l̃thermal)/(αF̃∗),

is often used to characterize the solution; this parameter indicates the ratio

of the thermal energy stored in the surface region whose depth is equal to

the penetration depth l̃thermal (≡ (κ̃/ω̃)1/2) of the thermal wave and the sur-
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face energy input (or output) by the stellar flux (or radiative loss) during a

spin period (Farinella et al., 1998; Spencer et al., 1989; Vokrouhlický, 1998).

Note that the thermal parameter defined in our study is 2−1/2 times that

of Vokrouhlický (1998), because we use the global average temperature T̃av

instead of the temperature of the point where the stellar direction is per-

pendicular to the surface of the body, T̃∗ ≡ (αF̃∗/ϵσ̃)
1/4, in the definition

of the thermal parameter. Since ω = (qthermal/qglobal)
2, the dimensionless

angular velocity ω can be determined if qthermal and qglobal are known; there-

fore, qthermal, qglobal, and θ∗ are used as a parameter set for characterizing a

solution. Note that ω−1/2 = qglobal/qthermal = l̃thermal/R̃ gives a measure of

the importance of 3D heat conduction relative to 1D heat conduction.

Figures 4 – 6

Figures 4 – 6 show the longitudinal distributions of the temperature at

two colatitudes θ = 60◦ and 120◦ for (A) qglobal = 0.1 and qthermal = 0.1, (B)

qglobal = 0.1 and qthermal = 1, and (C) qglobal = 0.1 and qthermal = 10, with

θ∗ = 60◦. The solid lines in Fig. 4 show the nonlinear solution obtained by

the iterative method for j = 32 and frelax = 0.5, and the ones in Figs. 5 and

6 show the values for j = 16 and frelax = 1.0; the dashed lines show the linear

solution (i.e., j = 1 and frelax = 1.0). In general, the temperature according

to a nonlinear solution is lower than the temperature according to a linear

solution at a same position. This is because the dimensionless form of the

cooling rate T 4/4 = (1 + δT )4/4 used to determine the nonlinear solution

(see Eq. (7)) is larger than (1/4)+ δT used to determine the linear solution.

Figures 7 – 9
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Figures 7 – 9 show the maximum and minimum temperatures at each

colatitude for parameter sets (A)–(C) in Figs. 4 – 6, respectively. The

difference between the maximum and minimum temperatures is large and

T
(j)
min

<∼ 0.6 over a wide range of θ for (A), as seen in Fig. 7. On the other

hand, the difference between the maximum and minimum temperatures is

small and T (j) ∼ 0.6 only in a region experiencing the polar night (i.e.,

θ ≥ θ∗ + 90◦ = 150◦) for (C) as seen in Fig. 9.

Figures 10 – 12

Figures 10 – 12 show the longitude of the maximum- and minimum-

temperature points at each colatitude for parameter sets (A)–(C) in Figs.

4 – 6, respectively. The longitudes of the maximum-temperature points are

nearly equal to 0 (i.e., at noon) for (A), as seen in Fig. 10; the angular velocity

is very low, so the thermal energy given by the stellar irradiation is re-emitted

before the body spins substantially. On the other hand, the longitude of the

maximum-temperature point is in the afternoon for (B) and (C), as seen in

Figs. 11 and 12, respectively, because of moderate to high values of angular

velocities. The longitude of the minimum temperature point is not shown in

Fig. 10 because it is difficult to determine that point due to flat temperature

distributions where it is night (see Fig. 4). The longitude of the minimum-

temperature point for (B) and (C) in Figs. 11 and 12, respectively, are nearly

equal to the longitude of sunup, because radiative cooling continues until the

sunup. However, for θ < 90◦ − θ∗ = 30◦, i.e., the region experiencing the

midnight sun, the longitude of the minimum-temperature point is about 180◦

from the longitude of the maximum-temperature point. The longitudes of the

maximum and minimum temperature points at each colatitude according to
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both the linear and nonlinear solutions are almost identical. The temperature

distribution for θ > 90◦ + θ∗ = 150◦ (i.e., the region experiencing the polar

night) is very flat and we do not plot the longitudes of the maximum- and

minimum-temperature points in this region.

Table 1

We calculated the temperature distribution for the parameter sets (qglobal, qglobal, θ∗)

listed in Table 1. The maximum and minimum temperatures on a sphere

determined by performing the j-th iteration and denoted as T
(j)
max and T

(j)
min,

respectively, are listed in Table 1. The maximum and minimum temperatures

according to the linear solution, denoted as T
(1)
max and T

(1)
min, respectively, de-

termined by using j = 1 and frelax = 1 are also listed for comparison. When

qglobal ≪ 1, the values of the maximum and minimum temperatures differ

significantly from unity; on the other hand, when qglobal ≫ 1, the values of

the maximum and minimum temperatures are nearly equal to unity.

Table 2

The colatitude and longitude of the maximum-temperature point, de-

noted as θ
(j)
max and ϕ

(j)
max, respectively, are shown in Table 2. It is difficult to

determine the position at which the temperature is T
(j)
min because the tempera-

ture distribution is very flat at T ≈ T
(j)
min. The colatitude and longitude of the

maximum-temperature point in the case of the linear solution (θ
(1)
max, ϕ

(1)
max)

are also shown in Table 2. The coordinates of the maximum-temperature

points are almost the same in the case of the iterative and linear solutions.

When qthermal ≪ 1, the maximum-temperature point (θmax, ϕmax) is near
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the point (θ∗, 0) where the stellar direction is perpendicular to the surface of

the body. On the other hand, when qthermal ≫ 1, the maximum-temperature

point is away from (θ∗, 0).

In order to understand the obtained results using dimensional variables,

we introduce the critical radius R̃c at which qglobal = 1,

R̃c =
k̃T T̃av

αF̃∗
= 0.20

(
ã

1AU

)3/2
(
L̃∗

L̃⊙

)−3/4

α−3/4ϵ−1/4

(
k̃T

1Wm−1K−1

)
[m],

(37)

and the critical spin period P̃c at which qthermal = 1,

P̃c =
2πT̃ 2

avk̃
2
T

α2F̃ 2
∗ κ̃

= 2.6× 105
(

ã

1AU

)3
(
L̃∗

L̃⊙

)−3/2

α−3/2ϵ−1/2

(
κ̃

1× 10−6m2s−1

)−1
(

k̃T
1Wm−1K−1

)2

[s], (38)

where the material constants κ̃ and k̃T are normalized by the typical values

of ordinary chondrites (Opeil et al., 2010; Yomogida and Matsui, 1983). By

using these values, the dimensionless parameters are expressed as

qglobal = R̃c/R̃, (39)

and

qthermal = (P̃c/P̃ )1/2. (40)

If qglobal ≫ 1, i.e., R̃ ≪ R̃c, the thermal conduction is so effective that the

temperature is nearly constant throughout the sphere (see Table 1). On

the other hand, if qglobal ≪ 1, i.e., R̃ ≫ R̃c, the maximum and minimum
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temperatures differ considerably from the average temperature (see Table 1).

If qthermal ≫ 1, i.e., P̃ ≪ P̃c, the temperature is averaged over the longitude

ϕ to be nearly axisymmetric with respect to the spin axis z, because of the

fast spin, even though the dependence of temperature on colatitudes remains

if qglobal <∼ 1 (see Figs. 6 and 9). On the other hand, if qthermal ≪ 1 and

qglobal <∼ 1, i.e., P̃ ≫ P̃c and R̃ >∼ R̃c, the temperature would be high in the

region where it is day and low in the region where it is night (see Fig. 4). In

the studies of the diurnal Yarkovsky effect, the most interesting case is when

qthermal
>∼ 1 and qglobal <∼ 1. Then, the delays in temperature variation occurs

because of the thermal inertia, and as a result, the maximum temperature

is reached in the afternoon (see Table 2) (Farinella et al., 1998). This delay

causes the diurnal Yarkovsky effect.

We have used some values of qglobal and qthermal for reference (see Tables 1

– 2). The values qglobal=0.1, 1, and 10 correspond to R̃=2 m, 20 cm and 2 cm,

respectively, and qthermal=0.1, 1 and 10 correspond to P̃ = 3×107 s, 3×105 s

and 3×103 s, respectively, at 1AU for standard values of parameters: L̃∗ = 1

L̃⊙, α = 1, ϵ = 1, κ̃ = 1 × 10−6 m2 s−1 and k̃T=1 W m−1 K−1. Kadono

et al. (2009) determined the spin periods of asteroid fragments as P̃ [s] ∼

20R̃ [m] from impact-disruption experiments of thin glass plates. By using

this relation with Eqs. (39) and (40), and the standard values of parameters,

we have qthermal ∼ 3× 102 (ã/1AU)3/4 q
1/2
global. Hence, we get qthermal ≫ 1 for

meter- to centimeter-sized meteoroids with qglobal ∼ 1, although this result

is not conclusive because it is uncertain whether meteoroids rotates with

the relation determined by Kadono et al. (2009) and also because meteoroids

with large values of the porosity may have values of the thermal conductivity
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and the thermometric conductivity very different from the standard values.

Table 3

The force due to the back reaction of the radiation from a unit surface of

a body is given by the following equation:

P̃ rad = −2

3
ϵ
σ̃
[
T̃ (θ, ϕ)

]4
c̃

n = −2αF̃∗

3c̃
Λ (θ, ϕ) n, (41)

where c̃ is the speed of light and n is the unit vector normal to the surface of

the body. By substituting Eq. (32) into this equation and integrating over

the surface of the spherical body, we estimate the force acting on the body

for the temperature distribution determined by the j-th iteration:

f̃
(j)

=
8πR̃2αF̃∗

9c̃

{
−ℜ

[
Λ

(j)
1,1

]
i+ ℑ

[
Λ

(j)
1,1

]
j − Λ

(j)
1,0k
}

(42)

where ℜ and ℑ denote the real and imaginary parts, respectively, and i, j,

and k denote unit vectors in the directions of x, y, and z axes respectively.

The rate of change in the semimajor axis is proportional to fy (Vokrouh-

lický, 1998). In Table 3, f
(j)
y , the y-component of the force determined

by the j-th iteration normalized by 4πR̃2αF̃∗/(9c̃), for the parameter sets

listed in Tables 1 and 2 is listed. The force determined by the linear ap-

proximation, fy, linear, is also listed in Table 3 for comparison; we calculated

fy, linear by using an approximation of the dimensionless radiative cooling

rate: Λ(1) = [T (1)]4/4 ≈ (1/4) + δT (1), where δT (1) is determined by using

frelax = 1. We have confirmed that fy, linear is identical to the force deter-

mined by Vokrouhlický (1998).

It is seen that the maximum difference between the results of the iter-

ative method and those of linear approximation is 13% (this percentage is
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for qglobal = 0.1 and qthermal = 10) and that the nonlinear effect does not

significantly affect the diurnal Yarkovsky effect. However, precise temper-

ature distributions are useful for observational astronomers. Moreover, our

results would be useful for checking the accuracy of complicated computer

codes that calculate the surface temperature of a spinning body irradiated

by a central star.

In order to examine the convergence of the iterative method, we calculated

the RMS error of the boundary condition (see Eq. (7)); the RMS error is

defined as

∆(j) ≡

{
1

4π

∫ 1

−1

d cos θ

∫ π

−π

dϕ

[
Γ(cosΘ)− Λ(j) − qglobal

∂T (j)

∂r

∣∣∣∣
r=1

]2}1/2

.

(43)

Figures 13 – 15

Figures 13 – 15 respectively show the RMS error ∆ as a function of the

iteration frequency j for the following three cases: (a) θ∗ = 60◦, qglobal = 0.1,

qthermal = 1.0, and frelax = 1.0, (b) θ∗ = 60◦, qglobal = 0.1, qthermal = 0.1, and

frelax = 1.0, and (c) θ∗ = 60◦, qglobal = 0.1, qthermal = 0.1, and frelax = 0.5.

In these calculations, we set nmax = 64, and the numerical integration by

θ and ϕ in Eqs. (33) and (34) are performed using 1440 and 2880 meshes,

respectively. Figure 13 shows that the RMS error becomes less than 10−3

after 14 iterations in case (a). On the other hand, Fig. 14 shows that the

RMS error does not converge in case (b) in which frelax = 1.0. By using same

values of qglobal and qthermal as Fig. 14, but by changing the value of frelax

to 0.5, the RMS error becomes less than 10−3 after 30 iterations, as seen in

Fig. 15.
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Figures 16 – 18

In order to understand why the RMS error does not converge in case (b),

we plot the global maximum temperature T
(j)
max as a function of j for cases

(a) – (c) in Figs. 16 – 18, respectively. As seen in Fig. 16, T
(j)
max converges

to a limiting value in case (a). On the other hand, Fig. 17 shows that T
(j)
max

oscillates around a limiting value and does not converge in case (b). The

spin is so slow in case (b) that the maximum temperature around the point

where the stellar direction is perpendicular to the surface of the body differs

considerably from unity and the correction of each iteration step becomes also

too large to converge. This problem has been overcome by using frelax = 0.5,

as seen in Fig. 18.

If we perform a sufficient number of iterations and use an appropriate

value of frelax, a sufficient number of meshes for the integration in Eqs.

(33) and (34), and a sufficient number of nmax for the spherical harmonics

expansion, we can, in principle, obtain a solution within any desired value of

the RMS error.

4. Conclusions

In this work, we have developed an iterative method for determining the

temperature distribution in a spherical body that is irradiated by a central

star. We have taken into account the spin only and have neglected the

seasonal revolution. It is assumed that material parameters such as the

thermal conductivity and the thermometric conductivity remain constant

throughout a spherical body.
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A general solution for the temperature distribution inside a body had

been obtained using spherical harmonics and spherical Bessel functions by

Vokrouhlický (1998). However, the surface boundary condition contains a

term obtained using the Stefan–Boltzmann law and is nonlinear with re-

spect to the temperature because it is dependent on the fourth power of

temperature. An unresolved problem was to fit the solution to the nonlinear

boundary condition at the surface. An iterative method is used to calculate

the values of the constant coefficients of the general solution.

A temperature distribution is characterized by the following three dimen-

sionless parameters: (1) qglobal, which indicates the ratio of the conductive

flux for the temperature gradient given by the average temperature divided

by the radius of the body and the stellar heating rate (or the radiative cooling

rate), (2) qthermal, which indicates the ratio of the thermal energy stored in

the surface region whose depth is equal to the penetration depth of the ther-

mal wave and the surface energy input (or output) by the absorbed stellar

flux (or radiative loss) during a spin period, and (3) θ∗, the angle between

the direction of the central star from the center of the spinning body and the

spin axis of a body.

The value of qglobal is inversely proportional to the radius of the body.

If the radius of the body is large such that qglobal ≪ 1, thermal conduction

is not globally effective. In this case, the temperature distribution obtained

by the iterative method is very different from that obtained by the linear

approximation of radiative cooling.

The value of qthermal is inversely proportional to the square root of the spin

period. If the spin period is short such that qthermal ≫ 1, the temperature
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becomes almost constant and independent of the longitude for a given value

of the colatitude as a result of the fast spin.

The force that changes the semimajor axis due to the diurnal Yarkovsky

effect is determined. The maximum difference between the force according

to the iterative solution and that according to the linear solution is about

10%; the nonlinear effect does not significantly affect the diurnal Yarkovsky

effect.

However, the surface temperature for a large body with qglobal ≪ 1, which

would be important for the observational astronomers, is very different from

the surface temperature according to the linear solution. This method would

be a base of three dimensional calculations of thermal histories of solar system

bodies as well; any numerical codes that calculate three-dimensional temper-

ature evolutions in spherical bodies can be checked by using the nonlinear

solution obtained in this study.
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Figure Captions

Fig. 1. The spherical coordinates. The spin axis is z̃, and the direction of

the central star is in the x̃-z̃ plane and it is at an angle θ∗ from the z̃ axis.

The radius of the body is R̃. The angle between the stellar direction and a

point P with coordinates (R̃, θ, ϕ) when viewed from the center of the body

is Θ.

Fig. 2. The dimensionless stellar heating rate Γ(cosΘ) expressed by the

Legendre expansions with 0 ≤ n ≤ 16 (dotted line) and 0 ≤ n ≤ 64 (solid

line).

Fig. 3. The error of Γ(cosΘ) for 0 ≤ n ≤ 16 (dotted line) and 0 ≤ n ≤ 64

(solid line).

Fig. 4. The longitudinal distributions of the temperature at two colatitudes

θ = 60◦ and 120◦ for (A) qglobal = 0.1, qthermal = 0.1, and θ∗ = 60◦. The

solid lines show the values obtained by the iterative method with j = 32

and frelax = 0.5; the dashed lines show the values obtained by the linear

method (i.e., j = 1 and frelax = 1.0). The longitudes of sunup and sundown,

respectively, are −109.5◦ and 109.5◦ for θ = 60◦, and −70.5◦ and 70.5◦ for

θ = 120◦.

Fig. 5. The longitudinal distribution of the temperature at two colatitudes

θ = 60◦ and 120◦ for (B) qglobal = 0.1, qthermal = 1, and θ∗ = 60◦. The

solid lines show the values obtained by the iterative method with j = 16 and

frelax = 1.0; the dashed lines show the values obtained by the linear method

(i.e., j = 1 and frelax = 1.0). The longitudes of sunup and sundown are same

as those in Fig. 4.

Fig. 6. The longitudinal distribution of the temperature at two colatitudes
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θ = 60◦ and 120◦ for (C) qglobal = 0.1, qthermal = 10, and θ∗ = 60◦. The

solid lines show the values obtained by the iterative method with j = 16 and

frelax = 1.0; the dashed lines show the values obtained by the linear method

(i.e., j = 1 and frelax = 1.0). The longitudes of sunup and sundown are same

as those in Fig. 4.

Fig. 7. The maximum and minimum temperatures at each colatitude for

(A) qglobal = 0.1, qthermal = 0.1, and θ∗ = 60◦. The solid lines show the

values obtained by the iterative method with j = 32 and frelax = 0.5; the

dashed lines show the values obtained by the linear method (i.e., j = 1 and

frelax = 1.0).

Fig. 8. The maximum and minimum temperatures at each colatitude for

(B) qglobal = 0.1, qthermal = 1, and θ∗ = 60◦. The solid lines show the

values obtained by the iterative method with j = 16 and frelax = 1.0; the

dashed lines show the values obtained by the linear method (i.e., j = 1 and

frelax = 1.0).

Fig. 9. The maximum and minimum temperatures at each colatitude for

(C) qglobal = 0.1, qthermal = 10, and θ∗ = 60◦. The solid lines show the

values obtained by the iterative method with j = 16 and frelax = 1.0; the

dashed lines show the values obtained by the linear method (i.e., j = 1 and

frelax = 1.0).

Fig. 10. The longitude of the maximum-temperature point at each colati-

tude for (A) qglobal = 0.1, qthermal = 0.1, and θ∗ = 60◦. The solid line shows

the values obtained by the iterative method with j = 32 and frelax = 0.5;

the dashed line shows the values obtained by the linear method (i.e., j = 1

and frelax = 1.0).
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Fig. 11. The longitudes of the maximum- and minimum-temperature points

at each colatitude for (B) qglobal = 0.1, qthermal = 1, and θ∗ = 60◦. The solid

lines show the values obtained by the iterative method with j = 16 and

frelax = 1.0; the dashed lines show the values obtained by the linear method

(i.e., j = 1 and frelax = 1.0). The dashed-dotted line shows the longitude of

sunup.

Fig. 12. The longitudes of the maximum- and minimum-temperature points

at each colatitude for (C) qglobal = 0.1, qthermal = 10, and θ∗ = 60◦. The solid

lines show the values obtained by the iterative method with j = 16 and

frelax = 1.0; the dashed lines show the values obtained by the linear method

(i.e., j = 1 and frelax = 1.0). The dashed-dotted line shows the longitude of

sunup.

Fig. 13. RMS error ∆ as a function of the iteration frequency j when (a)

θ∗ = 60◦, qglobal = 0.1, qthermal = 1.0, and frelax = 1.0.

Fig. 14. RMS error ∆ as a function of the iteration frequency j when (b)

θ∗ = 60◦, qglobal = 0.1, qthermal = 0.1, and frelax = 1.0.

Fig. 15. RMS error ∆ as a function of the iteration frequency j when (c)

θ∗ = 60◦, qglobal = 0.1, qthermal = 0.1, and frelax = 0.5.

Fig. 16. The global maximum temperature T
(j)
max as a function of the

iteration frequency j when (a) θ∗ = 60◦, qglobal = 0.1, qthermal = 1.0, and

frelax = 1.0.

Fig. 17. The global maximum temperature T
(j)
max as a function of the

iteration frequency j when (b) θ∗ = 60◦, qglobal = 0.1, qthermal = 0.1, and

frelax = 1.0.

Fig. 18. The global maximum temperature T
(j)
max as a function of the
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iteration frequency j when (c) θ∗ = 60◦, qglobal = 0.1, qthermal = 0.1, and

frelax = 0.5.
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Table 1: The maximum and minimum temperatures according to iterative solutions and

linear solutions. A solution is characterized by three dimensionless parameters: qglobal,

qthermal, and θ∗. The maximum and minimum temperatures according to a solution

determined by performing the j-th iteration are denoted as T
(j)
max and T

(j)
min, respectively,

and frelax is relaxation parameter used in Eqs. (35) and (36). The maximum and minimum

temperatures according to a linear solution are denoted as T
(1)
max and T

(1)
min, respectively.

qglobal qthermal θ∗ j frelax T
(j)
max T

(1)
max T

(j)
min T

(1)
min

0.1 0.1 30◦ 32 0.5 1.397 1.668 0.527 0.757

0.1 1.0 30◦ 32 0.5 1.380 1.599 0.548 0.760

0.1 10 30◦ 32 0.5 1.350 1.549 0.552 0.761

1.0 0.1 30◦ 16 1.0 1.274 1.340 0.800 0.840

1.0 1.0 30◦ 16 1.0 1.274 1.340 0.800 0.840

1.0 10 30◦ 16 1.0 1.236 1.283 0.814 0.846

10 0.1 30◦ 16 1.0 1.057 1.059 0.966 0.968

10 1.0 30◦ 16 1.0 1.057 1.059 0.966 0.968

10 10 30◦ 16 1.0 1.057 1.057 0.967 0.968

0.1 0.1 60◦ 32 0.5 1.397 1.668 0.528 0.756

0.1 1.0 60◦ 16 1.0 1.333 1.466 0.604 0.768

0.1 10 60◦ 16 1.0 1.186 1.230 0.614 0.767

1.0 0.1 60◦ 16 1.0 1.274 1.340 0.799 0.840

1.0 1.0 60◦ 16 1.0 1.273 1.338 0.800 0.840

1.0 10 60◦ 16 1.0 1.131 1.142 0.853 0.855

10 0.1 60◦ 16 1.0 1.057 1.059 0.966 0.968

10 1.0 60◦ 16 1.0 1.057 1.059 0.966 0.968

10 10 60◦ 16 1.0 1.056 1.058 0.967 0.968

0.1 0.1 90◦ 32 0.5 1.397 1.668 0.528 0.756

0.1 1.0 90◦ 16 1.0 1.315 1.429 0.731 0.803

0.1 10 90◦ 16 1.0 1.110 1.117 0.772 0.819

1.0 0.1 90◦ 16 1.0 1.274 1.340 0.799 0.840

1.0 1.0 90◦ 16 1.0 1.273 1.338 0.801 0.841

1.0 10 90◦ 16 1.0 1.084 1.086 0.930 0.933

10 0.1 90◦ 16 1.0 1.057 1.059 0.966 0.968

10 1.0 90◦ 16 1.0 1.057 1.059 0.966 0.968

10 10 90◦ 16 1.0 1.056 1.057 0.967 0.968
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Table 2: Positions of the maximum-temperature points according to iterative solutions

and linear solutions. Colatitude and longitude of the maximum-temperature point for

a solution, which is determined by the j-th iteration are denoted as θ
(j)
max and ϕ

(j)
max,

respectively, while those for a linear solution are denoted as θ
(1)
max and ϕ

(1)
max, respectively.

qglobal qthermal θ∗ j frelax θ
(j)
max θ

(1)
max ϕ

(j)
max ϕ

(1)
max

0.1 0.1 30◦ 32 0.5 30.0 30.0 1.3 1.3

0.1 1.0 30◦ 32 0.5 23.8 20.3 13.3 23.6

0.1 10 30◦ 32 0.5 6.9 3.5 37.3 41.4

1.0 0.1 30◦ 16 1.0 30.0 30.0 0.0 0.0

1.0 1.0 30◦ 16 1.0 29.9 29.9 4.3 4.8

1.0 10 30◦ 16 1.0 8.8 7.5 41.4 44.4

10 0.1 30◦ 16 1.0 30.0 30.0 0.0 0.0

10 1.0 30◦ 16 1.0 30.0 30.0 0.13 0.13

10 10 30◦ 16 1.0 29.6 29.6 8.0 8.0

0.1 0.1 60◦ 32 0.5 60.0 60.0 1.1 1.1

0.1 1.0 60◦ 16 1.0 54.3 53.5 15.5 22.1

0.1 10 60◦ 16 1.0 15.5 11.4 39.4 41.8

1.0 0.1 60◦ 16 1.0 60.0 60.0 0.0 0.0

1.0 1.0 60◦ 16 1.0 59.9 59.9 4.1 4.6

1.0 10 60◦ 16 1.0 32.3 30.9 42.0 43.5

10 0.1 60◦ 16 1.0 60.0 60.0 0.0 0.0

10 1.0 60◦ 16 1.0 60.0 60.0 0.13 0.13

10 10 60◦ 16 1.0 59.6 59.6 8.0 8.0

0.1 0.1 90◦ 32 0.5 90.0 90.0 1.1 1.1

0.1 1.0 90◦ 16 1.0 90.0 90.0 15.0 20.0

0.1 10 90◦ 16 1.0 90.0 90.0 33.1 33.9

1.0 0.1 90◦ 16 1.0 90.0 90.0 0.0 0.0

1.0 1.0 90◦ 16 1.0 90.0 90.0 4.1 4.6

1.0 10 90◦ 16 1.0 90.0 90.0 35.6 36.0

10 0.1 90◦ 16 1.0 90.0 90.0 0.0 0.0

10 1.0 90◦ 16 1.0 90.0 90.0 0.13 0.13

10 10 90◦ 16 1.0 90.0 90.0 8.0 8.0
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Table 3: Forces due to the back reaction of radiation normalized by 4πR̃2αF̃∗/(9c̃) for

iterative solutions f
(j)
y and linear solutions fy, linear.

qglobal qthermal θ∗ j frelax f
(j)
y fy, linear

0.1 0.1 30◦ 32 0.5 -0.0084 -0.0082

0.1 1.0 30◦ 32 0.5 -0.1030 -0.1130

0.1 10 30◦ 32 0.5 -0.0358 -0.0311

1.0 0.1 30◦ 16 1.0 -0.0002 -0.0003

1.0 1.0 30◦ 16 1.0 -0.0232 -0.0246

1.0 10 30◦ 16 1.0 -0.0384 -0.0350

10 0.1 30◦ 16 1.0 0.0000 0.0000

10 1.0 30◦ 16 1.0 -0.0001 -0.0001

10 10 30◦ 16 1.0 -0.0079 -0.0079

0.1 0.1 60◦ 32 0.5 -0.0145 -0.0142

0.1 1.0 60◦ 16 1.0 -0.1793 -0.1956

0.1 10 60◦ 16 1.0 -0.0590 -0.0539

1.0 0.1 60◦ 16 1.0 -0.0004 -0.0004

1.0 1.0 60◦ 16 1.0 -0.0401 -0.0426

1.0 10 60◦ 16 1.0 -0.0636 -0.0606

10 0.1 60◦ 16 1.0 0.0000 0.0000

10 1.0 60◦ 16 1.0 -0.0001 -0.0001

10 10 60◦ 16 1.0 -0.0137 -0.0137

0.1 0.1 90◦ 32 0.5 -0.0168 -0.0165

0.1 1.0 90◦ 16 1.0 -0.2078 -0.2259

0.1 10 90◦ 16 1.0 -0.0658 -0.0623

1.0 0.1 90◦ 16 1.0 -0.0005 -0.0005

1.0 1.0 90◦ 16 1.0 -0.0464 -0.0492

1.0 10 90◦ 16 1.0 -0.0715 -0.0700

10 0.1 90◦ 16 1.0 0.0000 0.0000

10 1.0 90◦ 16 1.0 -0.0002 -0.0002

10 10 90◦ 16 1.0 -0.0158 -0.0158
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Appendix A. Spherical Bessel function multiplied by appropriate

constant numbers

The explicit expressions of jn(βm) contains sin [βm − (nπ/2)] and cos [βm − (nπ/2)]

(e.g., Eq. (10.1.8) of Abramowitz and Stegun (1964)). Because βm = bm −

ibm, where bm ≡ (mω/2)1/2, the values of sin [βm − (nπ/2)] and cos [βm − (nπ/2)]

increase in proportion to exp(bm) as bm increases. In order to avoid diver-

gence, we use the following functions instead of jn(βm) and βmj
′
n(βm) if

|βm| ≫ 1:

ĵn,m(βm) ≡ βmjn(βm)/ sin[βm − (nπ/2)] =

[n/2]∑
ℓ=0

(−i)ℓ(n+ 2ℓ)!

(2ℓ)!(n− 2ℓ)!22ℓ(mω)ℓ

−
[(n−1)/2]∑

ℓ=0

(−i)ℓ+1(n+ 2ℓ+ 1)!βm

(2ℓ+ 1)!(n− 2ℓ− 1)!22ℓ+1(mω)ℓ+1
cot
(
βm − nπ

2

) ,

(A.1)

and

ĵ′n,m(βm) ≡ β2
mj

′
n(βm)/ sin[βm − (nπ/2)] (A.2)

From Eq. (10.1.20) of Abramowitz and Stegun (1964), we have

ĵ′n,m(βm) =
βm cot [βm − (nπ/2)]

2n+ 1
[nĵn−1,m(βm) + (n+ 1)ĵn+1,m(βm)]. (A.3)

If |βm| ≪ 1, jn(βm) and βmj
′
n(βm) will be very small, as seen from Eq.

(10.1.2) of Abramowitz and Stegun (1964). For a small value of |βm|, we use

the following functions that are expanded in series of β2
m, instead of jn(βm)

and βmj
′
n(βm),

ĵn,m(βm) ≡ (2n+ 1)!!(βm)
−njn(βm) =

∞∑
ℓ=0

Jnℓ (βm)
2ℓ, (A.4)
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and

ĵ′n,m(βm) ≡ (2n+ 1)!!(βm)
1−nj′n(βm) =

∞∑
ℓ=0

(n+ 2ℓ)Jnℓ (βm)
2ℓ, (A.5)

where

Jnℓ ≡
(−1)ℓ(2n+ 1)!!

2ℓℓ!(2n+ 2ℓ+ 1)!!
. (A.6)

We have performed summation over 0 ≤ ℓ ≤ 1024 in our numerical calcula-

tions.
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