
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Mechanism of baroclinic instability based on an
idealized equation in a simplest situation

Masuda, Akira
Research Institute for Applied Mechanics, Kyushu University

https://doi.org/10.15017/27123

出版情報：九州大学応用力学研究所所報. 142, pp.35-53, 2012-03. Research Institute for Applied
Mechanics, Kyushu University
バージョン：
権利関係：



Mechanism of baroclinic instability based on 

an idealized equation in a simplest situation

Reports of Research Institute for Applied Mechanics, Kyushu University  No.142  (35  —  53) March 2012

           Akira MASUDA*1 

E-mail of corresponding author: masuda@riam.kyushu-u.ac.jp 

( Received January 31, 2012 )

                                    Abstract 

Baroclinic instability is investigated with emphasis on its mechanism. First a symmetric form of idealized 
evolution equation is derived for a two-layer flat ocean on an f-plane, which model is purified and simplified 
as much as possible without loss of the essence of baroclinic instability. Detailed explanation is provided 
to each term of the equations. The model captures well the features of baroclinic instability in a simple 
systematic picture, so that the equation may be called the canonical equation for baroclinic instability. The 
interpretation is based on the evolution of barotropic and baroclinic modes. In particular, the equation is 
reduced to the Laplace equation for two independent variables of time t and the zonal coordinate x, in the 
limit of long wavelengths compared with the baroclinic radius of deformation; it is related with the Cauchy-
Riemann condition of complex functions. Therefore the instability mechanism becomes almost trivial and 
the spatial features of growing and decaying modes are interpreted by the property of complex functions 

(their real and imaginary parts are harmonic functions). On the other hand for short-wave disturbances, the 
equation is reduced to the one-dimenSiOnal wave equation. In both limits, methaphorical systems with the 
same equations but different physics are presented to explain why the system is unstable (growing/decaying 
modes) or stable (neutral waves). It also allows simple forms of analytic solutions for the growth rate and 
stream functions, which make it easy to understand various aspects and roles of baroclinic instability. Also 
simple representations are given to the meridional transport of buoyancy and the meridional circulation as 
for Eady's model, within the framework of a two-layer model. In addition, the role of baroclinic instability 
is argued in relation to Gent-McWilliams parameterization and diffusive stretching. 

Key words : baroclinic instability, canonical equation, instability mechanism, barotropic and baroclinic 
            modes, secondary circulation, G-M parameterization and diffusive stretching

1. Introduction 

   Baroclinic instability, represented by storms of the 

mid-latitude weather, is a well-known and familiar phe-
nomenon not only in the atmosphere but also in the 

ocean. It is considered to control large-scale variability 
of geophysical fluids. There have been a vast amount 
of literature about baroclinic instability starting with 
Eady (1949) and Charney (1947). Now it is easy to 

compute the growth rate and the structure of growing 
modes of disturbance even for complicated and realistic 
situations, by numerical means. Also it has become a 
routine to simulate the nonlinear evolution of a system 

unstable to baroclinic waves. 
   Nevertheless, it is difficult to understand and explain 

adequately the mechanism of baroclinic instability and 
its roles in the general circulation; baroclinic instability

cannot be easy, since it contains (1) the Coriolis force, 

(2) density stratification, and (3) three-dimenSiOnality 
of space (vertical shear of zonal current, meridional gra-

dient of density, and zonal wavenumber of disturbance), 
as its indispensable ingredients. 

   In fact, we may encounter dubious explanations even 

now, in spite of considerable efforts made so far. For in-
stance, the term of baroclinic instability may lead one to 
suppose that baroclinic instability is caused directly by 
the baroclinic term Vp x Vp in the vorticity equation, 

where p denotes density, p pressure, and V horizontal 

gradient operator. The baroclinic term Vp x Vp, how-
ever, does not appear essential, as will be contrasted 
with the instability mechanism discussed in the present 

paper. Also the interpretation in terms of Rossby waves 
appear to lead to somewhat ambiguous consequences. 

In short, baroclinic instability is such a phenomenon 
that denies superficial explanation. 

   So it is desirable to have a variety of investigations
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and interpretation of baroclinic instability. The primary 

purpose here is to present an explanation of the mecha-
nism of  baroclinic instability in a simplest manner with-
out losing the essence of baroclinic instability and math-
ematical rigorousness. As a byproduct, we obtain a fur-

ther insight into the mathematics and physics of baro-
clinic instability than the usual approaches made so far 

give. We first propose an evolution equation for baro-
clinic instability, which we call the canonical equation of 
baroclinic instability. The equation is obtained in a sit-
uation simplified as much as possible. Also we argue the 

mechanism of instability and clarify the spatial structure 
of growing (decaying) or neural modes, and some roles 
of baroclinic instability in large-scale dynamics, on the 
basis of the canonical equation, which provides simple 

analytical formulas. 
   The next section describes a simplified and puri-

fied situation for baroclinic instability with notations. 
The third section derives the canonical equation and 
the meaning of each term of the equation. In the fourth 

section results based on the canonical equation are pre-
sented and related issues are discussed. The final section 

gives a summary and further discusSiOn.

2. Formulation 

   There have been various models of baroclinic in-
stability. One of the most fundamental and important 
among them is probably that of Eady (1949), which con-

siders a horizontally uniform zonal flow with constant 
vertical shear in a continuously and uniformly strati-
fied channel on an f-plane. In a simplified situation of 
the two-layer discrete model, growing modes of baro-

clinic instability were discussed in a paper of ours on 
Kuroshio frontal eddies (Masuda and Okuno 2002; see 
Phillips 1954 too). That paper, however, was focused on 
the properties of growing modes, and did not address to 

the mechanism (or physics) of instability, which is the 

primary purpose of the present article. 
  We make a further simplification or purification to 

obtain a clearer understanding (or physical interpreta-
tion) of the mechanism of baroclinic instability. In the 
following, the convenient notation of GFDVN is used 

often without definition; see Masuda (2010) for details. 
   Consider an ocean of a flat and zonal channel on 

an f-plane (Fig. 1), where the Coriolis parameter f 
is a positive constant (the northern hemisphere). The 

ocean has a meridional width L; in the zonal direction 
it is infinitely wide or periodic. The ocean consists of 
two layers with a density difference Sp, which is quite 

small compared with the reference density pr (which is 
unity for convenience), so that the Boussinesq approxi-
mation is valid. Then the reduced gravity is expressed as 

g' - Op! pr., where g denotes the acceleration of grav-

ity. Both the upper and lower layers have the same 

average thickness 2H. The suffixes 1 and 2 (i = 1, 2) 
are used to refer to the upper layer and the lower layer, 
respectively; the upper (lower) layer is called often as 
the surface (bottom) layer. 

  We denote time by t and (eastward, northward, up-
ward) coordinates by (x, y, z); x = (x, y). The origin 
of the y-axis is taken so that the southern and north-

ern boundaries of the ocean lie at y = TL/2, respec-
tively; the origin of the z-axis is set at the level of sea 
surface, so that the bottom is identical with the plane 
z = —4H. The (eastward, northward) components of 
horizontal current u are denoted by (u, v). 

   Throughout the paper we assume the quasi-

geostrophic (Q-G) formulation on an f-plane (Pedlosky 
1987, say), in which u is expressed as 

        u=--,v=dxor 
              y u = — a (GFDVN) 

in terms of the quasi-geostrophic stream function V, 
which is related with pressure p by Pb = p. As the 

background (abbreviated to b.g.) current field, we as-
sume uniform eastward flow U1 = U in the upper layer, 
while uniform westward current U2 = —U in the lower 
layer, where U is a positive constant. Then the b.g. ver-

tical position of the interface z = Y of the two layers 
has a slight meridional slope of dY/dy = 2 f U/g' from 

geostrophy. Then the b.g. thickness of each layer hi 

(i = 1, 2) is 

hi  y dY h2  y dY 
     2H  2H dy ' 2H 1 + 2H dy 

We assume 

               L           E2H dY« 1, (1) 

                    y

Fig. 1 A schematic view of the model ocean like 
      a channel on an f-plane, which consists of 

      two layers of the same average thickness 
2H. The background current is uniform 

      and eastward in the surface layer, while 
     westward in the bottom layer. The inter-
      face has a uniform slope due to geostrophy.



so that 2H is a good approximation to  hi (i = 1, 2). 
   The linearized Q-G vorticity equation becomes 

     (+ U—aV2'01 - C(01-02))      ataz 
0'01                          = 0 
ax ,   {(±9–0(722P2 ±(01-1P2))                           (2) 

     atOx 
         —FU 802           —A— = o 

Ox 

where /Pi and 02 denote the quasi-geostrophic stream 
function of disturbance in the upper and lower layers, 
respectively; 1/F g' H/ f2 the square of the baroclinic 
radius of deformation. 

   In the above equations, the last term originates in 
the meridional gradient of the b.g. thickness of each 
layer. It may be called the CIPT 0-effect (baroclinic-

Current Induced Pseudo-Topographic effect), which 
has been used in a study of the southwestward move-
ment of Meddies (Takahashi and Masuda 1998). The 
CIPT may be written better as 

         f2u f dY (/3L=c<.<1)  13tFU --= ------•           g'H2H dy 

Note that CIPT (3 works in the opposite way between 
the upper and lower layers. The northward current pro-
duces negative vorticity in the surface layer, while posi-
tive in the bottom layer. This term is essential to baro-
clinic instability, as will be shown later. 

   Strictly speaking, the sea surface has a small meri-
donal slope to express the zonal b.g. current in the sur-
face layer. We set it flat, however, by making the rigid 
lid approximation (equivalent to the assumption of an 
infinite barotropic radius of deformation). Also the in-
terface between the two layers have a slope, so that the 
thickness of both layers hi (i = 1, 2) are not uniform. 
But, hi (i = 1, 2) varies only a little in comparison with 
the average thickness of each layer 2H, according to the 
assumption (1). 

   The appropriate side boundary conditions are 

= — = 0 at y = +–L (i = 1, 2) O
x2 

for the channel model. It is replaced by 

        –= 0 at y = ±–L (i =1 ,2), (3)                      2 

where -1 denotes the zonal average of 
   To remove some uncertainty peculiar to the channel 

model (see Appendix), we pose additional constraints of 

(01 – L'2) = 0,(4) 

(ui + u2) = 0,(5) 
               /42 

where (o)=–1dy denotes the horizontal aver-         –L
-L/2 

age (domain average). These constraints mean the mass

conservation of each layer (see Masuda 2011), and the 
conservation of the total zonal momentum. 

   Other dynamical variables are expressed in terms of 
zpi (i = 1, 2). For instance the upward displacement of 

the interface becomes ri = (02 – 01) f / g' . The vertical 
velocity w is expressed as 

        wi =(--a+ U2)77 + vi — 
       Ot0xdy                             di/ 

{ 

           0,0          W2=(——U)n+v2—d 
        Ot OxdYy ' 

which yields 

WI = W2,(6) 

since 

   ,,077dY 1 dY 0(02 –01)WI dY    u --+ v1— =+_ _ _ _____ 
   Oxdy 2 dy Ox ax dy 

      1 dY 0(01----------+02)7,071dY == -U± V2 - • 
   2 dy ax ax dy 

The meridional displacement y of water becomes 

         (atax—a+ U —a)Yi = vi–1--P-a 

 { 

       ia             a\        U
t-u--ax)Y2= V2=ax                         002                     Ox . (7) 

Likewise the vertical displacement of water is 

       ( 0 a\ 
           Wi+ii.V2.1=11)1 

 { 

               T7a          ('-u)22 =-. W2 = WI     Ot 8X.(8) 

  The total energy of disturbance is governed by 

  2H a ( IV0112 + IVIP212 ± (F12)(01 – 02) ) 
at2 

                0(01 + 0 =FUHK(01–2) )02)(9) 
                       Ox 

    = 2FUH (01(9)2) –2FUH (0219°1) . (10) 
    OxOx 

where we have used identities 

    Or 1 Or2as Or     r— = ---= 0,= 8(11)      O
x 2 OxrOx ax 

for zonally periodic functions r and s. 

  The left-hand side of (9) is the kinetic and poten-
tial energy of disturbance, whereas the right-hand side 
implies the energy supply to disturbance. In order for 

disturbance to grow, there must be some correlation be-
tween 01 and i4'2, which will be argued later.

3. Canonical equations for baroclinic 

   instability and the meaning of 

   each term of the equations 

  In examining the linear stability, it is usual to ar-

gue the eigenvalue problem for a Fourier component of 
a specified zonal wavenumber k. Or, one may eliminate



either stream function to obtain an equation for a sin-

gle stream function,  '01 or 4/J2. Such methods (Drazin 
and Reid 1981, Pedlosky 1987), however, have been ex-

ploited so often that they would yield nothing new as 
regards the interpretation of baroclinic instability. We 
adopt a different approach here.

3.1 barotropic and baroclinic stream 
    functions and the reduced form of 

    barotropic vorticity equation 

   Let us introduce the stream functions of the 
barotropic mode and baroclinic mode by 

                        1=0+(p     f=

4'/'1+/'22         1-42 2= -~  
                         2 

respectively. The baroclinic stream function co of dis-
turbance represents the depresSiOn of the interface, or it 
is related with rl by 

co= —frl•(12) 
Also we define 

       vo ,_"--=-, ax= V1 + V2211-- ax 
      v~p=-x= v1 - v2------2 v2 

where v4, and v, are the northward velocities of the dis-
turbance barotropic and baroclinic modes, respectively. 
We often use suffixes 0 and co to refer to the borotropic 

and baroclinic modes, respectively. 
   Changing the unknowns from the pair of lh. and '02 

to that of 0 and co (basis transformation), we rewrite 
the Q-G vorticity equation (2) in each layer as 

     a(Ut)V20 +as--V= 0, (13) 
a(ut) (V2 - F)cp + ax(V2 + F)¢.= 0, (14) 

which express the evolution of the infinitesimal distur-
bances of the barotropic and baroclinic modes, respec-
tively. 
   Physical meaning of each term in the barotropic vor-
ticity equation (13) is to be explained for our interpre-
tation of baroclinic instability. The first term is triv-
ial, but what does the second term mean? The equa-
tion says that the vertical average of vorticity, i.e., the 
barotropic mode of vorticity V20, changes only through 
the advection of relative vorticity expressed by the sec-
ond term. This is because there are no other factors 

producing the vertically integrated vorticity: [1] verti-
cal stretching (horizontal convergence) of water plays 
no role in producing the vertically integrated vorticity 
on a flat ocean; [2] there is no planetary 13 effect; and

[3] the CIPT /3 effect does not produce vertically inte-
grated vorticity, since it has its origin in the vertical 
stretching as for [2]. In this case, therefore, the only 
term that can produce the barotropic vorticity V20 is 
the zonal advection of the baroclinic vorticity V2cp by 
the b.g. baroclinic zonal urrent. It is a most typical 
interaction among vertical modes: nonlinear interaction 
of two baroclinic modes yields a barotropic forcing (Ma-
suda 2011, say). 

  As is discussed in Appendix, the operator V2 is re-
moved from this equation to give 

a  
+acp= 0,(15)           a(Ut)ax 

which is the reduced equation of the balance of 
barotropic vorticity. It is to be noted that the trans-
form of basis stream functions to the barotropic and 
baroclinic ones has yielded such a simple representation 
of vorticity equation. 

  Looking at this equation, we may say that 0 is pro-
duced by the advection (or zonal convergence) of co. In 
terms of dynamical variables more familiar than 0 and 
co, (15) is rewritten as 

Dv, 
a(Ut)+axo,(16) 

or equivallently as 

           ay,------_9,a2't = O. (17)           a(Ut)f ax2 

Then we may say that v, is produced by the zonal con-
vergence of v, according to (16), or by a kind of zonal 
diffuSiOn of ri according to (17). It should be born in 
mind, however, that the reduced equations (15)—(17) 
should be interpreted from the balance of barotropic 
vorticity V20 (13). Roughly speaking, it means that the 
zonal advection of the baroclinic vorticity (expressed as 
V2cp -co) by the b.g. current Uz causes barotropic 
vorticity (expressed as V20 ti —0). 

   The meaning of the baroclinic vorticity equation 
(14) is explained better on 

      aV2 cp=F`p—UaV2~-UFa~.   atat axax 
The left-hand side is the temporal change of baroclinic 
vorticity. The first term on the right-hand side is the 
production of baroclinic vorticity by baroclinic horizon-
tal convergence (vertical stretching) of water. Usually 
this term is moved to the left-hand side and treated 
as a thickness term of potential vorticity. The second 
term on the right-hand side means the production of 
baroclinic vorticity due to the advection of barotropic 
vorticity by the b.g. baroclinic current. The third term 
means the production of baroclinic relative vorticity by 
the northward advection of the b.g. baroclinic potential



vorticity (b.g. thickness) by the barotropic disturbance 

(CIPT /3 effect). 
  The form of (14) reads: the disturbance baroclinic 

potential vorticity changes from the baroclinic produc-
tion of vorticity by [1] the advection of the barotropic 
vorticity by the baroclinic b.g. current and [2] the north-
ward barotropic current under the baroclinic CIPT  /3 
effect; the latter is interpreted alternatively as the baro-

clinic production of potential vorticity by the north-
ward advection of the b.g. baroclinic potential vor-
ticity (thickness term) by the disturbance northward 

barotropic current vo. If we use rj and vo instead of 

0 and cp, parallel to (17), (14) is expressed as 

      fa(Ut)(V2-F)ri = (V2+F)vo. (18) 
Note that the reduced form is not obtained for the baro-

clinic vorticity equation, except for the long-wave and 

short-wave limits discussed later.

3.2 canonical equation for baroclinic insta-
    bility when h1 = h2 

   Substituting the reduced barotropic vorticity equa-

tion (15) into the baroclinic vorticity equation (14), we 
obtain 

22 

    a(Ut)2(V2— F)cp -ax2(V2 + F)`p0, (19) 

which has a single unknown cp. It is equivalent to 

a a aa 2 
   a(Ut) +axa(Ut)-ax V 2 

0202                      V2
~ (02-ax2 

= 

       02 a2 ------ —)       (8(Ut)2+ax2Fcp(20) 
      (8(Ut) +Zaxawl)-iaxFcp, (21) 

where i - T is the imaginary unit. The left-hand 
side is related with relative vorticity only, whereas the 
right-hand side is related with the stretching term alone 

(CIPT /3 included here). This equation is suggestive of 
further mathematical or physical aspects of baroclinic 
instability. 

  Let us call any of (19) - (21) as the canonical equa-
tion of baroclinic instability, because it has such s neat 
form that allows simple analytical consequences, as will 

be shown later. We see a good symmetry easily from the 
form of the equation. For instance, the system is invari-
ant under the simultaneous inverSiOn of the zonal direc-
tion and time, or the exchange of (x, t) with (-x, -t); it 

means that, if a mode of disturbance grows with time, 
the disturbance with the opposite zonal character de-
cays with time. Also we should note that (19) has an

integrated form of evolution equation, which differs from 
the ordinary analysis, where disturbance is decomposed 
into individual modes specified as Fourier components 
with specified meridional patterns. It is to be remarked 

that the same form of equation holds for ¢ 01, and /'2. 
  Meanwhile from (6) we have 

wl + w2w~ _aivo dY W1 = W2 =
2_2at +2d y 

       _ - 
       fu ay, 00)(22) 

         g' i9(tit)ax • 

Finally the energy equation (9) becomes 

         a  I0o2 + iVcp12 + F(p2      H 
a(Ut)2 

       = FH((,o-) = FH ((pv~) . (23)                 ax 

It shows that theenergy of disturbance grows only 
when there is a positive correlation between vo and 
cp = -071f. We will go back to this subject later. 

   It is easy to derive another conservation law 

a  IV012+IV I2+F0192-02) =0, (24) 
 a(Ut) 2 

since 

    (aa(Ut)~ 
a  02 

a(Ut) 2 

by virtue of (11) and (15). The conservation law (24) 
suggests the possibility that 02 and cp2 may grow with 
time infinitely. 

3.3 canonical equation when h1 h2 

  We obtain a similar equation as well when the thick-

ness of the upper layer h1 differs from that of the lower 
layer h2 as in the ordinary two-layer model (Phillips 
1954, Masuda and Okuno 2002). 

  We normalize the thickness of each layer by 

Hl = (h1) H2_ (h2)          (h
i) + (h2)_ (h1) + (h2) 

A few baroclinic radii of deformation are defined as 

              f2 
g'((h1) + (h2)) 

                   2 Fi= -------~h2)=HZ(i = 1,2) •  9, 

        F=F1+F2= H
FFH2 

We define the barotropic and baroclinic stream func-
tions by

/'/' tHopi+H2',2



respectively. They are inverted to0, (i =  1,  2) as 

               L"= +H2cp 
02 = c - Hl cp 

   We adopt a frame of reference moving eastward with 
a characteristic velocity of the b.g. current, which;is the 
thickness-weighted average of the b.g. current. Let U 

be the velocity difference between the upper and lower 
layers. We define Ui (i = 1, 2) by 

U1=UH2>0, U2=-UH1<0. 

   Then the vorticity equations become 

(a(ut)• + H2(v201 - F1(4'1 - Y'2)) 
al -(25)             +F'i
ax0~ 

    (art)•-H1ax(v202 + F2(1 -7,1)2)) 
      -F2ax2=0(26) 

for the upper and low layers, respectively. 

  Multiplying (25) by H1 and (26) by H2, and adding 
together, we obtain the barotropic vorticity equation. 
Subtraction of (26) from (25) yields the baroclinic vor-
ticity equation. That is, we have 

0_a02¢+ H1H2av2cp(27)       a(Ut)a x 

      0 =at (V2 - F) cp + ax(V2+F')0 
              (H2 - H1)ax~2cp.(28) 

In (28) we find a term (H2 - HOTV2cp, which was 

absent when H1 � H2. It implies t at baroclinic b.g. 
current advects baroclinic vorticity to produce not only 
barotropic vorticity, but also baroclinic vorticity; the 
case of H1 = H2 is an exceptional one, where the inter-

action between the two baroclinic terms yields no baro-
clinic forcing. 

   Again, the barotropic vorticity equation (27) is re-

duced to 

0 a(U
t)+ Hi H2ax.(29) 

Substituting this reduced relation into (28) to remove 
(/), we obtain a required equation for co 

  a2a2   0a(Ut)2(V2 - F)cP-—0x2  [(V2+F)H1H2cp] 

     +a
x a(Ut)(H2 - H1)V2cp.(30) 

Alternatively it is rewritten as 

                    —a)(0(Ut)• + H2 ax(a(ut)-H1axV2cP 
a2a2 

a(Ut)2+ Hi H2ax2 Fcp. (31)

It is obvious that (30) and (31) reduce to (19) and (21), 

respectively, when H1 = H2 = 1/2 with t replaced by 
t/2. The dynamical meaning of each term of (27) - (30) 
is thus almost the same as in the canonical equation 
when H1 = H2 and details are omitted. 

  Next let us consider a limit of H2 / 1 and H1 \ 0. 
We see that (27) leads to vanishing 0, so that 01 = 
co, b2 = 0. That is, disturbance must be the surface 

mode from the beginning. We see then that (28) leads 
to 

       0at(V2- F)cp+U~xV2cp,(32) 
which governs the evolution of the surface mode. In this 
case no growing mode is possible, as is evident from the 
energy equation (23) or the conservation law (24). We 
observe from (32), that the potential vorticity of the 

surface mode is produced simply by the advection of 
the relative velocity by the b.g. zonal current U1 = U. 

  It is worth mentioning that (32) can be rewritten 
also as 

0= (—at+Uax)(V2-F)cp+FU~, 
which indicates that y behaves as baroclinic Rossby 
waves associated with the CIPT (3t = FU) in uni-
form eastward zonal flow U1 = U. This view of the 

surface mode as Rossby waves is contrasted with that 
based on (32).

4. Results and interpretation 

   Since our purpose is to understand the fundamental 
aspects of baroclinic instability in a simplest way, we 

confine our discusSiOn to the case of H1 = H2.

4.1 growth rate of growing modes, and 

    phase velocity of neutral modes 

  We first derive some fundamental properties of in-
stability. Henceforth we often use the complex repre-
sentation of real variables, where a real variable s is 

expressed by another complex variable s (the same no-
tation), but the final result of real s is obtained by taking 
the real part of complex s; s = R[s], where R[•] denotes 
the real part of •. When we need multiplication of two 

real quantities r and s represented by its complex coun-
terparts r and s, real r • s should be understood as 

       r•s=R(r) t(s)=Rr2+t2, 
where •* denotes the complex conjugate of •. 

   Consider a mode of disturbance specified as in Ap-

pendix 

         ik(x-c(k)t)L\33        cptiesinl (y+2I,() 
where k is the zonal wavenumber, l=L the meridional 
wavenumber (n being a positive integer), and k = (k, l)



the corresponding wavenumber vector. The complex 

phase velocity of the mode c = c(k) is related with the 
complex frequency  co by w(k)  _— k c(k). The amplitude 
of disturbance grows with time when wi - 1 [w] > 0, 

decays with time when wi < 0, or stays neutral when 
wi = 0, where s [•] denotes the imaginary part of •. 

[1] complex disperSiOn relation and critical wavenumber 
  Substituting (33) into the canonical equation (19) 

we obtain the complex disperSiOn relation 

c2(k) _k2 — F(34) 
              U2 k2 + F' 

which yields 

c = c(k) =+Icliwhen k2 < F +l
ei when k2>F 

and 

0 < IUI< 1 for any k, (35) 
       IU1 when k20 

          I~I= 0when k2 = F 
U            IU--+ 1 when k2 --> 00 

The behavior of the mode depends on whether c is a 
real number or a complex. When k2 < F, pairs of 

growing modes and decaying modes appear simultane-
ously. Likewise pairs of eastward propagating and west-
ward propagating neutral modes appear simultaneously 
when k2 > F. 

   That is, the critical wavenumber that separates 
growing (decaying) modes from neutral modes is 

iklc _ "VT, 

which is just the baroclinic deformation wavenumber. 
Since k = (k, l) and 1 = nnr/L > 7r/L, we have Ik1 > 1. 
Baroclinic instability is impossible therefore when x/L 
is larger than the deformation wavenumber NiF. Pro-
vided that baroclinic instability has a role of adjusting 
a highly unstable state to a near-critical state of less 
active growing modes, it limits L, or the width of the 
frontal zone, to a value a bit larger than 7r/\/F, which 
might have some relation with the question of how the 
width of the baroclinic current is determined. 

[2] wavenumer at which growth rate is maximum 
  The growth rate wi = kci - k[c] is a straightfor-

ward consequence of (34). In particular the maximum 

growth rate in the wavenumber range of 1k12  < F is ob-
tained from the condition of awi/ak = 0. The wavenum-
ber kmax for which wi takes the largest (positive) growth 
rate wi;max is expressed explicitly as 

kmax __ICi;max12_wi;max _2F —1 
F+12 U2 U\/F+12 F+12'

where Ci;raax = wi;raax/kmax. When 12 << F, we have 

    kmax = ICi;rnax I2 = wi;max = G — 1 = 0.414. 
U2 U--1

4.2 structure of growing (decaying) modes 
    and neutral modes 

   In the two-layer model, not continuouly stratified 
one, the spatial structure is expressed simply by the 
relative amplitude and phase among .1), cp, and 1/)i (i = 
1, 2). It turns out convenient to formulate the amplitude 
and phase of stream functions and others relative to 
those of 0, the barotropic mode stream function. Also 
it is useful to take the origin of the zonal coordinate x at 
the location of minimum of ¢, which corresponds to the 
center of the low pressure of disturbance or the storm 
center for growing modes of baroclinic instability. 

   Irrespective of whether c is real or complex, it follows 
from the reduced barotropic vorticity equation (15) that 

          cP = U 0,(36) 
which gives 1p, (i =1,2)  as 

1+c/U   =
201—1 + c/U(37) 

         _1 — c/UW2 1—c/U • 
            2 

The relations (36)-(37) are sufficient to determine the 
spatial structure of the mode of disturbance, since c is 
known from (34). 

  As for w, substituting (36) into (22), we obtain 

                                     2 

        w1=w2=fgk1+c2ii. 
Since c2 is a real number satisfying (35), we observe that 

       arg(wi) = arg(w2) = arg(0) + —7r 

                                  irrespective of k, where arg(•) denotes the argument of 
the complex number •. 

   Except for the relative phase of wi, the relative am-

plitude and phase have clear contrast and symmetry 
among distinct characteristics of modes (growing, de-

caying, and neutral), reflecting the property of c. We 
examine them separately. 

[1] growing modes 
   We are concerned with growing modes most and ex-

amine them in details. The growing mode is possible 
when k2 < F and the complex phase velocity becomes 
a pure imaginary number c = Icli; growing modes do 

not propagate in the present frame of reference. The 
baroclinic stream function cp becomes 

        cP=+i~U(38)



so that 

    0 < ll0llU< 1 

     arg  = 2arg(cp)  =  arg(0) +2 

It is to be remembered that if arg(r) = arg(s) + 7r/2, 
say, the peak of r is located to the west of the location 
of the peak of s at a distance of it/(2k); that relation 
holds for any phase. 

  We see that the phase difference of cp from 0 is al-

ways 71/2, while the amplitude of yo is not greater than 
that of 0. As 1k1 / \FE, lol/lO approaches 0, and the 

growing mode becomes almost barotropic. 
  As for 0i (i = 1, 2), we have 

1+ilcl/U 
      1 =20 01 _1+ilcl/U  

     n/'2 =1 — ilcl/Uo'p2—1— ilcl/U. 
            2 

The amplitude of 02 is always the same as that of I1 
for growing modes. It follows from (35) that 

0<0=arg 1=—arg<4. 

The phase difference of 0i (i = 1, 2) from 0 varies with 
k2 within the range of x/4. As 1k1 / \/F, arg(0i) 
approaches arg(0). The amplitude of oi relative to 101 
changes with k2 too. 

   The minimum of cp is observed to the west of the 
center of the low pressure, because the phase difference 
is always 7r/2. On the other hand the minimum of 01 

(02) occurs to the west (east) of the center of the low 
pressure; phase difference 0 is within x/4. The ampli-
tude of 01 is always the same as that of 02, but lcpl is 
not greater than 101. 

   In the limit of long waves, where characteristics of 

growing modes appear typically, (36) and (37) become 

cp,----,+i0 

                   e+in/4       'I'1 

                   e 
       42 

From (7) and (8) we find 

   Y1tiiU~Y2, 

                               2 

   ~-i,q42U fC—i 114   eZ
9~1+U2Y1ez2. 

Though details are omitted, the latter clarifies the La-

grangian motion (Yi (t), ii (t)) to this order: in either 
layer, viewed from east, a water particle rotates coun-
terclockwise on a temporally expanding ellipse such that

Yili > 0 (i = 1, 2). This motion reminds us of the ob-
served trajectory and the indirect meridional circulation 
discussed later. 

  Figure 2 shows the spatial configuration of the grow-

ing mode (and decaying mode). In an approximate 
sense, 0 and v, are considered as twice the pressure 
and northward velocity near the interface of the surface 
and bottom layers. The low pressure in the surface layer 

is 0 x/4 westward (up-current) from the center, while 
0 eastward (up-current) in the bottom layer. There is

Fig. 2 A schematic view of the spatial configu-
     ration of the growing mode (top) and de-

     caying mode (bottom). The origin of the 
x-axis is taken at a storm center, where 

      the pressure around the interface is min-
      imum. Solid circles indicate the location 

      of pressure minimum in the surface layer, 
      at the interface, and in the bottom layer. 
      Correspondingly three thin curves show 
      the zonal distribution of pressure at the 

      surface layer, interface, and bottom layer. 
     A thick line shows the vertical displace-

      ment of the interface. The zonally max-
     imum northward (southward) velocity is 

     denoted by ® (0). The upwelling and 
      downwelling motions are shown by up-
      ward and downward arrows, respectively. 

      A slanted structure of pressure is evident. 
     Note that growing modes and decayning 

      modes have opposite relative phases. See 
      text for details.



a slanted configuration of  0i: phase of 0 is the same 
along a line from the upper west to the lower east. The 
coldest water is found where the upward displacement 
of the interface 7/ is maximum; it is i12 to the west of 

the center of the storm. Also we observe the maximum 
downwelling and the maximum southward displacement 
in each layer around 7r/2 to the west of the storm cen-
ter; the minimum point of y1 is a bit eastward of that 

of Y2. Though it might appear curious at first, water 
downwells around where the upward displacement y of 
the iterface is the largest. This is because, for k2 < F, 

positive 7/ is induced mainly by the southward motion, 
which advects the northern high Y. 

   The phase relation above has an important meaning. 
As is evident from the energy equation (23), a necessary 

condition for growing disturbance is a positive correla-
tion between 0 and aq/ax, or arg((p) = arg(0) + 7r/2. 
This is just the exact phase relation represented by (38). 
This phase relation has the following physical meaning 

too. As is well-known and as will be shown later, grow-
ing modes transport buoyancy northward and release 
the potential energy stored by the meridional gradient 
of buoyancy: 

     K') =2K1ax2>>0 
which indicates that the phase of 01 is shifted westward 
of o2 and cp westward of for the growing mode. If we 
rewrite the above condition as 

o <aoN~)a(01+b2)Na0a   (~ax(2 —1ax\ az ax 
and considers it a discrete approximation to a contin-
uously stratified model, it means the slanted isophase 
line of 0 mentioned before. 

   By the way, from the energy equation (23), we see 

that the growth rate w = kid should satisfy 

1V012 + Iv 2 + F(p2 = FU\a~(39) 
                                   It is easy to confirm (39) by using the complex disperSiOn 

relation (34) and (38). 

[2] decaying modes 
   The decaying mode appears in the same wavenum-

ber range k2 < F as the growing mode. The complex 

phase velocity is c = In short, the decaying mode 
has the mirror image of the growing mode with respect 

to the phase as 

   cp=~U~ 
    1= 

         1 — iicl/U  
           2yl _- iIcj/U 

     ~2 __1 + i1c1/U21 + iI cl/U.             2

The relative amplitude of the decaying mode takes the 
opposite sign to that of the growing mode (Fig.2). 

These properties are anticipated from the symmetry of 
the canonical equation with respect to the exchange of 

(Ut, x) with (—Ut, —x) mentioned before. 
   Note that the opposite sign of relative phase between 

the growing and decaying mode is associated with pos-
itive or negative growth rates, i.e., release or saving of 
the b.g. potential energy by disturbance. 

[3] neutral modes 
  Next we examine the neutral mode (1k1 > ^F) . We 

have 

     ,P __+IcI  
¢ U ' 

      01 _ 1 ± lcl/U  
     0 2 01_1 + Icl/U  

      02 _1T1c1/U ' 'tp2 1T1c1/U 
    cb 2 

for the eastward (upper sign) and westward propagating 

(lower sign) waves, respectively. For eastward propagat-
ing waves, the amplitude of the surface layer (bottom 
layer) is larger than that of the bottom layer (surface 
layer), as is anticipated. As for the phase, we see 

arg(0) = arg((p) = arg(01) = arg(b2), (40) 

for which no energy is supplied to the mode. 
   For k2 >> F, the coupling of the surface and lower 

layer is small enough, so that both layers are expected to 
behave independently from each other. In fact 101I/1'02I 

approaches oo and 0 for eastward propagting and west-
ward propagating waves, respectively. That is, the neu-
tural modes become the surface and bottom modes in 
this limit of short wavelength. Also the vorticity equa-

tions become 

  aoi aol aoa~p 
   a(Ut)+ax= °a(Ut)+ax= ° 

a2 a2 _a acp ao_ 
   a(Ut)-ax-°a(Ut)+ax° 

where the left-hand side equations show the indepen-

dent evolution of surface and bottom modes. The dis-
turbance in the surface layer moves eastward by the ad-
vection of the b.g. current U1 = U independently of the 

lower layer disturbance. The reversed statement is true 
of the bottom mode. Figure 3 shows the spatial struc-
ture of the neutral modes. One is an eastward propagat-
ing wave and the other a westward propagating wave. 

   Thus the canonical equation provides a quite sys-
tematic and simple picture of the spatial structure of 

growing (decaying) and neutral modes.



4.3 mechanism of instability 

   Our primary object is to understand the mechanism 
of baroclinic instability by means of the canonical equa-

tion in a most simplified situation. In particular, it 
is shown why the radius of deformation gives a criti-
cal scale that separates growing (decaying) modes from 

neutral modes. 

[1] elliptic and hyperbolic equations in the limits of long-
and short-waves 

  Since (V2 — F) in the first term of (19) is negative 

definite, the sign of the second term of (19) is impor-
tant. As was discussed before, the second term of (19) 
expresses the production of baroclinic vorticity by [1]

the zonal advection of disturbance barotropic vorticity 
 V20 by baroclinic b.g. current and [2] the meridional 

advection of the baroclinic b.g. potential vorticity (b.g. 
thickness term or CIPT 3) by the barotropic northward 
disturbance velocity v4,. The two effects tend to cancel 
each other, because V2 ti —k2 < 0 and F > 0. Thus we 
see the relative magnitude of V2 and F becomes critical 
whether the disturbance grows (decays), or neutral. 

  For large scale disturbance 1V21 < F, the latter dom-
inates the former. That is, the CIPT 13 effect is larger 
than the advection of the disturbance barotropic vor-
ticity. It will enhance the initial disturbance of cp and 
disturbance will grow. In fact, in the limit of k2 << F, 
the canonical equation is approximated by 

D(Ut)2+ax=0. 

This is an elliptic partial differential equation, or the 
Laplace equation for two independent variables Ut and 
x. That is, cp(Ut, x; y) is a harmonic function in this 
notation. If co = A(Ut; y)e' , then A(Ut;y) should 
be efkvt, which property is a well-known atttribute of 
harmonic functions. Therefore co grows or decay with 
time. 
   On the other hand, disturbance of short wavelengths 
follows a quite different evolution. When 1V21  domi-
nates F, baroclinic zonal advection of baroclinic vortic-
ity is dominant, which reduces 0 and works as a restor-
ing effect. Then disturbance oscillates in time, or prop-
agates eastward or westward. In fact, the limiting form 
of the canonical equation becomes 

a2cp a2co = 0 
           a(Ut)2 ax2' 

i.e., the one-dimenSiOnal wave equation. 
   The present explanation translates each mathemat-

ical property to its physical counterpart, so that there 
can be no ambiguity. The mechanism is universal in 
mathematical sense, irrespective of the details of the 
dynamics in concern. It is obvious that the distur-
bance may grow when the evolution equation becomes 
the Laplace equation for independent variables of Ut, x. 

[2] interpretation in more physical terms 
  A more physical interpretation is obtained if we use 

nand v, instead of 0 and co. This interpretation is based 
on the equations 

         avq59' 0277 
D(Ut)—f 8x2 

       f (9(Ut) (V2 — F)i = (v,2 + F)vo 

Suppose a depresSiOn of interface [—ii] > 0 occurs near 
kx = 7r/2, or consider ri ti cos(kx + 7r/2) = —1; see

Fig. 3 The same as Fig. 2 except that it is for the 
     neutral mode (k2 >> F): (top) eastward 

     propagating wave and (bottom) westward 
     propagating wave. The amplitude is larger 

     in the surface (bottom) layer like the sur-
     face mode (bottom mode). A broad wavy 

     arrow indicates the propagation direction 
      of the neutral modes. The wave propa-

     gates eastward (westward) as if it is ad-
     vected by the eastward (westward) back-

     ground current in the surface layer (bot-
     tom layer). The displacement of the inter-
     face takes a profile opposite to (similar to) 

      the pressure around the interface. Note 
     that w has the same phase relation as in 

      the growing mode.



the top panel of Figure 2. Since  02i  /ax2 ti —k2rj > 
0 there, the first equation shows that the northward 
barotropic velocity vo increases there. The feedback 
to [—n] by the increased v4, is described by the second 

equation. Evidently (V2 — F)ri in the left-hand side 
has the same sigh as [-71] irrespective of the scale of 
disturbance. In contrast, the sign of (V2 + F)v4, in the 

right hand depends on the scale of disturbance. 
   Two cases are to be examined separately there-

fore. We first consider a large scale of depresSiOn of 

the interface ([—n] > 0) such that 1V21 < F, where 

(V2+F)vo has the same sign as vo. Then the increased 
vo enhances the baroclinic potential vorticity (thickness 

term), which is approximated by gf[-71]. Thi is, the 
initial depresSiOn of interface [—ri] increases further by 

this positive feedback. That explains why the initial 
small depresSiOn of the interface grows with time. 

  When the scale of initial depreSiOn of the interface is 
smaller than the baroclinic radius of deformation, how-
ever, I V2v,/, 1 is larger than I Fvq5 I, and the net effect is 
reversed; the initial depresSiOn is restored to the origi-
nal level. This is the scheme of oscillation. Dsturbance 

therefore does not grow, but oscillates, or propagates 
zonally. 

[3] interpretation based on metaphorical systems for 
long- and short-scale limits 

   The reason why disturbance grows (decays) or stays 

neutral according as its horizontal scale is given by the 
following metaphors as well. The limits of long waves 
and short waves respectively become 

ac+a~P = °019au      a(
Ut)ax 4-4019+ax= ° 

    a(ut)±a-0at+a~=° 
where, + represents the short-wave limit, and — the 

long-wave limit. The right-hand side expresses the gov-

erning equations of the metaphorical system. It is ob-

tained by replacing 0, cp on the left-hand side by p and 

u. In the metaphorical systems, we may consider p as 

the pressure, or the surface elevation, and u the zonal 

velocity of shallow water waves, where the depth and 

gravitational acceleration are assumed to be unity. 
   For the short-wave limit, the metaphorical system 

holds usual physics of water waves. The result is 

the ordinary wave equation for nondispersive neutral 

waves. On the other hand, for the long-wave limit, the 

metaphorical system has a curious property: accord-

ing to the lower equation, high p does not pushes out, 

but pulls in water. Such a system must be unstable, of 

course. 

[4] limit of long-waves and analytic functions

  In the long-wave limit, also the baroclinic vorticity 
equation is reduced to 

                ay __ao 
a(Ut)ax' 

which implies that barotropic northward current under 
the CIPT /3 pushes down the interface to cause baro-
clinic vertical stretching. We see from this, in partic-
ular, that wi = w2 = 0 by virtue of (22); it merely 

reflects the northward advection of the b.g. interface Y 
by barotropic northward current vo. 

  Putting the reduced vorticity equations of 

barotropic and baroclinic modes together, we have 

aco ao DO aco (41) 

  Addition and subtraction of the two equations of 

(41) yield 

a/Pl a'02002aol       =--(42) 
a(Ut)ax ' a(Ut)-ax • 

  Both (41) and (42) are identified with the Cauchy-
Riemann condition of analytical functions. We observe 

therefore both co + iq and 01 + ib2 are analytical func-
tions of (Ut)+ix. It follows directly from this that every 
Fourier component of eikx should be 

               + io ~, efk([Ut]+ix) 
02 + i./ i ,,, efk([ut]+ix) • 

The positive and negative signs indicate the growing and 
decaying disturbance, respectively. Any mode therefore 

decays or grows with time, so long as it has a zonal de-

pendence like e+ikx. Only from this analytical property 
of + i95 and '1 + ii/2, it is easy to obtain the phase 
relation 

arg(cp) — arg(c) = arg(01) — arg(02) _ 2 

for growing modes (upper sign) and decaying modes 

(lower sign) of e2kx, respectively. That is, for growing 
modes, the minimum of 01 (02) is to the west (east) of 
the minimum of 0; the minimum of co is to the west of 

the minimum of ¢, which we saw in the previous sub-
section from the direct calculation. 

[4] further investigation on the long-wave and short-
wave limits 
r Long-wave and short-wave limits have been argued 

in a few ways in this subsection. It is worth mentioning 
that they have been suggested by the alternative forms 

of canonicl equations (20) and (21). If 1V21 >> F, for 
instance, the canonical equation immediately reduces to 
the wave-equation. If V2 << F, on the other hand, (21) 
suggests an analytical relation of stream functions.



   Finally energetics and conservation law of (23) and 

(24) are discussed in these limits. In the long-wave limit, 
we see 

 a  (02-02) -o , at 2 

which shows that the orbit on the ((02), (cp2))-plane is 

a hyperbolic curve. That is, the energy (02) + (cp2) will 

go away to 0o for t --p +oo. On the other hand, the 
short-wave limit has a contrasted feature. The energy 
equation becomes 

at 2 at 

so that the orbit is a circle on the ((Ca2), (cp2))-plane.

4.4 artificial surface and bottom modes and 
    their resonance as Rossby waves 

  When we rewrite (2) as 

   (+u-) (V2_2)'P1 + FUax1 
      =_(±u)2 

       l (IUaxJ (v2_ç)2_Fu~2         — (at-u-2-ax)Elp1 
it reads that the surface or bottom layer is forced by the 

right-hand side due to the disturbance of the other layer. 
The right-hand sides are interpreted as the interaction 
or coupling with the other layer. 

  If the stream function of bottom (surface) layer is 

forced to be zero artificially, the evolution equation be-
comes that of the surface (bottom) layer alone. We call 
such motions as the artificial surface (bottom) mode; 
the artificial surface mode is described as Rossby waves 

due to the CIPT ,Q advected by the b.g. eastward cur-
rent U1. The disperSiOn relations for artificial surface 
and bottom modes agree with those for the correspond-
ing Rossby waves: 

       FU/3t  
     cl—U=—k2+F/2=—k2+<0

(43)     c2+U=+k2--------+F,/2=+k2aF/2F/2>0 
The artificial surface (bottom) mode propagates west-
ward (eastward) in the frame of reference moving with 

U1 (U2), 
   However, if we rewrite (43) as 

                                    2 

          —1<c2--cl—F/2—k <1 
         U U F/2 + k2' 

we observe that ClI I and Ic21 are within the range of U in 
the reference system moving with the average velocity 

(U4, = 0) of the surface and bottom layers.

   Baroclinic instability is interpreted sometimes in 
terms of the resonance between those Rossby waves de-
scribed above as the artificial surface and bottom modes. 
Let us examine how adequate the interpretaion of reso-
nance is. 

   We see that resonance occurs only when ci = 
c2 = 0, which condition is satisfied at wavenumber 
kres/fF  = 1/\/ = 0.707, roughly equal to kmax/^F ti 
^/2 — 1 = 0.644 in the previous subsection. Such a 
close correspondence should be considered accidental, 

however. The argument based on the resonance be-

tween those artificial surface and bottom mode is not 

correct, although it may be suggestive. Note that the 

artificial surface and bottom modes neither satisfy the 

full equations for the two-layer system so far discussed 

nor represent the correct spatial structure of growing 

modes. Artificial modes and their resonance may be 

used as a heuristic tool.

4.5 secondary transport by growing modes 
    and energetics 

  In this subsection we are concerned with the growing 
mode of l = it/L only. 

[1] meridional transport of water and buoyancy 
  The deviation of the thickness of each layer Shi due 

to disturbance is expressed by rl as 

                   f ici —Ohl = Sh2 = = —  cp = — g, U 

where 

            = J22 [aoeikx+Wit cos ly] ,(44) 

ao being the initial amplitude of 0. Then the zonal 
mean of the northward transport of water in the surface 

layer due to the growing mode is 

    vi6h1= -----            a
x772g'.9(0+x(p)Co 

        4c'U~a~~2e2uit cos2 ly = Acos2 ly > 0, 
        9 where 

A fwU1610'2e2Wit > 0 
                4g' 

is the time-dependent magnitude of v1Sh1. Obviously 

we have 

v2Sh2 =ax27/ =-v1Sh1< 0. 
Thus the growing mode transports water northward in 
the upper layer and southward in the lower layer. 

   The quantity defined by 

vi(5hi  
vll ,i=h

i(z= 1, 2)



is the eddy-induced transport velocity of Gent et al. 

(1995). We observe 

 dhi(45)           vll;i •d
y< 0 (i = 1, 2),( 

which shows that the eddy-induced transport velocity 
by baroclinic instability is directed from the thicker to-

ward the thinner regions of the layer in concern. We will 
discuss it and Gent-McWilliams parameterization (Gent 
and McWilliams 1991) later. For this case we have 

—v11;2 = v11;1 =—
hios2ly.(46) 

   The water transport above is related with buoyancy 
transport as 

g'vi6h1 — g' v26112 = 2g~hi 51;l = 2g'Acos2ly. 

In either layer, buoyancy or heat is transported north-
ward by growing modes of disturbance. 

   Thirdly there is no mean meridional transport of 
zonal momentum. That is, the Reynolds stress vanishes. 
If we use (11), it is easy to confirm that 

             Doi a~Yi= uivi-- 
aax0 (i = 1, 2), (47) 

               y because ui and vi is out of phase for disturbance of the 
form of (44); there is no horizontal shear in the b.g. 
current. 

[2] form drag at the interface and energetics 
   The force exerted by the surface layer to the bottom 

layer is expressed as 

             an 
p1ax=f(piax—fax                          ri= f v1Sh1 

     = fhlvi1.1 > 0.(48) 

The force exerted by the bottom layer to the surface 
layer is expressed as 

   aq a~ a l     —p2 = —f
ax2ax= fax= — f v1Shi < 0, 

which is opposite to (48) of course. Thus the surface 
layer is pushed westward by the bottom layer via form 

drag and vice versa. 
   In association with the form drag, let us consider 

the work done by the form drag to the mean flow. The 
interfacial form drag exerts a force opposite to the b.g. 
current (U1 = U, U2 = —U), on each layer. Then the 
mean work done by the form drag to the mean flow may 

be estimated as 

—2fUviShr = —2fUA cos2 ly < 0, 

which would reduce the kinetic energy of the b.g. cur-
rent. This loss of kinetic energy of the mean current

is connected to the release of the b.g. potential energy 

associated with the meridional transport of buoyancy as 

       2fU(pdx) =FUH(~co) ,(49)                            ax 

the right hand ofwhich is exactly the same as the energy 

supply to the growing mode. It is to be born in mind 
that the right-hand is the total energy supply to dis-
turbance. The transfer of energy to the growing mode 

of disturbance is expressed in either way: the mechani-
. cal energy supply via interfacial form drag or release of 

potential energy by the eddy-tansport of buoyancy. 
   Baroclinic instability releases the potential energy of 

the b.g. field (meridional gradient of buoyancy), which 
is expressed as the northward transport of buoyancy. 
That is associated with the transport of zonal momen-
tum from the surface to lower layers. From the ener-

getic viewpoint, this assertion seems valid as we hive 
seen above in (49). 

 [3] note on the momentum balance 
   The balance of zonal momentum is more compli-

cated than the argument of interfacial form drag sug-

gests. There is a subtle issue peculiar to the rotating 
system, where the Coriolis force complicates the dynam-
ics and the conservation of momentum is not guaranteed 

 a priori. 
   From (48), one may suppose that the growing mode 

transfers the zonal momentum of the surface layer to 
the lower layer by means of form drag. According to 

 (48) this transfer is positive at every y. This does not 
 imply, however, that the lower layer increases its zonal 

 mean zonal momentum as much as (48). 
    The form drag to the surface layer is associated with 

 the northward water transport v1Sh1. The Coriolis force 

 acting on this northward transport is eastward and can-
 cels out the form drag, which is westaward. Therefore 

 the form drag itself does not corresponds to the reduc-
 tion of the zonal mean zonal current in the surface layer. 

 We must be more careful. 
   Although we have been concerned with the Q-G dy-

 namics primarily, it is necessary here to take into consid-

 eration the ageostrophic component of velocity in order 
 to discuss the zonal mean zonal momentum. We define 

                1 
           uge;tf4p2(i = 1, 2), 

uag;i. = u — Uge;i 

T 

 where the suffixes ge and ag denote the geostrophic and 

 ageostrophic components, respectively. Note that vi = 

vag;i, because the zonal mean of the geostrophic zonal 

 current vanishes identically: 

         _1 api 
                  vge;i — --- fa

x= 0.



The deceleration of the zonal mean eastward current of 

the surface layer would be due to negative  fvag;l, not 

directly by the interfacial form drag in this viewpoint. 

   In the next subsection we examine how vag;i is de-

termined by perturbation analysis.

4.6 secondary meridional circulation 

   Now let us investigate the secondary meridional cir-
culation induced by a growing mode as was investi-
gated in the last subsection. To take into account the 
ageostrophic component of v, we expand the current 
field in a series of terms of the increasing orders with 
respect to small amplitude. For example, the horizontal 
current field is expressed as 

           u = u(°) + u(1) + u(2) + .. • 
=U+u(1)+u(2)-1-..., 

where the shoulder suffix (j) indicates that the vari-
able is the j-th order one. The zeroth-order represents 
the b.g. field and the first-order is assumed to be the 
geostrocphic current of the growing mode: 

  0(1)= aoeik(~e(k)t) cosly, yo(1) = i(I CI /U)0(1), 
'0,1) = (1 +iIcI/U) eik(x-c(k)t) cosly, 

4) = (1 - iIcI/U)—aeik(x-e(k)t) cosly, 

2 u(1) = - < ,(1)(i = 1, 2). 

Also we have 

yji = o(1) +'pj(2) + ... , 

ri = y + 71(1) + n(2) + .. . 

          ~(1)_-f(P(1)_-fflCiiCl,(1)• 
          g'g'UV 

Then the discusSiOn in the previous subsection yields 

     -h2v1122 = hivj1.1 =—7)(1)V1= Acos2ly
(2) 

       V2)%~.-V   )1       11;2 II; 

v(2)-II
;1 11;2 II;1           =v(1) - v(1)ti2v(1) 11;42

v(2)E-_--v(1)+ v(1)c,'-%0        II
;0—II;1 11;2' 

[1] second-order zonal mean current u9e) and va g) 
   There must be ageostrophic velocity component for 

the generation of the zonal mean zonal current u in the 

second-order. We have the zonal mean of the zonal mo-

mentum equation as 

art(2)     ge;i - fv(2),,__ael)v(1) f=0(i = 172) ata9;iaye,z9e;i 

by virtue of (47). It follows immediately that 

                U(2)=1~9e)a• 

                                                     • 

                a9;if at '

the acceleration of uge;i is due to f vge;i rather than the 

form drag itself. The side boundary condition of uge;i 
becomes 

       au9e)i 
          at= 0 on y = 0, L. (50) 

   The equation of mass balance gives 

         a-(2)a       +ata y(i,2+hlv_a9)'1)a-(2)al
atayCh2Vi22+ h2v(9);2/ • 

Since hivli21 = -hlVi1;2, addition of the above two equa-
tions gives the mass conservation condition of the sec-

ondary circulation. 

            0 = h1va2g);1 + h2va29);2. 

On the other hand subtraction yields 

           (2)2 

          2(97,--,(2)ti hlav11;cP+ hl~(9;,P  
     at ayay 

        ti hlavlh4+hl a auge';c0 
ay f at ay 

                 (2)               av
II, _h1 a2ayo(2)(51)            h1 

ay' ay2 at ' 

where77(924p=vge~1-vge;1. Becauseg'rl(2)/ f = -cp(2) = 
1/,22) - Or and F = f2/g'H = 2f2/g'hi = 2f2/g'h2, 
(51) is written as 

                 _ 

          a2 -Fa(2(2)=fav(2)ll;~(52) 
ay2atay'

Fig. 4 Secondary acceleration of eastward zonal 
      mean zonal current in the surface layer 
     (solid line) and bottom layer (dashed line) 
     induced by growing modes for the case of 

     v FL/2 = 3. It corresponds to f v(g), so 
     that it vanishes along the southern and 

      northern boundaries. See text for details.



which represents the balance of the zonal mean second-
order Q-G baroclinic vorticity; it is the curl of the baro-
clinic forcing of interfacial drag that drives the zonal 
mean boroclinic potential vorticity in the second-rder. 

   Differentiation with respect to y gives 

            (2)a2—(2)f2     02 
     —Fau~_)—4lAcos2l 

  ay2 at—f------ ay2 hly, 

the solution of which becomes 

       2 (2)      .1`).9;,  = at U`o 

f  412  
2H F + 4l2 Acos 2ly-} cosh AtT'y. (53) cosh vL/2 

The cosh \/Fy term of (53) expresses the correction to 
satisfy the side boundary condition (50). 

   Figure 4 shows aue /at, the secondary acceleration 
of the b.g. zonal mean zonal current induced by growing 

modes for the case of \/FL/2 = 3. It is the same as 

f v(g);Z. The left-hand side of (53) is negative in central 
latitudes of the channel, and a little positive near the 
side boundaries. 

   This secondary circulation decelerates the zonal 

mean zonal current of the surface layer in the prin-
cipal part, whereas somewhat accelerates close to the 
side boundaries. Nevertheless (53) may be associated 
with the assertion that boroclinic instability transfers 

eastward momentum of the surface layer to the bot-
tom layer. This is partly because the zonal mean cur-
rent surely decreases in the principal area of the surface 
layer, and partly because the total amount of surface 

zonal momentum decreases with time as follows. 
   Integrated over the width of the ocean, the rate of 

temporal change of baroclinic zonal momentum becomes 

           L/2 
  2H f)             v(9;~dy=2HatL/2—(2) dy    -L/2-L 2 

— 2f 4l2  A t
anh~L  < 0,      ~F+4122 

which is due to the correction term. Without the cor-
rection term or when 12 << F, it is zero or quite small 
in comparison with the momentum transfer associated 
with the form drag f AL/2. 

  This is the net change of the zonal mean zonal cur-
rent due to baroclinic instability within the framework 
of the secondary perturbation argument. The picture 

much differs from that envisaged straightforward from 
the interfacial form drag; in a rotating system, accel-
eration of current follows the exerted force neither in 
magnitude nor in direction. Recall the North Equato-

rial Counter Current flowing eastward under the trade 
wind blowing westward.

   The secondary change of the vertical displacement 

of the interface is expressed as 

a—(2)yf071-1492,,e), 
at—Jog'at 

    _ 4l2 /Asin 2l+ sinh \/Fy  
     F + 412 2 2lycosh /L/2 

It tends to flatten the basic meridional slope of the in-
terface Y in central latitudes, whereas slightly sharpens 
near the side boundaries; an(2)/at � 0 at y = +L/2 
due to the correction term. Figure 5 gives an exmaple 
of the secondary change of the vertical displacement of 
the interface 7t(2) and the resulting meridional slope of 
the interface Y + n(2) for the case of -VFL/2 = 3. 

[2] stream function of the meridional circulation 
  Using the above distribution of T(29):, we can com-

pose the stream function x = X(2) for the meridional 

circulation; X(2) is defined so that 

         2U(2)_+0X(2)4J(2)_—8X-------.                                (2)       Waga
y,a9 az 

If we know 761,29);,, it is easy to deduce that 

             X—(2)hl — I z + hl I  —(2) 2vag;, 

by using the conditions 

      aag)=0 for —4H<z<0 

           z 

           except at the interface z = —hl • 

w(g) =0 at z=0, —4H

Fig. 5 A schematic distribution of secondary 
     zonal mean vertical displacement of the 

     interface as a function of y for the case 
     of IFL/2 = 3. A thin line shows the sec-
      ondary one -71(2), a dashed line the b.g. Y, 

     and a thick solid line the sum Y + n(2), 
     though they are largely exaggerated.



  The vertical velocity is linear with respect to z in 

each layer 

               (2) —  hi — Iz+hi I  
                                         ,--(2vi

;w      W
ag2 ay 

where (53) is to be substituted into 429);„. 
   Figure 6 shows the secondary meridional circulation 

by contours of the stream function x(2) for the case of 
\FEL/2 = 3. There are three cells, among which the 
central counterclockwise cell is called the indirect circu-
lation. It must be born in mind, however, that the three-

cell circulation above may not explain the real three-cell 
structure of atmosphere. Nonlinear processes of grow-
ing modes are believed to play a more critical role than 

in the nertubation analysis.

4.7 baroclinic instability, G-M parameteri-
    zation and diffusive stretching 

  The most important role of baroclinic instability has 

been said to moderate the large-scale meridional gradi-
ent of buoyancy. Apropos of this effect of baroclinic 
instability, a brief note is added here: intimate relations 

are pointed out among G-M parameterization (Gent and 
McWilliams 1991), diffusive stretching (Masuda and Ue-
hara 1992), and vertical viscosity. 

   Let us consider a slow and locally averaged dynam-

ics, in which baroclinic instability is treated as eddies 
of smaller scales in time and space. Our concern is the 
average over several times of such events. In this sub-

section • means the local average of •, not the zonal 
mean. Let V _(x, z, t) be the three-dimenSiOnal Q-

G stream function, b - —g(p — pr)/pr buoyancy, and 

N2 = N2(z) - d(b)/dz the b.g. buoyancy frequency. 
  In the quasi-steady (statistically steady) state of this 

situation, we have the hydrostatic equation 

        b-- faz(54) 
       az 

and the thermal-wind relation (relation of baroclinic 

geostrophy) 

f au = —ab.(55) 

   In association with the baroclinic instability, we con-

sider eddy-induced horizontal diffuSiOn of density, where 
the diffuSiOn coefficient is denoted by kh = Ich(z); it rep-
resents G-M parameterization and diffusive stretching. 
Likewise let v2/ = v2, (z) be the vertical eddy viscosity, 

representing the interfacial form drag. Their mutual re-
lations are argued below. 

[1] baroclinic instability and G-M parameterization 
   From (45) we see that, within a layer of the same 

density, eddies arising from baroclinic instability trans-

port water from thicker to thinner regions. This 
is the content of G-M parameterization (Gent and 
McWilliams 1995). It is expressed in a vector form as 

htiull;i —rcGOhi (thickness diffuSiOn), 

where KG mimics the diffuSiOn coefficient. In a continu-
ously stratified case it is rewritten as 

            ah
ullti—KGVbah, (56) a

b ab 

where VT, is the horizontal gradient operator with b fixed 

and Ti is identified with z. Since 

vhh = —~~Ob, 
(56) becomes 

                              artr7i .      =2G11N—KGaV-h=YGa—=v   abaTb ab ab 

ah a ah       _ kc(z)--—Ob 
ab az ab 

      _ 

       an aKG _aha\abaz dbvbabaz(KG                               N2vul. 
    dh// 

We find

\                 a KG ujl az(N2Vb! .(57) 
This is not equal to (46); G-M parameterization simply 

assumes (56) or (57) as an overall quasi-steady approx-
imation to (46), which is for a single event of baroclinic 

 instability. Thus we may interpret u11 as the velocity

Fig. 6 Secondary meridional circulation induced 
     by growing modes for the case of 

VFL/2 = 3: contours of the stream func-
     tion x(2) on the y, z-plane with the ab-

      scissa y and ordinate z. A solid line shows 
      a positive contour and a dotted line a neg-

      ative one. The contour interval is 1/10 of 
      the absolutely maximum value.



to express the horizontal transport or diffuSiOn of buoy-
ancy. In short G-M parameterization is a device to im-

plement this role of baroclinic instability in a coarse 
resolution numerical model of ocean general circulation. 

[2] equivalence of diffusive stretching and vertical vis-
cosity (interfacial friction) 

  The horizontal diffuSiOn of buoyancy related with G-
M parameterization and baroclinic instability is shown 
to be equivalent with the vertical viscosity as follows. 

Using (54) we have 

      ab+ N2w=  khv2b + other terms. 
= !hv2 (fr) + other terms. 

Then the contribution to the production of vorticity by 
stretching associated with horizontal diffuSiOn becomes 

av2 aw 
at– f az+ other terms.        a (f2khav2,        –

az N2 az+ other terms. (58) 

This effect of horizontal diffuSiOn on vorticity balance is 
called the diffusive stretching, which was discussed first 
in clarifying the structure of thermohaline circulation 

(Masuda and Uehara 1992, Mizuta and Masuda 1998). 
   On the other hand 

av 4  N a vaa4'+ other terms (59) 
atazvaz 

indicates the usual effect of vertical viscosity on vortic-

ity. Both (58) and (59) play the same role in the Q-G 
dynamics. The effect of horizontal diffuSiOn of density 

(buoyancy) can be replaced by vertical viscosity, if 

vv f2 
               Kh N2.                           (60) 

That is, vertical viscosity or interfacial drag is equivalent 
to diffusive stretching due to horizontal diffuSiOn. 

   In fact the production of vorticity by vertical viscos-
ity becomes 

   a 1 av2Tp a av xu 
   azvv  az = az(vv az) 

    = V x az (v,--(9771)_ —v xazfab 
— a (___14 v2-b) — a fkhv2b      az f az(N2) ' 

which agrees with (58) if (60) is satisfied. 

[3] interfacial drag and horizontal diffuSiOn of density 
   We first note that (46) is written in a vector form as 

a(Pv7l)  = — f-,ull(61) 
az

in a continuously stratified case. If we admit G-M pa-
rameterization (57), the right-hand side of (61) is related 

to the meridional gradient of b as 

              (f KG)() 

                 — 

         —full=—
azN2<17b62 

  On the other hand the upward flux of momentum is 
due to the interfacial form drag. If it is expressed via 
vertical viscosity, the net force by the interfacial form 
drag is expressed as 

       T ,ua(pv~)= a_ au       fII=az az(az) 
    =—

az  

        a (vi,  fab(63) 
from the thermal-wind relation (55). In order for (63) 
to agree with (62), v, must be equal to KG f 2/N2. If we 

further assume (60), icc may be identified with Ich. Thus 
the interfacial form drag is translated into the vertical 
viscosity, horizontal diffuSiOn, and G-M parameteriza-
tion, through the physics of baroclinic instability. 

   Another suggestive relation is obatined as follows. 
Using (57), we see the curl of the net force associated 
with the interfacial form drag is expressed as 

Vx(—f-,ull)=fv'ull 

      azv(fN2----VT)az(N2----v2b)            N22 

__ a (f2KG av21j 
az N2 az 

which is the diffusive stretching (58) due to the ordinary 
horizontal diffuSiOn of buoyancy if Kh = KG • 

   Finally equation (52), which expresses the genera-
tion of the zonal mean circulation, is interpreted as a 
discretized verSiOn of the baroclinic component of 

at(v_2_L-])            ,02+
az N2 az=fvull(64) 

The right-hand side of (64) represents the diffusive 

stretching mentioned above, due to horizontal trans-

port of buoyancy or interfacial form drag associated with 
baroclinic instability. This equation is valid regardless 

of the assumption of G-M parameterization. 

   We thus have observed an intimate relationship 

or consistency among baroclinic instability, diffusive 
stretching, P-M parameterization, interfacial form drag, 
anh the Coriolis force acting on the ageostrophic com-

ponent of velocity. If horizontal diffuSiOn of buoyancy 
ich is ascribed to baroclinic instability or mass trans-

port like G-M parameterization, all are related with one 
another as above. Plausible though it may be, the ar-

gument in this subsection is considered tentative, unless 
we have more reliable evidence to support it. There are



a lot of subtle and misleading issues in this subject of 
eddy-transport of mass, heat (buoyancy), momentum, 

and others. Those will be addressed to in future.

5. Summary and discusSiOn 

   A simplest situation of baroclinic instability was 
studied to understand its mechanism. A neat form of 
evolution equation was obtained, which is called the 
canonical equation for baroclinic instability. It describes 
the coupling of barotropic and baroclinic modes, rather 
than that of surface and bottom layers. Each term of 
the equation has a clear physical meaning therefore in 
the sense of vertical modes. Also the mechanism of in-
stability is interpreted in terms of the feedback between 
two vertical modes. We find, in particular, the equation 
is reduced to the harmonic equation (Laplace equation) 
for two independent variables of time t and zonal co-
ordinate x, in the limit of long-wave disturbance; it is 
related with the Cauchy-Riemann condition of complex 
functions. Therefore the instability mechanism becomes 
almost trivial and the spatial configurations of growing 
and decaying modes are interpreted by the property of 
complex functions. On the other hand for short-wave 
disturbances, the equation is reduced to the wave equa-
tion in a one-dimenSiOnal space. 

   The canonical equation gives explicit simple solu-
tions for the complex phase velocity and associated 
modes of stream functions. Such solutions make it easy 
to understand various aspects and roles of baroclinic in-
stability. The resulting picture is quite systematic and 
simple compared with ordinary models. 

   However, growth rates and spatial structure of the 

growing mode obtained are not necessarily new. Rather, 
it is worth mentioning that the canonical equation re-
produces almost all results of Eady's model of continu-
ously stratified fluids, in a simplest two-layer model. In 
other words, we can understand basic aspects and roles 
of baroclinic instability in a purified form. 

  The indispensable ingredients of baroclinic instabil-
ity and the features of disturbance are summarized as 
follows. 

   [1] Baroclinic instability occurs in a stably stratified 
fluid in a rotating system. There must be background 
current with vertical shear, which is associated with the 
horizontal gradient of buoyancy; it produces the neces-
sary CIPT  13 effect. 

   [2] Baroclinic instability needs no planetary effect. 
Stratification is necessary, but Boussinesq fluid and only 
two layers are sufficient. Geographical or topographic 
variabilities are not necessary. 

   [3] Disturbance of scales larger than the baroclinic 
radius of deformation becomes a growing or decaying 
mode. For growing (decaying) modes, the minimum

pressure of each layer is found upflow (downflow) side of 
the storm center at the interface. Positive feedback be-

tween barotropic and baroclinic modes plays a key role 
in the present interpretation. 

   [4] Growing modes level off the horizontal difference 
of buoyancy to release the potential energy of the back-

ground field. It has not been easy to explain that the 

growing mode has a horizontal scale larger than the 
baroclinic radius of deformation. It becomes easy, how-
ever, through the canonical equation, in which baro-

clinic radius comes into play in a most natural way. 
  A few variations of the canonical equation provided 

us with some unexpected mathematics of baroclinic 

instability. Also intimate relations were pointed out 
among baroclinic instability, G-M parameterization, dif-
fusive stretching, and interfacial form drag. Nonlinear 
aspects of baroclinic instability was not explored, how-

ever. They are quite important in the real role of baro-
clinic instability in general circulation. For instance, 
the momentum balance in the southern ocean has often 
been controversial as Hidaka's dilemma. There remain 
a lot of such subtle problems to be inquired further.
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           Appendix 

Al. meridional modes 

   Let k = k(y, t) be a Fourier-component of zonal 
waveumber k for a well-behaved function z/' = z/'(x, t): 

7)k =e-iks0 dx. 

We may expand '6, = z/)k (y, t) in terms of certain merid-
ional modes, which are defined through the following 

eigenvalue problem 

2 
o.d.e.: -------2 s = —12s —L/2 < y < L/2  d

y, 
b.c.: s=0 at y=+2 

where 12 > 0 is the required eigenvalue and s the eigen-
function associated with 12. 

   The eigenvalues are 12 = n2712, n being positive inte-

gers, and the associated eigenfunctions sin n7ry/L (say, 
Courant and Hilbert 1953, Masuda 2011). Thus we may 
expand 1-1)k as 

     ,,k'/' L`2)          ~k= ~y~k,n (t) sin —y +— , 
n=1 

irrespective of k. Finally the normal mode to consider 

has a form of 

eakx sinl (y + 2),lL. 
In particular for the gravest mode of n = 1, we may use 

ezkx sinl (y + 2) = e'kx cos ly.

A2. Reduced form of barotropic vor-

     ticity equation 

   In Section 3, the barotropic vorticity equation (13) is 
reduced to (15). This is almost obvious and guaranteed 

as follows. We first decompose the disturbance fields 
into their zonal mean and the residues 

0='5+(0-0), = TP + (Co —7), 

           s.t. 0—q=0, cp-7=0. 

Note that this procedure is supposed for a zonally peri-

odic channel; if the domain is infinite in the x-direction, 
both cb and To would vanish. 

  Then zonal average of (13) and (14) yields 

           a2-----0715 = 0 
ay2 at 

(a2 —Facp= 0 ay2at 

the solutions of which become 

        7. = 3a(t)y + 3c(t) 

<p = aa(t) sinh NrEy -1--y(t)  

Since a spatially constant term is meaningless for 0, we 
put c(t) = 0. Also we have -y(t) = 0, in order to conserve 
the mass of each layer (4). 

   The framework of Q-G dynamics does not determine 
the remaining coefficients of a(t) and a(t). From the 
total conservation of zonal momentum (5), however, we 
see 

  a/'L/2a L/2 a  0atJ(H1u1 + H2u2) dy =atfa~dy    -L/2L/2y 
which gives a(t) _ 3ao. Then it follows that 

         __a7__ a0(7()         0
a(Ut) a(Ut)+axAl 

   The remainders are expanded in Fourier integrals as 

         0 — 0 _i(75k (y, t)eikxdx, 
cp — 7 =i43(y, t)eikxdx. 

For each k � 0, we have from (13) 

V2 [(a  
         a(t)t) + ikcpk (y, t) eikx = 0. 

To satisfy the boundary conditions (3), the quantity in 

the bracket should vanish. Thus we obtain 

T 

       0 = ((p). (A2) 

Addition of (Al) and (A2) yields 

          a  
          a(Ut) 0 +acp = 0, 

reduced form of the barotropic vorticity equation.


