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                                      Abstract 

    In a previous article, GFDVN was proposed, which is a convenient way of vector notation for geophys-
ical fluid dynamics. This short note supplements the previous article of GFDVN with a systematic method 
for the complex representation of two-dimenSiOnal real vectors. First, intimate relationships and corre-
spondence rules are summarized between complex numbers and two-dimenSiOnal real vectors on a plane. 
Most of useful GFDVN are expressed by arithmetic of complex numbers as well. Examples are presented 
to show that complex representation is often easier to handle with than GFDVN or traditional ones. In 
particular, strophe operator which rotates a vector clockwise at a right angle, is expressed simply as 
the multiplication of -i, the imaginary unit. Likewise two-dimenSiOnal Lagrange's formula for triple vector 
product is proved by a straightforward arithmetic way of complex numbers by virtue of correspondence 
rules. In addition, complex representation turns out to give a concise expresSiOn of vector operations arid 
trigonometric identities. 

Key words : GFDVN (geophysical fluid dynamics vector notation), two-dimenSiOnal real vector, com-

            plex representation, Lagrange's formula

1. Introduction 

   In the ocean or atmosphere, the horizontal dimen-
SiOns are quite different from the vertical one. The hor-

izontal current velocity is much larger than the vertical 

velocity, indeed. Consequently most vector operations 
are made on the horizontal plane. In a previous arti-
cle (Masuda 2010)1) therefore a special vector notation 

was proposed that is designed for geophysical fluid dy-
namics. It was called geophysical fluid dynamics vector 
notation, or GFDVN for brevity. This notation allows 

us a much simpler description of geophysical fluid dy-
namics than traditional ones. It is not only convenient, 
but also provides vivid images of vector properties. 

   In Masuda (2010)1) , however, a few subjects were 

not discussed at all that are related intimately with 
GFDVN and quite useful in practice. One of them is the 
complex representation of two-dimenSiOnal real vectors. 

This short note is intended to supplement the previous 
article of GFDVN by enumerating and discussing for-
mulas that are relevant to the complex representation 

of two-dimenSiOnal real vectors. 
   Complex representation of two-dimenSiOnal real vec-

tors itself is not necessarily new, though. It appears

widely either in ordinary fluid mechanics or in geophys-
ical fluid dynamics. Almost every textbook of fluid me-
chanics instructs the potential theory of irrotational and 
incompressible flow based on complex functions (Lamb 

1932, Landau and Lifshits 1959, Batchelor 1967, e.g.) 
2)3)4); The method has been used, however, separately 
or independently, in an ad hoc manner as in Masuda 

(2007)5), where harmonic analysis of tidal currents and 
Ekrnan spirals are discussed by complex representation. 
The aim of this note is to present this powerful method 
in a fairly systematic form, starting with Euler's formula 

and extending to a wider area of applications. 
   Next section describes the correspondence between 

complex numbers and two-dimenSiOnal real vectors. 

During this process, several trigonometric identities are 
derived visually. Then, we translate most of useful 
GFDVN to their complex expresSiOn. In the third sec-

tion, examples and applications are presented to show 
the utility of complex representation. In particular La-

grapge's formula for triple vector product is derived by 
a purely arithmetic way of complex numbers. Complex 
representation sheds light on mutual relations between 
complementary quantities (such as u vs. -'u) or opera-
tions (such as divergence vs. rotation). Containing both 

of complementary components as the real and imagi-
nary parts, complex representation turns out to provide
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a concise expresSiOn. The last section gives a summary.

2. Two-dimenSiOnal real vectors and 

    complex numbers 

   As is well known,  two-dimenSiOnal real vectors have 

one-to-one correspondence with complex numbers. In 
this section we list up and summarize their correspon-
dence rules. Also simple and visual derivations of sev-

eral trigonometric identities are presented in relation to 
Euler's formula. 

   First of all, fundamental notations of GFDVN are 
reviewed; see Masuda (2010)') for details. Let R and 

C denote the set of all the real numbers and the set of all 
the complex numbers, respectively. Also R2 means the 
set of all the two-dimenSiOnal real vectors or a plane. 
We express a two-dimenSiOnal real vector E R2 by a 

boldface as u, a three-dimenSiOnal real vector E R3 by 
a boldface with an underline as u, and a complex num-
ber E C (or a real number E R) by an italic as u. A 
vector usually means a column vector of corresponding 

components. For a vector or a matrix denoted as A, A' 
denotes the transpose of A. There are two characteristic 
operators in GFDVN: one is -' (strophe or turn), which 

rotates a vector E R2 clockwise at a right angle. The 
other is <J = -V, which is called blana or alon.gent.

2.1 Complex numbers, Euler's formula and 
    trigonometric identities 

   A vector a E R2 is designated by two real numbers 
ax and ay as a = (ax, ay)', where ax and ay are called 
the x and y component, respectively. To a there corre-

sponds a complex number a E C with n(a] = ax and 
s[a] ay, where )[a] and s[a] indicate the real and 
imaginary part of a, respectively. Symbolically we may 
write these relations as 

      R2 3 a = (ax, ay)' H a = ax + jay E C, (1) 

where i - \/-1 is the imaginary unit. In this expresSiOn 
"A H B" means "A is an alternative representation of 

B or vice versa". In the case of (1), the left-hand side 
denotes a two-dimenSiOnal real vector a, while the right-
hand side is a complex number a corresponding to a. 

In other word, a E C is another expresSiOn of a E R2. 
Using this convention we have 

C31 R2 
C i E 

where and y denote the unit vectors parallel to the 
x-axis and y-axis of the horizontal plane, respectively. 

Thus the plane R2 is identified with the so-called com-

plex plane C. 
   The roost useful in this note is the well-known Eu-

ler's formula 

etc = cos t + i sin t (t E R),(2)

which will be elaborated on soon. This formula yields a 

polar representation of a complex number a E C as 

a = laleiarg(a) 

= lal cos[arg(a)] + it al sin[arg(a)], (3) 

where lal E R is the absolute value of a and arg(a) E R 
is the argument of a (Fig. 1). It shows that a complex 
number is characterized by its magnitude (or length) 
and direction, just as a two-dimenSiOnal real vector. 
Then 

          a = ax - iay = lale-tatg(a) E C(4) 

is called the complex conjugate of a. 
   If the polar representation of complex numbers is 

combined with vector operations, several useful and fa-
miliar formulas of trigonometric functions are derived 
easily. We may summarize the equations relevant to the 
subject in concern as 

    (a.1) :dt e:t•ie't(5) 
(a.2) : ett = lim (1 + i t) (6) 

n--oon 

      (b) : ei(a±0) = eia e±43(7) 

       (C.1):era +eta= 2 cosa2-------e2' (8) 

a -13                                       + ~~  

      (c.2) : eta - et13 = 2 sin2------  i et 2 ,(9) 

where t, a, and p are real numbers (arguments). 
  Figure 2 illustrates (a) showing that the derivative 

of etc with respect to t is ieit. At this stage we need 

no knowledge about the exponential function etc; (2) is 
considered as a definition of ett by the right-hand side.

Fig. 1 Polar representation of a complex number 
     a: lal is the absolute value and t = arg(a) 

     the argument or the angle of the segment 
      OA to the real axis. Euler's formula yields 

      a = late!' = laleiarg(a)



If we put de't = ei(t+dt) — eit 

           dell ti  Idt) 
           arg (del t +, 

as is evident from Fig. 2. Then we have 

          d(elt) ti dt et(t+ z) = idt eit 

from (3). It follows immediately that 

         d(it 
           dt)tiieit=deit= ieit 

namely (a.l). 
  From (2) and (a.l) we have 

      d(cos t) d(sin t) _d itit 
        dt+ 2 dtdt e =ie 

        = i(cos t + i sin t) = — sin t + i cos t, 

so that 

              dtcos t = — sin t                             (10) 

            dtsin t=+ cos t 
See Appendix for a more intuitive derivation. 

   Then (a.2) is derived as follows. Let n he a large 

integer and k be an integer such that 0 < k < n, so 

that t = kt + n------— k t. Figure 2 together with (a.1) 
n n 

shows that ei(t+dt) = (1 + idt + O(dt2)) eit, where 0(s) 
denotes the order. Putting dt = t , we have 

                          n elt= (1+it1-1)t          n+O(n2))e(„  
                                                l _ (1+in+O(-1))2el(2):  

                                        n 

     _ ... _ (1 +in+O (n2))eio 

                                                    n 

     _ (1+i-+ 0(n2n))--->(1+2t),   nn

which yields (a.2) in accordance with the ordinary defi-
nition of the exponential function for a real argument. 

  We may admit (b) as a natural consequence of the 

exponential function. It is derived easily, however, from 

(a.2) as follows: 

        ann       e1ae~~= lim (1 + i—(1 + i— 
       n oc Ti!n 

               /       = lim(1+ia+/3+0(I ))1l 
      noo\n. n2 

lim (1+a+/3)n                 i n «n 
= e1(a+j) 

where we have omitted details of limiting procedures. 

  Then it follows from (2) and (b) that 

cos(af,(3)+isin(a+,(3) 

= eica±o) = eiae,±i3 

= (cos a + i sin a) (cos ,(3 t i sin ,Q) 

= (cos a cos [3 T sin a sin ,(3) 

+i (sin a cos ,3 ± cos a sin 0). 

Equating the real or imaginary part of both sides, we 
obtain the addition theorem of cos t or sin t, respectively. 
See also Appendix for a geometrical derivation without 
using complex numbers. 

   The relations (c.l) and (c.2) are illustrated by Fig. 3. 

The left-hand side of (c.l) and (c.2) is the complex rep-
resentation of OC and BA, respectively. See Appendix 
for details and the resulting trigonometric identities.

2.2 Fundamental GFDVN in complex rep-
     resentation 

   The previous subsection provides only the one-to-
one correspondence between R2 and C. In this sub-

section we describe the correspondence (translation) of 
fundamental operations in R2 and those in C. We want

Fig. 2 Diagram of the derivative of elt

Fig. 3 Addition or subtraction of two unit vec-
      tors e2° and eZl3 is expressed as (c.l) or 

      (c.2), respectively.



to clarify how fundamental operations in R2 such as 

scalar multiplication, vector addition, and inner/outer 

products are expressed in C. 
   Let

 Operating twice reverses the direction of a vector. 

So does the double multiplication of —i in C:

That is, a (b) is the complex representation of the real 
two-dimenSiOnal vector a (b). 

   We now write down the formulas that guarantee the 
correspondence of fundamental operations between R2 
and C:

where the left-hand side is a vector operator in R2 and 

the right-hand side is a complex number multiplication 

in C. It is interesting and mnemonic that the operator 
"strophe" accidentally looks like —i .

Then we turn to

Let p = p(x, y) be a real scalar field

on an x-y plane. We should put

  The meaning is straightforward. Formula (a) indi-
cates that addition of two vectors corresponds to ad-
dition of two corresponding complex numbers and that 

scalar multiplication of a vector corresponds to the prod-
uct of the real number with the complex number. 

Property (b) shows that inner and outer products of 
two vectors are expressed by the multiplication of the 

corresponding complex numbers, one of them being the 
complex conjugate. It follows, in particular, that

which shows that correspondence rules work consis-

tently. 

   The relation above can be expressed in a somewhat 

different manner as follows. We first introduce a com-

plex number z for the coordinate x of the plane through

Next we define p(z, z), which is the same as p, but as a 
function of z and z rather than x and y:

Using these convention for the real scalar field p = 

p(x, y) = p(z, z) and the transformation rules

2.3 <, and scalar fields 

  In GFDVN, emphasis is put on two characteristic 

operators: "strophe" --' and "blana" c = - V. Their 

utility is apparent, say, in the geostrophic balance, 

which is expressed simply by GFDVN as

we have

where f is the Coriolis parameter, u horizontal current 

vector, p pressure, and p density. These vector opera-

tions should be translated to complex arithmetic. 

  Obviously we should put

Similarly one may define

for any R2 3 a H a E C. Just as turns a vector 
clockwise at right angle in R2, multiplication of —i does 

the same in C.

We should note that the overbar of Vp or <p does not 

mean the complex conjugate, but a kind of real conju-

gate field.



As a derivative of p along a vector u, we have

 whereCpu~uER2 
  Finally we have a formula for the laplacian of p as

3. Applications 

3.1 Thermal-wind relation and veering 

   As the first application, let us see how thermal wind 
relation and vertical shear is expressed in complex rep-
resentation. 

   Let u E R2 be a geostrophic current field and u its 
complex representation. Also we assume the hydrostatic 
approximation. Then we have

using (24). Also one may deduce it from (25) and (33) 

in Section 2.4, as

2.4 Divergence, rotation, and vector fields 

Let u = (n1, up)' be a real vector field on an x-y 

plane and u be a complex scalar field on the same x-y 

plane such that

where f denotes the (constant) Coriolis parameter, z 

the upward coordinate, b the buoyancy and p the pres-
sure divided by water density (which is assumed almost 
constant for the Boussinesq approximation to be valid). 
Differentiating with respect to z we obtain

which yields the thermal-wind relation as

Then let ii be a map from C to C such that
with the use of (20). 

In general, vertical change of Hull or arg(u) arg(u) 
becomes

In other words, u(z, z) is the same complex function 
as u(x, y) except that the former is a function of (z, z) 

rather than (x, y); situation and notation is the same as 
in the previous subsection for a real scalar field of p. 

  Next we define a related real vector field

respectively. These formulas are further reduced to a 

single formula

where u does not mean the complex conjugate of u, but 
i1 is the complex conjugate of u. 

  If (24) is used, it is easy to confirm

where

   Thus we have seen that fundamental operations in 

GFDVN are expressed by operations in complex num-

bers and vice versa.

Thus complex representation represents a concise ex-

presSiOn of the thermal-wind relation and vertical shear. 
The veering of ocean current with depth discussed in 
Mashuda (2010)1) or j3-spiral in Stommel and Schott 

(1977) and Pedlosky (1996) 6) ~) could have been de-
rived more easily by complex representation. 

3.2 Ekman spiral 

  Probably one of the most familiar examples of com-

plex representation in geophysical fluid dynamics is the



 Ekman spiral beneath the sea surface, which is governed 

by

   Then, by virtue of the correspondence rules, we ob-

tain

where v is a (constant) kinematic viscosity and To de-
notes the wind stress (divided by pa) on the sea surface. 
Let, where we have used (13), the complex conjugate of (33), 

and (39) above.

Through the correspondence rules in Section 2, the gov-

erning equations are rewritten as

which is easily solved to yield the Ekman spiral

whence

Using (37) and (38) we obtain

Fig. 4 Gauss' theorem and Stokes theorem for re-
     gion Q C R2 bounded by aci. The line in-
     tegral goes along aci anticlockwise; ds is 

a small line element vector along 01 and 
n is the unit vector outward normal to Sl, 
so that IIdsll n = -'ds.

3.3 Gauss' theorem and Stokes' theorem 

   Guass' theorem and Stokes' theorem are written as

respectively, where dx dx dy denotes the area element 

(not a vector, but a scalar), ds the line element vector, 
ds is the length of the line element, SZ a region 
in R2, and OQ its boundary (Fig. 4). The line integral 

goes around S2 counterclockwise, and n =-'Sis the 
outward normal unit vector on aQ. 

   As before we define

 R2 9x=(x,y)' z=x+iyEC 
  R2 3 u = (ux, uy)' = u = ux + iuy 

 R23U-(ux,-n0)'HuEC

coordinates 

current field .

   Thus Gauss' theorem and Stokes' theorem are ex-

pressed concisely by a single equation based on complex 

representation. We see that, if u is a nondivergent and 

irrotational field, or oz vanishes identically, so that u is 
a function of z only, which will be discussed again later 

in relation to velocity potential.

3.4 Derivation of the equation of motion in 
    a rotating system 

The frame in concern is rotating with a constant an-

gular frequency S2 around a fixed axis of rotation like the 
earth. Let S denote a quantity viewed from the rotating 
frame of reference. We may consider the direction of 
the rotating axis as vertical without loss of generality. 
Then the equation of motion suffers no change in the 

vertical direction, so that we may confine our concern 
to a horizontal plane. Let 

coordinates x + iy-z = zeZcit, (43) 
force Fx + iFy - F = Fe' 2t E C



The equations of motion of a particle with mass m in 

an inertial frame of reference is governed by

Then, just in the same way for a real vector field u in 

Section 2.4, we have

(Newton's law)

Since

 we have

Now, in order that 4) is a function of z only, 4 must 

satisfy

The second term expresses the Coriolis force and the 

last the centrifugal force. 

Rewriting back using GFDVN with respect to a 

plane perpendicular to the axis of rotation, we have

which is identical with Cauchy-R.iemann's relation for 

_ +

 the component of the axis of rotation

from (51). That is, (52) is a necessary and sufficient 

condition for 4) to be an analytic function of z. 
When (53) is satisfied, we may define two scalar 

fields

we obtain, in GFDVN,

which are expressed also as a real vector field

or, in ordinary three-dimenSiOnal notation,

by GFDVN. From (50), (53), and (54) we have

where we have used Lagange's formula for triple vec-
tor product (Section 3.6); the underline of a boldface 
indicates it is a three-dimenSiOnal vector.

3.5 Complex velocity potential 

   In this subsection we deal with the well-known ve-

locity potential for irrotational and incompressible flows 
from a viewpoint of systematic usage of complex repre-
sentation. 

Let 0 and be real scalar fields on an x-y plane, 
and (/) - (0, vi)' and (/) - (0, —0' be two related real 
vector fields. As before, 4) denotes a complex scalar field 

corresponding to the real vector field di such that

Moreover it follows from (34) and (55) that

Thus u derived from the analytic function 4 through 

(55) should be irrotational and nondivergent. Also from 

(27) and (56) we have

Also let 4) be a map from C to C such that

which shows that the velocity potential function (/) and 
stream function must be harmonic. 

Thus a complex potential 4> represents irrotational 
nondivergent flow u = (u, v)' by



 where  the  left-hand  side  is  not  u  u  +  iv,  hut  its  con-

jugate u — iv. According to the argument in Section 3.3, 
the complex velocity potential 4) satisfies

   We consider a plane R2, where the orthogonal co-

ordinates are q and p, instead of x and y, and let 

q E (q,p)'. On this plane, V and < are defined as 
usual. Then we see that the canonical equations

for any closed curve CM.

3.6 Lagrange's formula 

   Lagrange's formula for triple vector product is ex-

pressed as

are written simply as

for three-dimenSiOnal vectors a, b, and c. If all the 

three vectors a, b, and c lie on a plane, it becomes 
"two -dimenSiOnal Lagrange's formula"

because vector product is a scalar in GFDVN. Replacing 
a by ---,a in (60) and rearranging, we obtain a symmet-
ric identity

in a concise form by GFDVN, where t denotes time. 

This representation directly shows that the orbit of q, 

or dq, in the phase space R2 is parallel to <H, namely 

along an isoline of H; recall that < has an alias of alon-

gent. ExtenSiOn to higher-dimenSiOns are straightfor-

ward, formally at least. 

   Next we introduce a complex coordinate z and a 

corresponding Hamiltonian I:I by

where we have used ---,a .b=axb and -c=cxa. 
   Now Lagrnge's formula in two-dimenSiOn is proved 

quite easily by an arithmetic of the complex represen-
tation as follows. From (13) and other corresponding 
rules we have

where H is as usual as in the text. Note that H is pure 
imaginary, while H is real. 

  It follows from (25) and (63) that

That is, the canonical equations are expressed by a sin-

gle complex equation. Moreover, we have

namely, (60). 
  The symmetric form (61) is easier:

which has just the same form as (62) if we replace H, 

q, and p by Ii, z, and respectively. It must be noted 
that (64) is redundant, since the latter equation is the 
complex conjugate of the former, giving no information.

. Derivation of Lagrange's formula in three-dimenSiOn 
is straightforward from (60) or (61); see Masuda 

(2010).

3.7 Hamiltonian equations and GFDVN 

As the last example, we observe an interesting rela-
tion among Hamiltonian equations, GFDVN, and com-

plex representation, though it is rather formal. 
For simplicity consider a one-dimenSiOnal dynami-

cal system with Hamiltonian H H(q,p), where q is a 

generalized coordinate and p is the corresponding mo-
mentum; 11, q, and p are real, of course.

4. Summary and discusSiOn 

   In this short note we have enumerated useful formu-
las in complex representation of two-dimenSiOnal real 
vectors, supplementing the previous article of GFDVN. 

Euler's formula and consequent trigonometric identities 
have been elaborated on in rather details, though not 
necessarily new. 

Most of useful GFDVN were represented by complex 
numbers as well. Examples were presented to show that 
complex representation is easier to handle with than or-

dinary ones. Operator "turn" or "strophe" which



rotates a vector clockwise at a right angle, is expressed 
simply as the multiplication of  -i, the imaginary unit, in 
complex numbers. Likewise two-dimenSiOnal Lagrange's 

formula was proved in a purely arithmetic way of com-

plex numbers via correspondence rules. Concise expres-
SiOns were obtained by complex representation, where 

the real and imaginary parts respectively express the 

complementary quantities or operations such as u vs. 
-u or divergence vs. rotation. Indeed intimate rela-

tion between such complements manifests. itself clearly 
through complex representation. These results shed 
some light on the relationship between arithmetic of 

complex numbers and vector operations on a plane. 
   It is to be noted finally the complex representation 

argued here is restricted to real two-dimenSiOnal vectors. 
This is contrasted with the original GFDVN, which ap-

plies to complex vector fields as well. For instance, con-
sider a horizontal current field which has a harmonic 
temporal oscillation. One may use an expresSiOn 

                                            -2Wt 
u=ue 

where u and it are two-dimenSiOnal complex vector 
fields, and w the frequency. The real part of u is a 
vector with two components, not the x-component at 

all. In those cases, one should refrain from applying 
complex representation of two-dimenSiOnal real vectors. 
Or else, we should use it carefully by confining the real 
expresSiOn of temporal variation; for example always 
with a temporal variation expressed as e2Wt + e-ZWt or 

i(eiWt 
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Appendix

Al. Derivative of sin t and cos t 

   In Section 2.1, Euler's formula is used for the deriva-

tion of the derivatives of sinusoidal functions. Here we 
show a more elementary way of derivation. Figure A.1 
illustrates how to derive the derivatives of sin t, cos t, 
and tan t, where the radius of the circle is unity, namely 

OA = 1. We first note that R H (s, y) = (cos t, sin t) 
with argument t and R' H (x + dx, y + dy) _ (cos(t + 
dt), sin(t + dt)) with argument t + dt, where dt, is small 
enough. It is obvious that A RSR'N A EE'F n OAE. 

Enlarged A RSR'and A EE'F are added for visual con-
venience. From A RSR', we see 

d(cost) = R'S = RR'sint = dt, sin t 
      +d(sin t) = RS = RR' cos t = dt, cos t ' 

where we have used RR' = dt; the negative sign of 
-d(cos t) indicates that x = cos t decreases with t. It 

follows directly from these equations 

d(cos t)                          _ - sin t 
dt(Al) 

d(sin t)  
                dt= + cos t 

   Likewise from n EE'F, we see 

         EE' =OEdt=OAdt- ----dt 
cos t cos t 

Thus we have 

    d(tan t) = EF =EE  1 dt, t 
                   cos t cos t cos t cos2 t' 

or 

d(tan t) _  1 
dt cos2 t(A2) 

The derivative of cot t is obtained in a similar graphical 

way, though omitted here.

A2. Addition theorem of cos t and 

    sin t 

   In Section 2.1 we started with Euler's formula and 
thence derived the addition theorem of cos t and sin t. 
Conversely the addition theorem yields e'(a+a) = eaa•



 sin(a + /3) = OB sin(a + /3) = BC 

= BF + FC(= ED) = BE cos ,(3 + OE sin /3 

= OB sin a cos 13 + OB cos a sin /3 

= sin a cos /3+ cos a sin ,(3.

A3. Trigonometric identities from 

    (c.1) and (c.2) in Section 2.2 
   From Fig. A.3, which is the same as Fi. 3 but is 

repeated for the convenience of explanation, we have

This gives the right-hand side of formulas (c.l) or (c.2)

Fig. Al Illustration of the derivative of cos t, cos t. 

and tan t.

Taking the real and imaginary part of (c.l) or (c.2), 
we obtain

Fig. A2 Elementary explanation of the addition 

       theorems of cos t and sin t.

e213. For the sake of consistency, a graphical proof is 

presented for the addition theorem as follows. See Fig. 2 

for a, /3, and other marks of points; the radius of the 

circle is unity. It is easy to confirm

cos(a + 13) = OB cos(a + /3) = OC 

=OD—CD(=FE) =OE cos 133—BE sin /3 

= OB cos a cos /3 — OB sin a sin ,L3 

= cos a cos /3 — sin a sin /3

Fig. A3 The same as Fig. 3, which is repeated here 
       for the convenience of explanation here. 

Addition and subtraction of two unit vec-
       tors eZa and e213 are expressed as (c.l) and 

       (c.2), respectively.

and


