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                                    Abstract 

    The sidewall effect on Rayleigh-Benard convection has been examined in a rectangular channel of 
infinite length having a cross section with a finite aspect ratio A (=width/height). Steady longitudinal rolls 
are obtained numerically. In a bifurcation diagram in which A is changed as a bifurcation parameter, the 
roll solution forms a single-valued branch when the Rayleigh number Ra exceeds but is still close to the 
critical value. When Ra is relatively higher, the solution branch has a folded structure, that is, it can be 
triple-valued. The secondary instability of the roll solution with respect to two-dimenSiOnal disturbances is 
investigated. The roll solutions with a certain symmetry are found to be linearly stable. Stable roll patterns 
are classified in the A-Ra plane. In a certain range of A and Ra, multiple roll patterns are simultaneously 
stable. The number of the stable patterns increases with Ra. 

Key words : steady thermal convection, longitudinal rolls, rectangular channel, secondary instability, 
             avoided crossing.

1. Introduction 

  In Rayleigh-Benard problem with a superimposed 
through-flow, a variety of convection patterns are ob-
served depending on the thermal stratification and 
through-flow.1' 2) When the Poiseuille flow is imposed on 
the thermal convection in a horizontally infinite layer, 
thermal convection rolls are realized for the Rayleigh 
number Ra above the critical value (= 1708) and 
the Reynolds number Re below the critical value (= 
5490).3'4) At the onset of the convection, rolls are 
aligned along the streamwise direction. We call such 
convection rolls longitudinal. For industrial applications 
such as chemical engineering processes, we often can-
not neglect sidewall effects on the convection pattern. 
In a rectangular channel with rigid sidewalls, the ther-
mal convection pattern changes with the Reynolds num-
ber of the through-flow. According to a linear stabil-
ity analysis for sufficiently low Re, the primary pattern 
is a transverse mode which is periodic in the stream-
wise direction.5) For Re above a threshold value, the 

primary pattern is longitudinal. Although the longitu-
dinal rolls in the rectangular channel are similar to the 
rolls in the infinite layer, sidewalls affect details of the 
roll pattern. The number of rolls and their arrangement 
at the onset are known to depend on the aspect ratio

A(=width/height) of the cross section of the channel. 
We here focus on the longitudinal roll patterns in the 
rectangular channel that are realized when Re is above 
the threshold. By determining longitudinal roll pattern 
as a function of A, we aim to reveal sidewall effects on 
the roll patterns. 

   We briefly review a sidewall effect on the onset of 
the longitudinal rolls. The fully developed longitudinal 
rolls are essentially two-dimenSiOnal and do not depend 
on the through-flow, as will be explained in §2. The sta-
bility of the conduction state with respect to the longitu-
dinal rolls is therefore governed by the two-dimenSiOnal 

problem. The stability in the two-dimenSiOnal box 
has been examined by many authors.6-14) The neutral 
Rayleigh numbers are obtained as functions of the as-

pect ratio A, as shown in Fig. 1. Among the several 
neutral Rayleigh numbers, the lowest for a prescribed 
aspect ratio is the critical Rayleigh number. When A 
is close to an integer n, the convection pattern at the 
onset consists of n rolls aligned horizontally. We note 
that some neutral curves cross in the A-Ra plane. We 
can see the crossing between the curve for an odd num-
ber of rolls (the solid line in Fig. 1) and the curve for 
an even number of rolls (the dashed line). On the other 
hand, the two curves for an odd number of rolls avoid 
crossing; similarly the two curves for an even number 
of rolls also avoid crossing.9, 15, 16) The avoided crossing 
of the neutral curves is one of the remarkable sidewall
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effects provided by rigid sidewalls. 

   A crossing of the neutral curves gives rise to a non-

linear interaction of two modes, n rolls and n  + 1 rolls. 

The interaction yields a mixed mode of n rolls and n + 1 

rolls.17-2°) Mizushima and Adachi obtained one roll, two 

rolls, and a mixed mode of them in a square box with 

perfectly conducting sidewalls.21) They studied a bi-

furcation of the roll solutions in detail at A = 1 and 

0 < Ra < 70000. They found that both the one-roll 

solution and two-roll solution are stable simultaneously 

when 16624 < Ra < 37046. 

   When the neutral curves avoid crossing, its influ-

ence on a nonlinear solution has not yet been completely 

resolved. Recently, we demonstrated that the avoided 

crossing affects a secondary bifurcation of a mixed mode 

of n rolls and n + 2 rolls, based on a weakly nonlinear 

analysis as well as a numerical analysis.22' 23) At some 

selected values of Ra, solution branches were obtained 

as functions of the aspect ratio A. The branches are 

folded in a parameter space. They connect multiple 

stable solutions. A branch connects, for instance, a sta-

ble two-roll solution and a stable four-roll solution via 

an unstable solution. This bifurcation structure can be

explained based on amplitude equations: 

        dtAia+ti b + pia3+ji2b2a, (la) 
        db _€2a + A2+µ3a2b+µ4b3, (lb)       d

t 

where a and b denote amplitudes of n rolls and n+2 rolls, 
respectively. Two linear terms c1b and 12a represent the 
influence of the avoided crossing. 

   In the present paper, we extend the numerical re-
sults in refs. 22 and 23 in order to reveal a comprehensive 
bifurcation structure of the longitudinal rolls including 
stability characteristics in a wide range of A and Ra. In 
the numerical analysis in refs. 22 and 23, roll solutions 
were limited to even number of rolls for the perfectly 
insulating sidewalls; in addition their stability was ex-
amined only with respect to the disturbance that has 
an even symmetry. In this study, we investigate bifur-
cation of roll solutions, which include even number of 
rolls, odd number of rolls, and the mixed mode of them 
for perfectly conducting sidewalls as well as insulating 
one. We examine the secondary instability of the roll 
solutions with respect to two-dimenSiOnal disturbance 
without any assumptions on its symmetry. 

   We mention another systems where multiple rolls on 
a folded branch were found. They are Taylor-Couette 
flow between two cylinders of finite length24-27) and a 
thermal convection in a rectangular channel with imper-
fect boundary conditions.28) In the latter system, the 
top half of the sidewalls is assumed to be insulating and 
the bottom half is maintained at a uniform temperature. 
In both systems, the primary bifurcation is imperfect; 
there is no critical Taylor number or Rayleigh number of 
an onset of convection rolls. The folded branch is due to 
the imperfection of the primary bifurcation. The effect 
of the imperfection was studied based on the following 
equations: 

         da 
         at=µla3+-µ2b2a+81,(2a) 

        dbt=A2b+µsa2b+µ4b3+b2•(2b) 
Here, the last terms 61 and 62 are constants that give rise 

to the imperfect primary bifurcation.26' 27) In our study, 

we assume that the sidewalls are perfectly conducting 

or perfectly insulating. The primary bifurcation is then 

perfect, which is in contrast to the imperfect bifurcation 
in the Taylor-Couette flow in refs. 24-27 or the thermal 
convection in ref. 28. 

   We explain the mathematical formulation and sym-

metry of the convection rolls in §2, and the numerical 

methods in §3. In §4, we first explain the folded solu-

tion branches of primary convection rolls under partic-

ular symmetries. We then show asymmetric patterns. 

In §5, we classify stable roll patterns in the A-Ra plane

Fig. 1 Linear neutral stability curves for longitu-
      dinal convection rolls. Perfectly insulating 

      sidewall. The curves are based on the first 
      six eigenvalues. The numbers in the figure 

      indicate the number of rolls. We name the 
      first, second and third curves for the odd 
      number of rolls Rol, Ro2 and Ro3, respec-

      tively. We name the curves for even rolls, 
      RE1, RE2 and RE3, similarly. Two neu-
      tral curves, one for an odd number of rolls 
      (solid lines) and one for an even number 

      of rolls (dashed lines), cross. Two curves 
      for the same symmetry avoid crossing. For 

      open circles, see Fig. 3.



and predict roll patterns achieved in laboratory experi-

ments.

2. Formulation 

2.1 Basic equations 

   Under the Boussinesq approximation, we consider a 
fluid motion in a rectangular channel with horizontal 
top and bottom walls located at  z* = ±h/2 and vertical 
sidewalls located at x* = ±d/2. We define the aspect 
ratio of the cross section as A = d/h. The channel is 
heated from below and cooled from above at different, 
but uniform, temperatures T* = To + OT/2 at z* = 
±h/2, where To is a reference temperature measured at 
z* = 0 and OT(> 0) is the temperature difference be-
tween the top and bottom walls. The temperature in 
the conduction state is T* = 0* (z*) - To — OTz * /h. 
We use the height of the channel h, the thermal diffu-
sive time h2/rc, and the temperature difference AT as 
the characteristic length, time, and temperature, respec-
tively. Here, rc is the thermal diffusivity. We introduce 
non-dimenSiOnal variables. We denote them by letters 
without an asterisk. 

   We impose a steady and fully developed through-
flow. We assume that the channel has an infinite length. 
We consider a fully developed state both thermally and 
hydrodynamically. We define the Reynolds number Re, 
based on a half of the height of the channel and the 
maximum velocity of the through-flow. When Re ex-
ceeds a certain threshold, Re*, the longitudinal rolls 
are achieved. Here, Re* is 0(10) for air, and A = 1 

52' 29, 30) 
   We consider fully developed longitudinal rolls for 

Re > Re*. The velocity for the fully developed rolls 
is uniform in the streamwise direction. We can there-
fore introduce a stream function IP in the x-z plane such 
that the spanwise velocity u and the vertical velocity 
w are related to 1i by y,z = u and Ox = —w, where 
the subscripts denote partial derivatives. We introduce 
a temperature deviation from the conduction state by 
0 = T— e. The stream function and the temperature 
disturbance 0 in the fully developed longitudinal rolls 
are independent of the through-flow. They therefore 
satisfy equations of two-dimenSiOnal form: 

    V2= PrV4i — PrRaae +J(0,V20), (3a) 
atx 

       ae= v26)—ax+ J(, e). (3b) 
Here, V2 = axx + azz is the two-dimenSiOnal Lapla-
cian, and J is the Jacobian J(f, g) = ffgz — ,fox. The 
Prandtl number Pr and the Rayleigh number Ra are 
defined by Pr = v/rc and Ra = ag(OT)h3/(vrc), re-
spectively. Here, v is the kinematic viscosity, a is the

coefficient of cubic expanSiOn, and g is the gravitational 
acceleration. We let the Prandtl number be Pr = 0.71 
by assuming that the working fluid is air. 

   We impose boundary conditions on the stream func-
tion: 

         =  = 0 at x = ±A/2, (4a) a
x 

          =a
z=0 at z = ±1/2. (4b) 

On the temperature disturbance, we impose the per-
fectly conducting boundary conditions on the top and 
bottom walls: 

0=0 at z=±1/2.(5) 

On the sidewalls, we impose the following perfectly con-
ducting boundary conditions: 

0=0 at x=±A/2,(6) 

or the following perfectly insulating conditions: 

Le 
ax= 0 at x = ±A/2.(7) 

   Equations (3) are equivalent to the governing equa-
tions of the convection in a two-dimenSiOnal box heated 
from below. For A = 1, eqs. (3) with boundary condi-
tions (4), (5) and (6) have been extensively investigated 
by Mizushima and Adachi.21) 

2.2 Steady solution and the Nusselt number 

   The longitudinal rolls are steady solutions of (3). 
We denote the steady solutions by (x, z) and B(x, z). 
They satisfy 

V4~1' —Raae= —PrJ('~,V2), (8a) 

         V0 —~~= —J(Tb,e)(8b) 
with boundary conditions (4), (5), and (6) [or (7)]. 

   According to the linear stability analysis of the con-
duction state, n rolls at the onset are aligned horizon-
tally when A is close to an integer n.^) Based on the 
linearized equations of (3), if n is odd, then the temper-
ature 8(x, z) of the n-roll mode is an odd function of x 
and an even function of z; the stream function Tp(x, z) 
is an even function of both x and z. When we take 
the right-hand side of (8) into account, the nonlinear 

interaction of this odd-roll mode with itself results in 
nonlinear solutions satisfying 

01 : TP(—x, —z)= 0(x, z) and 9(—x, —z) = 
                          (9) 

We herein refer to a steady solution with the above sym-
metry (9) as an odd solution. At given values of Ra, A



and Pr, we have two odd solutions simultaneously. Sup-

pose that we obtain one odd solution; a transformation 

 z  —4  —z, 0—}-0, 0 —4 —0 (10) 

yields the other odd solution. An example of a couple 
of odd solutions is shown in Fig. 2 (a), (b). 

  When n is even, the temperature B(x, z) of the linear 
n-roll mode is an even function of both x and z. The 
corresponding nonlinear solution satisfies 

E2 : 0(—x, z) = —z,b(x, z) and B(—x, z) = B(x, z). 
                           (11) 

We refer to a steady solution with the symmetry (11) as 
an even solution. We show a sketch of the even solution 
in Fig. 2 (c). Transforming the flow pattern shown in 
Fig. 2 (c) by (10), we have the other pattern shown in 
Fig. 2 (d). We thus have two even solutions at given 
values of Ra, A and Pr. 

   In addition to the odd or even solution, there exists 
another class of steady solution, i.e., one which does not 
have any symmetry. This class arises by the secondary 
bifurcation from the odd or even solutions, as will be 
explained later. We refer to this as an asymmetric so-
lution. 
   As a measure of the intensity of the steady rolls, 
we adopt the Nusselt number Nu that characterizes the 
vertical heat transfer due to the thermal convection. We 

define the Nusselt number on the top and bottom walls 
as 

Nu±(x) _ --871(x,±1/2)  = 1 —-8z(x, ±1/2). (12) 
The conduction state gives Nu±(x) = 1. The mean 
values of the Nusselt numbers on the top and bottom 
walls are defined as 

                   rA/2         Nu± =1JNu±(x)dx. (13) 
              AA/2

We denote the mean value of Nu+ and Nu_ as Nu. 

   Note that the dependence of the Nusselt number 

on the aspect ratio is practically important. Nicolas 

pointed out that the sidewall effect on the heat transfer 

by the fully developed rolls had not been investigated 

thoroughly.2) The question as to whether Nu increases 

as A increases remains to be answered.

2.3 Secondary instability of longitudinal 
    rolls 

   In order to examine the secondary instability of 
the longitudinal rolls, we add infinitesimal disturbances 
to the solutions of (8): z/, = + iii exp(at) and 0 = 
79+  B exp(ot). Here, the variables with a hat denote the 
amplitude of the infinitesimal disturbance; the ampli-
tude depends on x and z only. Substituting these into 

(3) and linearizing with respect to the disturbance, we 
obtain 

a021%i=PrV41 —PrRaaB+J('5, 02)+J(i,V2Tb), Y'

(14a) 

QB = O2B — a~+ J(T, B) + J('~,B).(14b) 
The disturbance satisfies the boundary conditions (4)— 

(7). Equations (14) with boundary conditions consti-
tute an eigenvalue problem with eigenvalue a and cor-
responding eigenfunction (I/i, B). 

  When the steady solution (T, B) has the odd sym-
metry, the disturbance is classified into two types. One 
type satisfies the same symmetry as the steady solu-
tion's, that is, the symmetry 01 [see eq. (9)]. The sec-
ond type satisfies an counterpart of the symmetry 01, 
that is, 

E1 : /1i(—x, —z) = —(x, z) and B(—x, —z) = B(x, z). 
                           (15) 

Similarly, when the steady solution is even, the distur-
bance satisfies the symmetry E2 [eq. (11)] or 

02 : 11i(—x, z) = (x, z) and B(—x, z) _ —B(x, z). 
                           (16) 

If the z dependence is neglected, then the symmetry 
E1 has the same property as E2 with respect to the 
reflection x —+ —x. In this sense, a disturbance satis-
fying E1 represents a similar pattern to the even rolls 
satisfying E2. In the same sense, the disturbance with 
the symmetry 02 is similar to the odd rolls satisfying 
01. We herein refer to a disturbance satisfying Ei or Oi 

(i = 1, 2) shortly as a disturbance Ei or Oi, respectively. 
   To examine the stability of the even solution in 

refs. 22 and 23, we have assumed the disturbance E2 
only. In the present paper, we do not impose any re-
striction on the symmetry of disturbance. It is impor-
tant to consider the disturbance 02 on the even solution

Fig. 2 Sketches of stream lines and tempera-
     ture fields of odd solutions [(a), (b)] and 

     even solutions [(c), (d)]. Gray and white 
      regions represent relatively hotter and 

      colder regions, respectively.



and the disturbance  E1 on the odd solution, since such 

disturbances determine stability boundary of the roll so-
lution as will be explained in §4.

3. Numerical method 

  To solve (8) and (14), we use a Chebyshev collo-
cation method. We expand the stream function and 
temperature of the longitudinal rolls as 

      M N 
T (x z)= E Eon—Fm (OF.((),(17a) 

m=o n=o 

       M N 

EE OranGrn (S)Gn (( ), 
rn=o n=0 

             for perfectly conducting conditions, 
0(x,z)=(17b) 

       M N 

E E 0ranHna(i)Gn((), 
rn=o n=o 

             for perfectly insulating conditions, 

where e = 2x/A and (= 2z. The functions FF(x), 
G„ (x) and H„ (x) are defined as 

F2n(x) = T2n+4(x) - (n + 2)2T2(x) 

+(n. + 1)(n + 3)To(x), 

F2n+1(x) = T2n+5 (x) -2(n + 2)(n + 3)T3(x) 
+-2(n  + 1)(n + 4)Ti(x), 

G2n (x) = T2n+2 (x) — To
((x),  G2n+1(x) = T2n+3 (x) —Tl(x), 

   Ho(x) = To(x), 

H2n(x) = T2n+2(x) - (n + 1)2T2(x), for n 0, 

H2n+1 (x) = T2n+3(x) - (2n. + 3)2Ti (x), 

where Tn (x) is the Chebyshev polynomial of degree n. 
The functions Fn, Gn, and Hn satisfy the boundary 
conditions Fn (±1) = F4(±1) = Gn (±1) = H,; (±1) = 0, 
so that (17) satisfy the boundary conditions (4)-(7). 

  Substituting (17) into (8) and evaluating the resul-
tant equations at collocation points, we obtain algebraic 
equations for 2(M + 1)(N + 1) coefficients y.'nan and 
Bmn. We solve these algebraic equations by the Newton-
Raphson iteration with a continuation method using a 

pseudo-arclength.31) As the collocation points, we adopt 
points giving the extrema of the Chebyshev polynomial 
of degrees N + 2 and M + 2. The functions Fn, Gn 
and Hn are even (or odd) functions when n is even (or 
odd). Therefore, in steady solutions with symmetries 
01 or E2, a half of the 2(M + 1)(N + 1) coefficients are 
exactly zero. 

   When we solve (8), we mainly use M = 84 and N = 
24. When the number of rolls is less than five, we also 
use M = 44 and N = 24. We estimate the error of the 
Nusselt number for an eight-roll solution at A = 8 and

Ra = 10000 by increasing M or N. The relative error of 
the local Nusselt number Nu± (x) was less than 0.7%. 
The maximum error was found near x = 0, where the 
collocation points are sparse. 

  When we examine the linear stability of the steady 
solution, we expand the amplitudes of the disturbance 

 and 8 as (17). We apply the same procedure as above 
to eq. (14) and obtain an algebraic eigenvalue problem, 
which is solved using the dgegv package in LAPACK. 

4. Folded branches and mixed mode 

   solutions at a fixed value of Ra 

   In this section, we consider solutions at Ra = 6000. 
Longitudinal roll solutions are classified into three cat-
egories: even solutions satisfying E2, odd solutions sat-
isfying 01, and asymmetric solutions. First, we focus 
on even solutions to explain folded branches. The bi-
furcation characteristics of the odd solutions are simi-
lar to those of the even solutions. Next, we show the 
asymmetric solutions that connect even and odd solu-
tions. In this section, we mainly explain the solutions 
for perfectly insulating sidewalls. In the case of perfectly 
conducting sidewalls, the bifurcation structure remains 
unchanged qualitatively. 

   The roll solutions bifurcate from the solution corre-
sponding to the conduction state. Figure 1 shows the 
neutral stability curves of the conduction state with re-
spect to the rolls. The bifurcation points for the even 
roll solutions are located on the neutral curves for even 
rolls, REi, RE2, and RE3 (shown by the dashed lines in 
Fig. 1). At Ra = 6000, the first, second and third bifur-
cation points are A = 1.04, 1.88 and 2.72, respectively, 
for the perfectly insulating condition. Figure 3 shows 
the first, second and third solution branches which bi-
furcate at the first, second and third bifurcation points, 
respectively. The three bifurcation points are located 
on Nu = 1 in Fig. 3. We note that points at which 
the branches intersect with Nu > 1 are not bifurcation 

points. 
   Each branch shown in Fig. 3 is folded with several 
loops. The folds are linked with the avoided crossing 
of the linear neutral curves.22, 23) Along the loop of the 
first branch, a convection pattern changes from n rolls 
to n + 2 rolls. We show the patterns along the loop 
conpecting two rolls and four rolls in Fig. 4. The change 
in the pattern from two rolls to four rolls is gradual along 
the branch. Roll patterns change gradually along the 
second and third solution branches, too. The patterns 
on the second and third branches are less regular; each 
roll has a quite different size (not shown in the figures). 

   Here, we remark on multiplicity of the solution. 
Two even solutions, which are transformed by (10) each 
other, give the same value of Nu; we cannot distinguish



two  solutions in the A-Nu plane. The single branch 
of the even solution in the A-Nu plane thus represents 
double-valued solutions. 

  We study the secondary instability of the roll so-
lutions by solving the eigenvalue problem (14). The 
stability analysis reveals that the second and third so-
lutions are unstable. The stability of the first solution 
changes along the branch. We denote the growth rates

of the disturbances E2 and 02 by crE2 and UO2, respec-
tively. Here, the growth rates are given by the eigenval-
ues whose real part is the largest under the symmetry 
E2 or 02. Along the first branch, both aE2 and cr02 
were real. Figure 5 shows cJE2 and 0-02 along the loop 
shown in Fig. 4. The growth rate QE2 changes its sign 
at saddle-node points in the loop; it is positive only in 
a segment between two saddle-node points. A segment 
of the solution branch where Q02 > 0 is slightly longer 
than the segment where aE2 > 0. We show the points at 
which Q02 = 0 by dots in Figs. 3, 4 and 5(b); they are 
always located on the segment where aE2 < 0. That is, 
the even solution loses its stability with respect to the 
disturbance 02. The points at which cr02 = 0 are bifur-
cation points from the even solution to an asymmetric 
solution. 
   The bifurcation characteristics of the odd solution 
are qualitatively similar to those of the even solution. 
The first, second and third solution branches are folded 
with loops. The second and third solutions are unsta-
ble. The first solution changes its stability along the 
branch in a similar manner to one in Fig. 5. At points 
with the first eigenvalue a = 0, the first odd solution

Fig. 3 The Nusselt number for the even solutions 
     at Ra = 6000. Perfectly insulating side-

      walls. Pr = 0.71. The solid lines denote 
     linearly stable solutions, and the dotted 
      lines denote unstable solutions. The line 

Nu = 1 represents the conduction state. 
      The open circles denote the bifurcation 

      points, which correspond to the circles in 
      Fig. 1. Dots denote bifurcation points at 
      which the asymmetric solutions bifurcate 

     (see Fig. 6).

Fig. 4 Convection patterns along the first branch 
      in Fig. 3. The solid and dashed contours 

      denote stream lines with negative and pos-
      itive values of 't/', respectively. Perfectly 

      insulating sidewalls. For dots and squares, 
      see Fig. 5.

Fig. 5 Growth rates of disturbances satisfying 
     (11) and (16). (a): aE2 and a02 for the 

      first even solution at Ra = 6000. Perfectly 
     insulating sidewalls. (b): A sketch of aE2 

     and Q02 for 2 < A < 4. The solid and dot-
      ted lines correspond to negative or positive 

      value of a, respectively. The squares de-
      note saddle-node points with aE2 = 0 and 
      the dots denote the points with 0-02 = 0; 

      they correspond to symbols in Fig. 4.



loses its stability with respect to the disturbance  E1. 
These points are secondary bifurcation points at which 
an asymmetric solution bifurcates. The only difference 
between odd and even solutions is a stability around the 

primary bifurcation points on Nu = 1. The two-roll so-
lution bifurcates from the conduction state at A = 1.04 
for Ra = 6000; it is unstable when 1.04 < A < 1.2 (see 
Fig. 3). The one-roll solution bifurcates at A = 0.64 
for Ra = 6000; the one-roll solution is stable when 
0.64<A<2.0. 
   As explained above, when an even (or odd) solution 
loses its stability, the disturbance 02 (or E1) grows. As 
a result, an asymmetric solution bifurcates. Figure 6 
shows the even and odd solution branches (the primary 
branches) and the asymmetric solution branches (the 
secondary branches). The asymmetric solution branches 
connect the even and odd solutions. In Fig. 6(a), we 
show two asymmetric branches. The left branch con-
nects one roll and two rolls, and the right branch con-
nects three rolls and four rolls. Figure 6(b) shows an-
other two asymmetric branches. The left branch con-
nects two rolls and three rolls, and the right branch 
connects four rolls and five rolls. 

   Figure 7 shows an example of the convection pat-
terns on the left branch in Fig. 6(b). The asymmetric 
solutions connect two rolls that are elongated horizon-
tally with three rolls that are elongated vertically in a 
tight box. Note that all of the asymmetric solutions are 
unstable as far as we examined. 

   Here, we remark on multiplicity of solutions, again. 
As mentioned earlier, there are two even solutions that 

give the same value of Nu; each of them is transformed 
to the other by (10). From one of two even solutions, 
two asymmetric solutions arise out of the pitchfork bi-
furcation. We show a corresponding change in flow pat-
tern in Fig. 8. For instance, from a pattern of two rolls 
shown in Fig. 8 (c), two kinds of asymmetric patterns 
arise, which are shown in Fig. 8 (e-1) and (e-3). Sim-
ilarly, from the other two-roll pattern [Fig. 8 (d)], two 
kinds of asymmetric patterns [Fig. 8 (e-2), (e-4)] arise. 
We therefore have four asymmetric patterns that give 
the same value of Nu. A bifurcation from the odd solu-
tion to asymmetric solutions is also pitchfork. From a 

pattern of three rolls in Fig. 8 (a), two kinds of asym-
metric patterns [Fig. 8 (e-1), (e-2)] arise; from the other 

pattern in Fig. 8 (b), two patterns [Fig. 8 (e-3), (e-3)] 
arise. The single branch of the asymmetric solution in 
the A-Nu plane thus represents fourth-valued solutions. 

5. Diagram of stable solutions 

   Hereafter, we focus on the first even solution and 
the first odd solution. The other solutions, such as the 
asymmetric solutions, are unstable as mentioned in the

previous section. 
   We explain even solutions and odd solutions sepa-

rately for a while for convenience' sake. Figures 9 (a) 
and (b) show the even and odd solution branches, re-
spectively, at several values of Ra. Depending on A and 
Ra, Nu(A) is single-valued or multi-valued. When Ra is 
close to the neutral value R E 1 or RO1, Nu(A) is smooth 
and single-valued. For instance, we see the single-valued 
curve for Ra = 3000 and A < 3.9 in Fig. 9(b). As Ra 
increases, a cusp appears on the branch at a certain 
value of Ra (R~„~ say). Above Ra = Rc„sp, Nu(A) is

Fig. 6 Branches of the first even solution, the 
      first odd solution, and the asymmetric so-
     lutions at Ra = 6000. Perfectly insulating 

      sidewalls. The asymmetric solutions con-
     nect n rolls and n + 1 rolls; n = 1, 3 in (a) 
     and n = 2, 4 in (b). The even and odd so-
     lutions in (b) are the same as in (a). The 

     solid lines denote linearly stable solutions 
      and the dotted lines denote unstable ones. 

     The thick dotted lines denote the asym-
      metric solutions, which are unstable. The 

      numbers in the figures represent the num-
      bers of rolls.



multi-valued; the branch forms a loop. The loops be-
come larger as  Ra increases.32) In ranges of A and Ra 
where the loops form, n rolls and n + 2 rolls co-exist, as 
we have seen in Fig. 4. 

   Multiple even solutions are summarized in 
Fig. 10(a). The solid lines represent sets of saddle-
node points on the branch. We refer to Ra on the 
saddle-node points by RsN, which depends on A. We 
have at least one even solution for Ra > RE1. When 
Ra > RsN, we have multiple even solutions. They 
represent n rolls and n + 2 rolls in general; in some 
ranges of A and Ra, we have n rolls, n + 2 rolls, and 
n 4 rolls simultaneously. If we restrict the symmetry 
to the odd solution only, we have a similar diagram 
shown in Fig. 10(b).

  The solutions for the perfectly conducting sidewalls 
are shown in Fig. 11. Figure 12 shows neutral curves 
for the conducting conditions for a reference. When 
Ra is sufficiently higher than the critical value, the 

branches have folded structures with a couple of saddle-
node points. The bifurcation characteristics are thus 

qualitatively the same as those for the perfectly insulat-
ing conditions. Note some quantitative differences here. 
For the conducting condition, Nu(A) is single-valued at 
Ra = 2500, 3000 and 4000 in a broad range of A. The 
values of RCLLsp for the conducting condition are higher 

than those for the insulating condition. 
   We now show diagrams of linearly stable patterns in 

Figs. 13 and 14.33) All of the stable patterns are pro-
vided by even and odd solutions, since the asymmetric

Fig. 7 Convection patterns of the asymmetric so-
      lution connecting two rolls and three rolls 

     in Fig. 6(b). Ra = 6000. Perfectly insu-
      lating sidewalls.

Fig. 8 Sketches of stream lines of odd solutions 
     [(a), (b)], even solutions [(c), (d)] and 

      asymmetric solutions connecting them [(e-
     1), (e-2), (e-3), (e-4)]. Plus and minus 

      signs denote direction of rotation for a ref-
      erence. (a)-(d) correspond to the labels in 

      Fig. 2.

Fig. 9 First branches for perfectly insulating 

      sidewalls. From bottom to top, Ra = 

     2500, 3000, 4000, and 8000. The solid 

      lines denote stable solutions, and the dot-

      ted lines denote unstable solutions.



solution is unstable. In  these figures, the lowest two 
curves denote the neutral Rayleigh numbers. The low-
est one, shown by the solid line, is the critical curve. 
The other lines represent stability boundaries of the 11-
roll solutions with 1 < n < 8. Across the boundaries, 
even (or odd) solutions lose their stability with respect 
to the disturbance 02 (or E1). 

   Stable patterns depend on A and Ra. When Ra is 
less than Rol and RE1, the only stable solution is the 
trivial one, which corresponds to the conduction state. 
When Ra is greater than Rol or RE1 for a prescribed 
value of A, a roll solution exists. For RO1 < Ra < REi 

one odd solution is stable; see for instance A = 1 and 
Ra = 3000 in Fig. 13. Similarly, for RE1 < Ra < R01, 
one even solution exists and it is stable. For Ra above 
the two neutral curves Rol and RE1, at least one odd

solution or one even solution is stable. When Ra is 
above the stability boundaries, additional solutions are 
also stable. The numbers of the rolls represented by 
stable solutions are listed in each areas divided by the 
stability boundaries. For instance, in a diviSiOn includ-
ing (A, Ra) = (4, 5000) in Fig. 13, three solutions are 
stable, which represent three rolls, four rolls, and five 
rolls., The number of stable patterns increases as Ra 
increase, as far as we examined up to the eight-roll so-
lutions. 
   We compare our results with previously reported re-
sults obtained by experimental and numerical studies. 
Goldhirsch et al. observed multistability of a three-
roll solution and a four-roll solution based on the two-
dimenSiOnal numerical simulation at A = 3.34) Ouazzani 
et al. observed four rolls and sometimes three rolls in

Fig. 10 Diagrams of roll solutions under assump-
       tions on symmetry E2 and O1. Perfectly 

      insulating sidewalls. The dashed lines de-
       note the neutral Rayleigh numbers, RE1 

      and RE2 in (a) and Rol and R02 in (b). 
       The numbers in each areas represent the 
       numbers of rolls. For a plus, crosses, cir-
       cles and triangles, see Fig. 15.

Fig. 11 First branches for perfectly conducting 

       sidewalls. Pr = 0.71. From bottom to 

      top, Ra = 2500, 3000, 4000, 6000, 8000, 

      and 10000. The solid lines denote stable 

       solutions, and the dotted lines denote un-

       stable solutions.



their experiment at A = 3.6 and Ra <  4700.35) Our re-
sults are consistent with these results. Mizushima and 
Adachi found that one roll is stable and two rolls are 
unstable at A = 1 and 5012 < Ra < 16624.21) Stability 
boundaries in Fig. 14 are consistent with this result, too. 
At A = 4 and Ra = 10000, Goldhirsch et al. obtained 
six rolls for the perfectly conducting sidewalls. On the 
other hand, Figs. 11 and 14 show that the stable so-
lution consists of three, four or five rolls at A = 4 and 
Ra = 10000. We cannot explain this discrepancy. 

   Experimental supports for the diagrams in Figs. 13 
and 14 have not yet been available, except for ref. 35. In 
a laboratory experiment, it would be difficult to change 
A continuously. We expect however that the stability 
boundaries in the diagram can be examined experimen-
tally, by forming an appropriate roll pattern in a range 

(A, Ra) where multiple solutions are stable, and then 
decreasing Ra slowly with a fixed A. To form various 
roll patterns in the beginning, a technique such as the 
thermal imprinting36) would be helpful. 

   Finally, we compare the stability boundaries for fi-
nite A to those for A -4 oo. Among the numerous sec-
ondary instabilities of the rolls in the infinite layer, the 
Eckhaus instability (sideband instability) is the only one 
by which a two-dimenSiOnal disturbance grows.37) The 
stability boundary by the Eckhaus instability is given 
in terms of wave number of rolls, k. Rolls are stable for 

1k—keI < Ik, —k,I/0, where kc(= 3.116) is the critical 
wave number and kn, is the neutral wave number at a 

given Ra.38) 
   In order to compare the present results with the Eck-

haus boundary, we estimate the wave number of the rolls 
on the saddle-node points in Fig. 10. When A is finite, 
we cannot calculate the exact wave number of the rolls, 
because the roll patterns are not periodic in the span-
wise direction. We therefore estimate the "wave num-
ber" of the rolls for finite A by k = 71-/A, where A is the

width of the central roll that is closest to x = 0. The 
width is measured based on the temperature at z = 0. 
We estimate the upper limit of the wave number k for 
five rolls based on the lower limit of the width A at se-
lected saddle-node points, which are denoted by circles 
in Fig. 10(b). The lower limit of k for the five rolls 
are estimated at selected saddle-node points; some of 
them are shown by triangles in Fig. 10(b). Similarly, we 
estimate the limits of the wave number in the six-roll 

pattern on selected saddle-node points; the points are 
shown by a plus and crosses in Fig. 10(a). 

   Figure 15 shows the lower and upper limits of the 
wave number for five rolls and six rolls, together with 
the Eckhaus boundary. Although the upper limits of 
k do not agree well with the Eckhaus boundary, the 
lower limits agree, suggesting that the Eckhaus insta-
bility mechanism may be valid even for finite A when a 
convection pattern consists of several rolls. 

6. Concluding Remarks 

   We obtain longitudinal rolls in a rectangular channel 
and investigate their linear stability with respect to the 
two-dimenSiOnal disturbance. Among the first, second 
and third solutions, the only stable solutions are the first 
even solution and the first odd solution. When we use A 
as the bifurcation parameter, the first solution branch 
with even (or odd) symmetry is smooth and single-
valued when Ra is close to the critical value. As Ra 
increases, cusps and a folded structure arise with cou-

ples of the saddle-node bifurcation points. We present 
diagrams of the linearly stable roll patterns in the A-Ra 

plane. In the present study, we use A as a bifurca-
tion parameter and obtain bifurcation diagrams in A-
Nu plane. If we use both Ra and A as bifurcation pa-
rameters, the even (or odd) solution would be expected 
to form a folded surface as shown in Fig. 16. 

   We consider only two-dimenSiOnal stability in the 

present paper. Even if a solution is stable with respect 
to two-dimenSiOnal disturbances, it can be unstable with 
respect to three-dimenSiOnal disturbances. That is, the 
stability analysis in the present study gives a necessary 
condition for stability. The secondary instability of the 
longitudinal rolls with respect to the three-dimenSiOnal 
disturbance has been analyzed by Clever and Busse for 
A -4 oo,3°) by Xin et al at A = 10,40) and by the present 
authors at A= 1,2,41' 42)in the presence of the through-
flow. It has been confirmed that the roll solutions are 
stable in a certain range of parameters with respect to 
the three-dimenSiOnal disturbance.

Fig. 12 Linear neutral stability curves; same as 

      Fig. 1 but for perfectly conducting side-

        walls.



Fig. 13 Numbers of rolls in the stable solutions for perfectly insulating sidewalls. The lowest two curves denote 

       the neutral Rayleigh numbers  Rol and RE1i the solid one denotes critical value. All the lines, except 

       neutral curves, represent stability boundaries of the roll solutions.

Fig. 14 Numbers of rolls in the stable solutions; same as Fig. 13 but for perfectly conducting sidewalls.
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